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RIEMANN HYPOTHESIS PROOF

MUSTAPHA BEKKHOUCHA

Abstract. The proof that one proposes here for the Riemann hypothesis on the nonreal
zeros of the function ζ(s) comes indirectly :
• in the first stage, via its regular part ζ∗(s) = ζ(s) − 1/(s − 1), study of which in the

upper half-plane, reveals the existence of a double zero of the latter, point which have
the following property : the image of the first quadrant of apex ω0 = <z0 is included
in the first quadrant of apex the origin.
• in a second stage, via the function U(s) = [ln(1 − s)ζ∗(s)]−1, thanks to which one

shows that ζ(s) does not have a zero in the same quadrant.
• finally, in a third stage, where one uses successive analytic determinations of U(s),

defined in successive sectors of quadrants of apex ω < ω0, to show that the nonreal
zeros of ζ(s) cannot be inside any of these sectors.
This result, together with the property if symmetry of the nonreal zeros of ζ(s) allows
us to conclude.

1. Introduction

This work started from question in connection with the following remark : ζ∗(∆), for ∆ a
half-line of origin ω, 1

2
− ε < ω < 1, sweeping the first quadrant of apex ω, image of which at

the beginning coincide with the segment [ζ∗(ω), 1], with ζ∗(ω) > 0 and must varies according
to the properties of the holomorphic transformations, by which distortions comes infinitely
close to the origin, when the half-line tends towards the vertical ? (this was suggested by
result of Titchmarsh ([2])).
The answer given to this questions necessited the intervention of almost all the known
properties of ζ(s), namely :

• Behaviour of ζ(s) in the half-plane <s > 1
• Real zeros of ζ(s) - Existence of an infinity of zeros of ζ(s) on the axis <s = 1/2
• Development of ζ∗(s) in series of (s− 1)
• Symmetry of the nonreal zeros of ζ(s) relatively to the axis <s = 1/2
• Nonexistence (established by computer) of zeros of ζ(s) in the critical strip up to

large ordinate, apart from the axis.

Thus the role of these families (family of functions connected to ζ(s), family of properties
of ζ(s)) is determinating in the proof of Riemann hypothesis. The same goes for its direct
consequences :
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• Family of points of the axis <s = 1/2 associated with each zero of ζ.
• Similarly, some of these families could be associated by the ordinate of the corre-

sponding ζ-zeros. (This is suggested by a theorem of Ingham, in connection with a
conjecture of Mertens, see ([1]). In fact, the necessary condition for this, namely the
multiplicity of all zeros = 1, can be established easily by using the complements in
this paper.)

2. Position of the problem

In order to locate the complex zeros of the Riemann function ζ(z), which, as we know, are
all situated in the strip 0 < <(z) < 1, we’ll first locate the image of the quadrant of apex ω,
ω real neighboring 1

2
at left, by the function ζ(z), or rather by its regular part

ζ∗(z) = ζ(z)− 1

z − 1

The quadrant is sweeping by a half-straight ∆m, of origin ω and slope m, m ≥ 0, in the
direct way. The image ζ∗(∆m) that start at the point ζ∗(ω) on the real positive half axis
with a tangent which has the same direction and the same way as ∆m (because ζ∗′(ω) > 0,
as we shall prove further) finish at the point 1 with a tangent whose direction is symmetrical
to ∆m direction related to the vertical. It must exists a value of m, for which ζ∗(∆m) goes
for the first time through the vertical of ζ∗(ω). We know in fact that the origin 0 belong to
the closure image of the quadrant by ζ∗: we are basing this statement on a well-know result
([2]), namely: there is a sequence of points znwhich tends to infinity on the vertical <(z) = 1
so that ζ(zn)→ 0. Thus, there is, for m enough large, a vertical tangent to ζ∗(∆m) situated
the most on the left.

3. Main result

Proposition 1. The contact point M (unique or not) of the vertical tangent to ζ∗(∆m) the
most on the left, depends analytically on m.

Proof. M corresponds to a value of the parameter t on ∆m, of equation σ−ω = t/m, where
σ = <(z), t = =(z), so that <(ζ∗(ω + s)) has a derivative related to t, equals to zero: we
express by this that the tangent on M is vertical. So we have

(3.1)
∂

∂t
<(ζ∗(t,m)) = 0.

Let us consider now this equation in C(complex field), namely with (t,m) complex vari-
ables, <(ζ∗) representing the analytical extension of the real part of ζ∗. Let us place on
m = m1, positive real. The equation (3.1) has among its roots, a finite number N1 of real
roots tj(m1) which corresponds to <(ζ∗(tj(m1),m1)) the smallest of the values taken by
<(ζ∗(t,m1)) on t real. That is, on one hand the roots are isolated, and on the other hand,

<(ζ∗(t,m1)) −→ 1 when t −→∞
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Some of these roots can be multiple (then, they are counted as their multiplicity order). So,
in a neighborhood of m1 sufficiently small, let us say a disc centered on m1 in the complex
plan, there among the roots of the equation (3.1), N1 simple complex roots tj(m) which
tend to tj(m1) when m → m1. That not means, we have N1 functions on disk. But, if we
consider those of roots which have as imaginary part the smallest in absolute value, and
next among these, those for which <(ζ∗(tj(m),m)) (here, it’s not that analytical extension
of <(ζ∗(t,m)), but its the real part of the analytical extension of ζ∗(t,m)) is the smallest,
and finally, among these last, those for which =(ζ∗(tj(m),m)) (its about the imaginary part
of the analytical extension of ζ∗(t,m)) is the greatest, we really define a function on the disc
by setting,

<(ζ∗(th(m),m)) + i=(ζ∗(th(m),m))

that is to say ζ∗(th(m),m), where th(m) is some root carried after the three successive
selection. This function is holomorphic in the disc. It is in fact possible to decide on an
unique choice of th(m) among the carried roots, by the two following successive selections
: we take the th(m) which the imaginary part is the smallest, in absolute value and on the
whole, and among these last one, those which the real part is the smallest. Then th(m) is
well an holomorphic function of m, in a neighborhood of each point m of the pointed disk
∆(m1, r). In fact, the index h will be the same for all the points of such a neighborhood if
it is sufficiently small. Let us place in a neighborhood of m0, in the pointed disk ∆(m1, r).
The different solutions of the equation for each point m, make so much holomorphic function
th(m) in this neighborhood supposed sufficiently small. Let th0(m) one among those which
take in m0 the value associated by the preceding process. We’ll prove that h0 is still the
value of h associated to all the points of a neighborhood of m0 if it is sufficiently small. Let
any index h 6= h0 :
Whether ζ∗(th(m0)) 6= ζ∗(th0(m0)), and then, by continuity, it’s impossible that h being hold
again by the first selections, if m is sufficiently approaching by m0. For Instance, if, at first,
we have

|=(ζ∗(th(m0)))| 6= |=(ζ∗(th0(m0)))|
this implies

|=(ζ∗(th(m0)))| > |=(ζ∗(th0(m0)))|
Then, by continuity, we have also

|=(ζ∗(th(m)))| > |=(ζ∗(th0(m))|
for any m sufficiently near m0. It results that the index h cannot be carried, because it not
corresponds with minimum of |=(ζ∗(th′(m)))| when h′ varies.
Whether ζ∗(th(m0)) = ζ∗(th0(m0)),but th(m0) 6= th0(m0), and then, by continuity also, it’s
impossible that h being hold again by the last selections, if m is sufficiently approached by
m0. It is clear, by making so for all the h, distinct from h0, that we must have h = h0

for all the points of a neighborhood sufficiently small of m0. As th(m) is holomorphic
function in a neighborhood of m, and ζ∗(t,m) is holomorphic in (t,m), the composited
function ζ∗(th(m),m) is holomorphic in the disk minus the center. Finally, it is extended by
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continuity, as an holomorphic function in all the disk. It is clear that its trace on the real axis
in a neighborhood of m1 is the affix of the highest contact point of ζ∗(∆m) with its most left
tangent. In fact, for m real neighboring m1, the first selection made on the tj(m) amounts to
carry only those which are real (for, in this case, the equation (3.1) allows real roots), since
there is at least those which correspond to the point the most on the left on ζ∗(∆m). Then,
by the second selection, we carry only those which correspond effectively to the point the
most on the left, and, finally, we keep only those which correspond to these point the most
left, and the highest on ζ∗(∆m). It results from which proceed, that the highest contact
point of ζ∗(∆m) with its most to the left vertical tangent, depends analytically m. �

It results from which preced, that the highest contact point of ζ∗(∆m) with its most to
the left vertical tangent, depends analytically m.
It is clear that we can show with the same manner, that the lowest contact point of ζ∗(∆m)
with its most to the left vertical tangent, depends analytically m.
More precisely, we’ve proved that the two extreme contact points (the highest and the lowest
of ζ∗(∆m) with its most to the left tangent, are holomorphic functions of m in an open neigh-
borhood in the complex plan of certain half real straight ]mω,+∞[, whose origin depends
on ω.
Moreover, it emerges from the proof that the difference of these two functions is pure imag-
inary (its real part is zero), and therefore, it is constant, specially on ]mω,+∞[.
More generally, we can say that the most on the left vertical tangent , has a fixed number of
contact points and their mutual distances are constant. We’ll see further that this number
reduce to 1.
But, first, we’ve to prove the following proposition :

Proposition 2. It is impossible that, from a point −λ, exterior to ζ∗(∆m) situated on the
most on the left vertical tangent, we could see ζ∗(∆m) under an angle which exceeds a right
angle by a small angle (by cutting on the curve a small arc) when the slope of ∆m goes from
m to m+ dm.

Proof. We are leading to introduce the function

(3.2) Φt,d(s) = [λ+ ζ∗(ω + s) + d exp(tse−iθ)]−1

where d and t are two positive parameters, s = reiθ represent a ∆m parametrization of polar
angle θ. The logarithmic derivative with respect to r = |s| is

(3.3)
Φ′t,d(s)

Φt,d(s)
= − e

iθζ∗′(ω + s) + dtert

λ+ ζ∗(ω + s) + dert

Reasoning by absurd, if we suppose that, going from m to m + dm, the angle under which
we see from −λ the image of ∆m by ζ∗ been lightly more than a right angle, holds too for
the image by z ↪→ ζ∗(z) + d exp(tze−iθ) if d is choosen sufficiently small.
Moreover, it’s a matter of the same right angle for ζ∗(∆m) because they have the same
horizontal side.
Let us designate by s′, s′′ the curvilinear abscissa of points on ∆m which have for images
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the extremities of the small arc cuted up on the curve image. We’ll show that these gives
a contradiction, if the parameters t and d are suitably choosen. For this, we are leading to
consider the relative arrangement of Φ′t,d(s) and Φt,d(s) when s describes the small segment
[s′, s′′], and thus when the representative point describes the small arc which is outside the
right angle.
For the choice of the parameters, it’s a matter of satisfying all at once the two following
conditions :

(1) detr
′′

(where r′′ = |s′′| is supposed > r′ = |s′|) could be made as small as we want, in
such a way the space difference (horizontally measured) between the image curves of
∆m by ζ∗(ω+s)+d exp(tse−iθ) been infinitely small in a neighborhood of the contact
point of ζ∗(∆m) with the most of the left vertical tangent.

(2) detr could made as large as we want with respect to |ζ∗′(ω+s)| in such a way that the
numerator argument of the second number of the above formula be infinitely small,
always for r between r′ and r′′.

Let us precise this:
Given ε, M two positive numbers, ε arbitrary small, M arbitrary large, we’ve

dtert = der
′t.te(r−r′)t

we suppose t sufficiently large for the second factor to be superior to M.ε−1. A such t been
fixed, we choose d in such a way that detr

′′
= ε. In these conditions, the angle-space between

Φt,d(s) and Φ′t,d(s), space which is given by the argument of
Φ′

t,d(s)

Φt,d(s)
could be made as near as

we want the argument of
−1

λ+ ζ∗(ω + s) + d exp(tse−iθ)

when ζ∗(ω+s)+d exp tse−iθ describes the arc included between the two tangents taken from
the point −λ.
By taking as the origin the horizontal tangent, the argument of

λ+ ζ∗(ω + s) + d exp(tse−iθ)

caries from 0 to π/2 + δ in the case where −λ is above the contact point with the vertical
tangent, and varies from 0 to −π/2 − δ in the case where −λ is below. We can obviously
confine ourself to the first case.
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Figure 1

We’ve oversimplified on the Figure 1: The arc (1) described by λ+ζ∗(ω+s)+d exp(tse−iθ)
. The arc (2) described by (λ+ ζ∗(ω + s) + d exp(tse−iθ))−1 i.e, Φt,d(s).
Let us follow the advance of Φt,d(s), from the contact point with the real axis, in the decreas-
ing r way. We can distinguish two phases, corresponding respectively to these half quadrant
: <(Φt,d(s)) and =(Φt,d(s)) increase for been in accordance with the fact Φ′t,d(s) been then in
the 3rd quadrant, the functions <(Φt,d(s)) and =(Φt,d(s)) are decreasing: since r decrease,
<(Φt,d(s)) and =(Φt,d(s)) increase.
On the arc situated in the 2nd half quadrant, <(Φt,d(s)) decrease, while =(Φt,d(s)) continu-
ous to increase, which is still in accordance with the fact that, Φ′t,d(s) been this time in the
4th quadrant, the function <(Φt,d(s)) is increasing while the function =(Φt,d(s)) is decreas-
ing: since r decrease, <(Φt,d(s)) decrease and =(Φt,d(s)) increase.
That contradiction comes about the arc which gets out the quadrant. That’s for Φ′t,d(s)
is so in the 1st quadrant, and then <(Φ′t,d(s)) been positive, <(Φt,d(s)) had to don’t step
decreasing, while obviously, it has at least to come through an episode of increasing. �

We’ve seen that it follow from the proposition 1, that the number of the contact points of
ζ∗(∆m) with its most on the left vertical tangent, is fixed when m changes, and that their
mutual distances remained constant. Thanks to the proposition 2, this result can be precised
by the following manner:

Proposition 3. The contact point of ζ∗(∆m) with its most the left tangent, is unique.

Proof. For that, we note firstly that we’ve analogous results about the highest horizontal
tangent to ζ∗(∆m). But furthermore, in this case, we easily se that theses results are good
for any apex ω of the quadrant as far as it is on the half real positif axis.
But, if we fix m, and we give analogous proof to these given higher, taking for this time
as variables (t, ω), we can establish the analyticity with respect to ω, of the contact point
(unique or not) of ζ∗(∆m) with highest horizontal tangent, and, the unvarying of the number
of the contact points and their mutual distances. As the image curve ζ∗(∆m) tends to be
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confused with the point 1, when ω →∞, we conclude that there is only one contact point.
Then returning to the situation examined firstly, we observe that the contact point of ζ∗(∆m)
with its most to the left vertical tangent, be infinitely neighboring of the contact point with
the highest horizontal tangent. That’s because the proposition 2 excluded other contact
points. �

As we’ve seen above, the contact point of ζ∗(∆m) with its most on the left vertical tangent
is infinitely approaching the contact point of the curve with its highest horizontal tangent,
so that we’ve nearly a retrogression point. It must be supposed moreover that it’s under
favor of a retrogression point that ζ∗(∆m) could have for the first time, a most on the left
vertical tangent. From this, m increasing, the curve couldn’t progress to the left so as to
avoid the application of the proposition 2, then, so as the most on the left point and the
highest point remained infinitely neighboring.

Proposition 4. The image by ζ∗ of the quadrant of apex ω, ω ≥ 1/2 is entirely contained in
the upper half plane, unless the quadrant contains a z0 such as ζ∗(z0) is real and ζ∗′(z0) = 0.

Proof. We suppose 1/2 ≤ ω < 1, the upper boundary 1 is taken for being in the conditions
of the preceding propositions.
But its obvious that all we have to do is to establish the result for all ω ≥ 1/2, for the image
of the quadrant are included some into others when ω grows.
Let us follow the advance towards the left of the contact point M of ζ∗(∆m) with the most
left vertical tangent. A such tangent surely exist as soon as m is large enough, since ζ∗(∆m)
coming through the neighboring of the origin: as we’ve pointed out highly, it cuts the vertical
ζ∗(ω) in at least two points and necessary has a vertical tangent in certain points of the arc
bounded by these two points.
We reason by absurd, by supposing that ζ∗(∆m) comes, for the first time, to touch the real
axis in a point, the real axis is then the lowest horizontal tangent to ζ∗(∆m) : we’ll note it
TB0 . Let −λ0 be the point where TB0 meet the most left vertical tangent TG0 . Given to m a
growth dm, let TB be the new position of the lowest horizontal tangent to ζ∗(∆m+dm),−λ the
point where it meets TG0 , TG the most left tangent to ζ∗(∆m+dm) taked from −λ. (TB, TG)
is then the angle under which we see the curve ζ∗(∆m+dm) from the point −λ. It exceeds
on right angle the angle (TG0 , TG) which cuts on ζ∗(∆m+dm) a little arc, if dm is sufficiently
small.
There is however a situation where the preceding proof is not possible: It is when −λ0 is
precisely the point where ζ∗(∆m) comes to touch the real axis. That occurs only if it is
retrogression point (which corresponds then to a point z0 of ∆m0 so that ζ∗(z0) is real and
ζ∗′(z0) = 0.
But as soon as the real axis is crossed by ∆m images for m > m0, in order to avoid that
proposition 2 been applied again, that leads to a contradiction, we have to suppose that
ζ∗(∆m) has, in the inferior half-plan, only one small arc, getting round nearly the point
ζ∗(z0), and which the lowest point is nearly confused with the most left point. The first
one is then the contact point of ζ∗(∆m) with its lowest horizontal tangent, a unique contact
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point as for the highest horizontal tangent. The second one must be supposed infinitely
neighboring of the trace on the real axis of the most left vertical tangent. �

Lemma 1. The first quadrant which has its image which crosses the real-axis has for apex
ω0, and ω0 is the orthogonal projection of a double zero of ζ∗. It’s the unique zero of ζ∗ in
the upper half-plane.

Proof. (1) By considering at the beginning −ω being fixed, the first value of m for which
the point on the left of ζ∗(∆m) has an x-coordinate = ζ∗(ω), it cannot have a point
of ζ∗(∆m) below the real axis, nor on, (apart from ζ∗(ω) and 1). In fact : let us
call z1(m,ω) the antecedent of the point on the left, z2(m,ω) that of the point low,
supposed to exist.
It is known that z1, z2 are analytical functions (and holomorphic in (m,ω) in the
field of complexes. We saw for z1 in the course of demonstration of proposition 1,
and, for z2, it is c1ear that one has a similar demonstration.
Under the particular conditions where one placed itself, we have{

<(ζ∗(z1(m,ω))) = ζ∗(ω) (1)
ζ∗′(z2(m,ω)) = 0 (2)

The equation (2) is expressing the fact that the point low of ζ∗(∆m) is necessary
a retrogression point, because the application of proposition 2, interdict that is a
regular point.
Let us designate by (m0, ω0) a solution of (1). If

∂

∂m
<(ζ∗(z1(m,ω)))0 6= 0

then (1) is solved in the neighborhood of (m0, ω0) by m = m(ω) where m(ω) is an
analytical function, and takes the value m0 for ω = ω0. Now

∂

∂m
<(ζ∗(z1(m,ω))) =

∂

∂t
<(ζ∗(z1(m,ω))).

∂t

∂m
+

∂

∂σ
<(ζ∗(z1(m,ω))).

∂σ

∂m

with ∂
∂t
<(ζ∗(z1(m,ω)))0 = 0 (according to equation (3.1)). On the other hand

( ∂σ
∂m

)0 6= 0 in accordance with the unicity of the value of σ (or t) corresponding
to the point of contact with ζ∗(∆ω0,m0) of the vertical tangent on the left (cf proof of
equation (3.1))
So one has

∂

∂m
<(ζ∗(z1(m,ω)))0 6= 0

iff ∂
∂σ
<(ζ∗(z1(m,ω)))0 6= 0 or ∂

∂t
=(ζ∗(z1(m,ω)))0 6= 0 (conditions of Cauchy- Rie-

mann), which, taking into account

∂

∂t
<(ζ∗(z1(m,ω)))0 = 0

is equivalent to ζ∗′(z1(ω,m))0 6= 0 ie, the point on the left of ζ∗(∆ω0,m0) is not a
retrogression point. Thus, let us suppose at first, that one in this case.
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Then, as one saw higher, (1) is solved in the neighborhood of ω0 by
m = m(ω), analytical and such as m(ω0) = m0. Consequently, the point low of
ζ∗(∆ω0,m0) describes a continuous arc, arc which cannot be reduced to a point since
wary while remaining nearest to the vertical tangent on the left, which has abscissa =
ζ∗(ω). Because, by other hand, it is a retrogression point of ζ∗(∆ω,m(ω)), thus a point
where the derivate = 0 (condition 2 of the system), one has a contradiction with the
fact that zeros of a holomorphic function 6= 0, of a single variable, are isolated. One
concludes from it, that examinate situation doesn’t take place.
Let us consider now the case ζ∗(z1(ω0,m(ω0))) is a retrogression point. It will be
sufficient to show that one can always find a sequence of points ωn → ω0, such as
the corresponding sequence m(ωn) (it is clear that, in all the cases, it corresponds
to any ω, starting from a certain value, a single value of m, such as the equation is
verified) has a limit, and for which ζ∗(z1(ωn,m(ωn))) is not a retrogression point of
ζ∗(∆ωn,m(ωn)).
In fact, under these conditions, these last curves, not having a point in the lower
half-plane, by continuity, it will be similarly for ζ∗(∆ω0,m(ω0)).
For that, one reasons by absurd. Thus, let us suppose that for any sequence ωn → ω0

we have ζ∗(z1(ωn,m(ωn)))) is a retrogression point of ζ∗(∆ωn,m(ωn)). It is obvious that
there is at last one of there sequences for which m(ωn) is bounded. One can extract
a convergent sequence, ζ∗(z1(ωn,m(ωn))) which corresponds to him, is a convergent
sequence where the derivate = 0. It is the sought contradiction.

(2) ω being always fixed, now let us consider the first value of m for which ζ∗(∆m) crosses
for the first time, the real-axis. Let us call ζ∗(z0(m,ω)) this point of contact with the
real-axis. One will show that z0(m,ω) does not depend on ω, and that ζ∗(z0(m,ω))
also. Since ζ∗(z0(m,ω)) is the point low of ζ∗(∆m) it depends analytically on (m,ω).
One knows also it is necessarily a retrogression point. z0(m,ω) thus verified{

=ζ∗(z0(m,ω)) = 0 (1)
ζ∗′(z0(m,ω)) = 0 (2)

Given (ω,m(ω)) the general solution of (1) (m(ω) understood here as the single value
of m corresponding to ω, so that ζ∗(∆ω,m) intersect for the first time the real axis)
Let us designate (ω0,m(ω0)) a particular solution. One will show that the function
m(ω) is continuous.
• First, it is easy to see that it is an increasing function. Indeed, if ω < ω0, the

sector limited by ∆ω,m0 because it contains the sector limited by ∆ω0,m0 , has
already points of its image in the lower half plane. It is thus for some m < m0

that ζ∗(∆ω,m(ω)) intersect for the first time the real axis.
• The function m(ω) is surjective : In fact, let us designate Z0 the point of ∆ω0,m0

whose the ζ∗ image is the point of contact of
ζ∗(∆ω0,m0) with real axis. Supposing m < m0. Let us sweep the higher half plane
by half straight of slope fixed m, and origin varying in ]−∞, ω0[. It is clear that
if ω is sufficiently on the left of ω0, the sector limited by ∆ω,m will going to



10 MUSTAPHA BEKKHOUCHA

contain Z0, and consequently its will have already points in the lower half-plane.
Necessarily, there was before a position of ω for which ζ∗(∆ω,m) intersect for the
first time, the real axis.
• One can now conclude that, m(ω) being an increasing and surjective function of

]−∞, .[→ ]0, .[ is necessarily continuous.
Its results from it that z0(m,ω(ω)) is continuous. On account of equation (2),
one concludes that, if z0(m,ω(ω)) were not fixed, one would have a contradiction
with that ζ∗′ ≡ 0 in all the points of a continuous arc described by z0(m,ω(ω)).

(3) Profiting of the fact that z0 is independent of ω, let us tend ω towards −∞. That
is possible in fact: at first, the equalities ζ∗(−2n) = 1/2n + 1 ∀n ∈ N, imply that
there are intervals as for as we want on the negative real axis in wich ζ∗ is increasing
and ζ∗′ positive. Then, this last property extends at all the points of R, because
∀ω∃ω′ < ω where ζ∗′(ω′) is positive, and which is thus the apex of a sector of the
higher half-plane, of origin-side carried by the real axis and of which the image by
ζ∗ is very whole in the upper half-plane (provided that the sector does not contain
the point z0) - What implies that ζ∗′(ω) is positive throughout the real axis. ω thus
tending towards −∞, because ζ∗(ω) tends toward 0 by decreasing positive values,
and ζ∗(∆m,ω) crosses for the first time the real axis only one point on the left of ζ∗(ω)
(the point ζ∗(z0)), there is ζ∗(z0) ≤ 0. We show that one has in fact ζ∗(z0) = 0(and
thus z0 is double zero of ζ∗).
For that, one will reason by the absurd by supposing ζ∗(z0) < 0. One take ω < 1/2.
If the image of ∆m by ζ∗ did not surround the origin underneath, for m rather large,
it would result from it as we will see it with proposition 5 - then ζ does not have zero
in the quadrant of apex ω, which is in contradiction with existence of zeros on the
axis <z = 1/2
It is via its initial arc (which starts in ζ∗(ω)) that ζ∗(∆m) passes below the origin
while cutting the real-axis obliquely, because, any other manner is not allowed for
him under the proposition 2. But, with the limit (ω = −∞), also this manner of
surrounding the origin becomes impossible, because the curve image of horizontal,
admitting the origin as initial point, with a tangent of slop varying from 0 to +∞,
could surround the origin underneath only while crossing the real– axis on the right
of origin, which, once again, is not allowed by proposition 2.

�

We can add the following argument:
Let show that the angle ϕ whose the extremity radius vector described the image of the sides
of the horizontal band [0, h] is 6= multiple of 2π, as it would being if the band contained zero
of ζ.
ζ∗-image of origin-side is the segment [0, 1]. The image of second side:
-on the one hand, circumvents ζ∗(z0) by an arc contained in the lower half-plane. Let us
indicate by α, α < ζ∗(z0), its left extremity.
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-on the other hand, admits the origin as double-point, with tangent of polar angles respec-
tively 0, θ0, 0 < θ0 < π/2. One have:
ϕ = π(corresponding to the arc between 1 and α in the upper half-plane) + θ0 (correspond-
ing to the arc between α and 0) +(−θ0) (corresponding to the final loop of the curve) = π.
One can conclude ζ∗(z0) = 0.
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Before coming to, with proposals 5 and 6, the proof itself of the Riemann hypothesis one
introduces below two questions witch do not have a direct connection with it, and where the
interest will appear only later.

(1) Disposition of ζ∗(∆ω,m0) in the neighborhood of the retrogression-point ζ∗(z0).

When ω varies from 0 to −∞, the half-straight z0ω turn −π/2. Then, because
ζ∗′(z0) = 0, and the first derived of ζ∗(z) at z0, the non-null one, is even, more
precisely of order 2 (otherwise, ζ∗(∆ω,m0) would have points in the lower half-plane,
in the neighborhood of the origin), the retrogression tangent turns 2× (−π/2) = −π
around ζ∗(z0).
That does not leave him an other choice only: tend to being directed in the direction of
the negative half real-axis when ω → ω0 and in the opposed direction when ω → −∞.
A particular intermediate situation is that where z0ω has a polar angle = −3π/4 ; in
which case, the retrogression tangent is directed as the positive imaginary axis.

(2) Behavior of ζ∗(∆ω,m) for m > m0

It is clear that for m > m0, the image of the sector of apex ω, with sides having
respective slopes 0 and m, contains the image of the sector of same origin-side,
and with extremity-side of slope m0. One concludes from it that the application of
proposition 2 has impossible being for the tirst values ofm > m0. ln order to clarify
that, best is to place itself in the limit case ω = −∞. ∆ω,m0 is then the z0 horizontal
Hz0. ζ∗(Hz0) is the limit of ζ∗(∆ω,m0) when ω → −∞.
Its retrogression-point is exactly at the foot of the vertical tangent on the left. In
fact, let us consider the situation for ω 6= −∞, sufficiently far. Let us call θ1 the
polar angle of the first half-straight of origin ω, having its image crosses the ζ∗(ω)
vertical. Let us call θ0 the polar angle of the first half-straight having its image which
crosses the realaxis at 0, retrogression-point as one know. It arises from the lemma
demonstration that one has θ0 > θ1. Now, the retrogression tangent has a polar angle
= 2θ0, and one saw that this angle → 0 when ω → −∞. It results from it that, so
θ1 → 0.
Therefore, when ω → −∞, the images of the both half straight tend to have their
tangents coincided at 0. What’ s more, their images coincides. In fact :
The contrary implies that the point on the left of ζ∗(Hz0) is strictly on the left
of imaginary axis. So as weIl, the analogous point of ζ∗(∆ω,m0) for ω < 0 in the
neighborhood of −∞. Then, in accordance of the proposition 2, the point low of the
arc going to become the retrogression arc of ζ∗(Hz0), shouldn’t to exist : in fact,
the proposition 2 can be easily extended to the points with horizontal tangent and
concavity turned upwards. It will be able to apply here, since the point concerned,
tending towards 0, is clearly isolated of the left vertical tangent at ζ∗(∆ω,m0).

From there, ie. for horizontal with ordinates > =z0 the low point of their image by
ζ∗ could by continuity, follow displacement towards the left, of the vertical tangent
on the left. It is precisely that which makes impossible the application of proposition
2, the point −λ being with the right hand side of the point low (the point −λ must
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be necessarily placed on the negative imaginary demi-axis, and consequently on the
right of the point low of the curve). Let us follow the progression of the ζ∗ image of
the horizontal when its ordinate increase from that of Hz0. It can happen that for a
certain position of the horizontal the point low of its image coincide again with the
foot of the vertical tangent on the left, on the horizontal tangent lowest. It is then a
retrogression-point. Let us call z1 its antecedent (by analogy with z0 , the antecedent
of the retrogression point of ζ∗(Hz0)). One will see that this analogy goes, in fact,
further : ζ∗(z1) is the point low on all the ζ∗(∆ω,z1) curves, ω < ω1 < ω0, ω1 = <z1.
It is a retrogression point for there curves, with a tangent whose polar angle varies
from 0 (for ω → −∞) to π (for ω → ω1) :
One bases oneself on the fact that the point low of ζ∗(∆ω,z1) (or ζ∗(∆ω,m1) by putting
ml =slope of ωz1), depends analytically on ω, which is shown of same way as, for
instance, the analytie of the high point of ζ∗(∆ω,m), when, m remaining constant,
ω varies. Because, on the other hand, the function holomorphic ζ∗′ take necessarily
the value 0 at this point (without what, proposition 2 applies again, and led to a
contradiction), its results of what proceeds, that the point concerned can only be
fixed.
It’s a matter of the same point ζ∗(z1), which is the point low of ζ∗(Hz1), as one see
where ω → −∞. The both other assertions result from this, easily, and so the fact
that z1 verifies: <z1 < <z0, =z1 < =z0.
Clearly, if the ordinate of the horizontal, continue to increase, the preceding processes
can be repeated. Unless it would not be a position of the horizontal above Hz0, for
which the point low of its ζ∗-image coincides with the foot of the vertical tangent on
the left, these is a sequence z1, z2, . . . , zk, . . ., placed more and more high, and more
and more on the left, whose ζ∗-images are the point of ζ∗(∆ω,mk

) (ω < ωk = <zk,
mk = slop of ωzk) and are retrogression points for these last.

Proposition 5. Il ω, 1/2 < ω < 1, is the apex of a quadrant in which ζ∗ has no double zero,
ζ has no zero in this quadrant.

Proof. It is clear that the proceeding used for the study of the image of the quadrant by ζ∗,
can be applied to any function f , having analogous properties, especially the following ones:
- Derivative strictly positive in the apex ω of the quadrant.
- Existence of images-points on the left of the f(ω)-vertical.
- Existence of a limit f(z) when z → ∞ on any half-straight issued from ω, inside the
quadrant, and f(∞) > f(ω).
Besides, on the real half straight [ω,+∞], <f(z) > f(ω), =f(z) ≥ 0. Let us consider in
particular the function

U(z) = (log(1− z)ζ∗(z))−1

defined as follows:
Taking the principal determination of log in the cutted plane in the negative half real axis,
log ζ∗(z) has a meaning for z in the quadrant, by virtue of the proposition 4. In other hand,
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log(1− z) is obviously well defined.
Setting

log((1− z)ζ∗(z)) = log(1− z) + log ζ∗(z)

we have an holomorphic function in the quadrant, and then, it’s also the case for U(z),
outside of the points where log((1− z)ζ∗(z)) = 0. The formula

U(z) =
log |(1− z)ζ∗(z)| − i arg((1− z)ζ∗(z))

(log |(1− z)ζ∗(z)|)2 + (arg((1− z)ζ∗(z)))2

(where arg((1 − z)ζ∗(z)) indicates in reality arg(1 − z) + arg(ζ∗(z))) shows that there is a
discontinuity of =(U(z)) on the real axis, at the point 1. We’ll avoid it by surrounding by a
half-circle centered in 1, of arbitrarily small radius, in the upper half-plane.
Thus, we are assured that arg(l − z) varies continuously between 0 and −π, in the closed
quadrant except for a small half disc, and, in consequence, U(z) is continuous in this domain
and holomorphic inside (except of course for points where log((1 − z)ζ∗(z)) = 0, i.e at the
eventual zeros of ζ∗(z) in the quadrant).
Let us verify that U(z) satisfied the required conditions:
- We have

U ′(ω) = [log((1− ω)ζ∗(ω))]−2 .

[
1

1− ω
− ζ∗′(ω)

ζ∗(ω)

]
By using the expansion

ζ∗(z) =
∑
r≥0

γr(z − 1)r

where the cosfficients (reals) verified
∑

r≥0 |γr| < 1 (see [1] p.74, ex 2-4), we have, easily:

ζ∗′(ω) =
∑
r≥1

rγr(ω − 1)r−1

increased on [1/2, 1] by
∑

r≥1 r |γr| (1/2)r−1 and then by

(1− γ0) sup
r≥1

(1/2)r−1 = 1− γ0

where γ0 is the Euler constant, and elsewhere ζ∗(ω) is bounded by

γ0 − (1− γ0) sup
r≥1

(1/2)r = γ0 − (1− γ0)/2

It result that :
1

1− ω
− ζ∗′(ω)

ζ∗(ω)
> (1− 1/2)−1 − 1− γ0

γ0 − (1− γ0)/2

is a positive number and consequently U ′(ω) > 0. - The expression log((1 − z)ζ∗(z)) has
its real part log |(1− z)ζ∗(z)| which tends to +∞ when z →∞ on ∆m, and in consequence
U(z)→ 0, in other word U(∞) = 0. Elsewhere U(ω) = log(1− ω)ζ∗(ω), with ζ∗(ω) < ζ∗(1)
(= γ0) for the function ζ∗(z) is increasing on [ω,+∞], its derivative being positive on this
interval, as it results from the hypothesis, by virtue of the proposition 4: (if in a point of
the interval, the derivative was negative, the image on the quadrant by ζ∗, had some points
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below the real axis). Thus, we have U(ω) < 0, and then U(∞) > U(ω).
- Finally, as to the existence of the images-points at left of the vertical of U(ω), this contin-
gency will be examined in the proof which follows. �

We can then proceed to a study of U(∆m), analogous to that one about ζ∗(∆m), at least
in the sector of the quadrant included between the real axis and the first half-straight issued
from ω that goes through a singularity of U(z), i.e a zero of ζ. More exactly, to avoid that
there was more than one zero of ζ, we’ll replace, in case of need, ω by a suitable point,
arbitrarily neighboring at its left. Let us call ρ0, the unique zero of ζ, be on the half-
straight. There are three contingencies when z → ρ0, on the half straight: or <U(z) →
+∞, or <U(z) → −∞, or <U(z) → ±∞ that correspond respectively to the case where :
<(log((1− z)ζ∗(z)))→ 0+, or → 0−, or → 0±
That is to say |(1− z)ζ∗(z)| → 1 by superior values, by inferior values or by the both. We
still can, in case of need, replacing ω by an appropriate point arbitrarily neighboring its
right, choicen in the manner to modify the inclination of the tangent to the half straight
image by (1− z)ζ∗(z) at the point 1, image of ρ0, so that we had the third eventualities.
Thus U(∆m0) has two branchs which went to infinity, one by the left, the other by the right.
We will prove that it gives rise to a contradiction. In fact, it results in particular that U(∆m)
has its most left point which tends to infinity at left when m→ m0.
Now, as well as we have seen precedently for ζ∗(∆m), the most left point and the highest
point of U(∆m), for m sufficiently neighboring of m0, are infinitely neighboring, they are
nearly to form a retrogression point.

Its results that U(∆m0) admits in U(ρ0) a retrogression point, i.e, it has two infinite
branchs asymptot to an oblique directed to the direction of U(ρ0). This is in contradiction
with the initial hypothesis on the infinite branch of U(∆m0). This argument by absurd shows
that ζ has no zero in the quadrant.
We’ll establish, by an analogous process to whese been used for proposition 5 the :

Proposition 6. The complex zeros of ζ are all on the axis <(z) = 1/2.

Proof. It is naturally to the function U(z) that we call again, as it was the case for the proof
of proposition 5. This function already defined in the sector of apex ω, ω < ω0, inc1uded
between the real axis and the half-straight ωz0, can be prolonged analytically in an additional
sector of sides ∆m0 ,∆m1 , m1 being the value of m for that ζ∗(∆m) come to touch (ie with a
contact point) for the first time ζ∗(∆m0) on the arc inc1uded between ζ∗(ω) and 0, in such
a way that it form around the origin a loop composed of one arc of each of the two curves.
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Figure 2

∆m continuing to turn from ∆m1 , sweeps a new sector ∆m1 ,∆m2 where we can define a
new holomorphic determination of U(z) : Uω,1(z), from the new holomorphic determination
of log ζ∗(z): logω,1(z) = log ζ∗(z)−2iπ, the log of the second member being the principal de-
termination. And so one after another ..., we divide the quadrant of apex ω, into sectors Sω,k,
k ∈ N, in which the successive analytical prolongation of U(z), Uω,k(z) are defined, by the in-
termediate of the successive analytical prolongation of log ζ∗(z): logω,k(z) = logω,k−1(z)−2iπ.
The formula above imply that the laces which form around the origin by the image of sectors
Sω,k, surround the origin once. For the previous formula, it has been supposed that ζ∗(∂Sω,k)
forme a single cycle. But, it is not certainty. However, we note again logω,k(z) the function
log ζ∗(z) − 2ikπ, understood that it’s not necessary in the ke sector that this function is
defined, but, in a sector with an index, possibly 6= k. In fact, the concerned formula is not
necessary for the demonstration of the Riemann hypothesis. The preceding construction
holds for any ω, ω < ω0, ω = −∞ included. In this last case, the sectors are replaced by
horizontal strips. This operation being made, we’ll show analogously as for the quadrant of
apex ωθ0 , that none of the interior point to each of the preceding sectors can be a zero of ζ :
let ρ be such a point, supposed interior to Sω,k. It is obvious that it is still interior to each
of Sω′,k sectors, for ω′ sufficiently neighboring of ω.
It is also obvious that, in the same conditions, the diverse prolongations Uω′,k defined a same
function in

⋃
ω′ Sω′,k. It’s to this function, or rather to these deduces from by replacing the

logω′,k(. . .) by logω′,k(. . .) + 2ikπ that we’ll apply the indicated proceeding, as it’s for this
latest that the eventual zeros of ζ in the considerate domain, arc singularities, the function
tending to infinite in their neighboring.
The only points at left of the quadrant of apex ω0, which don’t give way to the preceding
proceeding, and which consequently, could be eventually the zeros of ζ, are the points of
intersection of the extremities sides of the sectors Sω,k, for all ω, ω < ω0, for any fixed k
(but to don’t know if in all theses points the derivative of the functions Uω,k is positive, we’ll
take only points sufficiently neighboring on the left of 1/2 ). In fact, for we cannot apply to
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it the indicated proceeding, the point must be, for each fixed ω, on the extremity side of a
certain Sω,k , with an index k, which, depending continuously on ω, is locally constant, and
independent on ω by connexion, while the corresponding function, by continuity also, have
a well defined index (not necessarily = k).
Let us show that such points are necessarily on the axis <(z) = 1/2 Given, in fact, a complex
zero p of ζ, which is not on this axis, let us suppose it at its right. We know moreover that
the complex zero of ω, ρ1, which has the smallest ordinate (positive), is unique and is placed
on the axis. The straight which joins the two zeros ρ1 and ρ cuts then the real axis in a point
ω1, at left of 1/2. We can use ω1 and the points ω of its neighborhood, for it is sufficiently
near 1/2, ρ been, as we know, highly placed in the half-vertical strip. Making use of the
sectors Sω,k whose extremities sides pass respectively through ρ1 and ρ, we see that we must
have: on the one hand k = k1, because ρ1 and ρ are the extremity side of the sector of apex
ω1, but on the other hand, k 6= k1 because the sectors of apex ω, ω 6= ω1, are distinct. �

4. Complements

One proposes in what follows, to prolong the method used for the demonstration of the
Riemann-hypothesis (proposition 6), in order to specify the nature of the network formed by
the intersection-points of the sectors Sω,k, for k fixed, ω varying. One saw that some of them
are the zeros of the function ζ in the upper half-plane, and that they are the intersection-
points of the sides extremity, for ω near to 1/2, on its left. One will see that it is so for
other points. First, one frees oneself from the condition posed initially on ω. For that, it
is sufficient to remark that, for instance, the proposition 5 - proof is based on the behavior
of the function U(z) = (log(1 − z)ζ∗(z))−1 in the neighborhood of a possible zero of ζ in
the sector Sω,0. Now this behavior is not modified by a rotation of the figure, i.e. by the
multiplication of U(z) by a constant. Thus, the property for a point s to be intersection of
the extremity sides of the sectors Sω,k, is generalizable, first locally, i.e. in the neighborhood
of any point ω < <(s), then, by connexity, on the whole, i.e. for all ω < <(s). Now, one
seeks to establish the

Proposition 7. In addition to the zeros of ζ, are also intersection-points of the sides of
sectors Sω,k for all ω < 1/2 and k fixed:

(1) The zeros of ζ∗′ previously shown, and which are of same nature that z0 (cf sketch
after the previous lemma). One will see that their number is finished, and they are
placed on the right of the axis <(z) = 1/2.

(2) An infinite sequence of zeros of ζ∗′, and placed on the axis.

Proof. (1) It is sufficient to show that any of these zeros cannot be inside a sector Sω,k.
For that one reasons by the absurd supposing, for instance, that the zero z1 is inside
the sector Sω,k, where is defined the holomorphic function

Uk(z) = (logk(1− z)ζ∗(z))−1(:= Z)
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z1 is a regular point for Uk(z) because

U ′k(z1) = [log(1− z1)ζ∗(z1)]−2 .

[
1

1− z1

− ζ∗′(z1)

ζ∗(z1)

]
(4.1)

= [log((1− z1)ζ∗(z1))]−2 (1− z1)−1 6= 0

One can thus reverse the relation Uk(z) = Z, in the neighborhood of z1, by

(4.2) z − z1 =
∑
n≥1

an(Z − Z1)n

or z = U−1
k (Z). But, it is possible also to reverse it in two stages:

- One writes it (1− z)ζ∗(z) = exp(Z−1), and substitutes U−1
k (Z) to z in 1− z

ζ∗(z) = (1− U−1
k (Z))−1. exp(Z−1) := T

Then on the one hand ζ∗(z) = T is reversed by

z − z1 =
∑
n≥1

bn((T − T1)1/2)n

with b1 6= 0 (because ζ∗′(z1) = 0 and ζ∗′′(z1) 6= 0 (like for z0 as one saws it in sketch
(after the previous lemma))), in a small disk centered in T1, deprived of a ray, in the
T -plane.
- On the other hand

(1− U−1
k (Z))−1. exp(Z−1) = T

is expanded as

T − T1 =
∑
n≥1

cn(Z − Z1)n

in a small disk centered in Z1.
If r is the first integer for which cr 6= 0, the disk is deprivated of the r arcs, of
origin Z1, and extremity on the border. So, in crossing some or other of theses
arcs, (T − T1)1/2 changes determination. i.e is exchanged for its opposite. Now, in
accordance with (4.2) ∑

n≥1

bn((T − T1)1/2)n

has to remain unchanged. This implies that∑
n odd

bn((T − T1)1/2)n ≡ 0

on these arcs. So, the holomorphic-function defined by
∑

n odd bn((T − T1)1/2)n is
≡ 0 on a continuum, and, consequently ≡ 0, so, all its coefficients = 0, in particular
b1 = 0, hence, the contradiction. The two other properties are obtained by a same
argument that used for the demonstration of Riemann-hypothesis (proposition 6):
- They are not on the left of the axis <(z) = 1/2, because, if such were the case for
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zj, there will be a contradiction in connection with the indices of the sectors Sω,k,
having zj on their extremity-side, containing respectively the zeros ρi and ρi′ of ζ.
- They are in a finished number, because if they were an infinity, they would nec-
essarily tend towards ∞ in the vertical half-strip ]1/2, ω[, and then, by supposing
zj placed enough high so that the straight joining it to ρi, ρi′ intersect the real axis
(respectively in ωi, ωi′ on the left of 1/2) one has a contradiction analogous to that
of the previous case. Thus, the zj are placed lower that the first zero ρi of ζ. They
verifies:

=(z0) < =(z1) < . . . < =(zn0) < =(ρ1)

with, as one knows

ω0 = <(z) > <(z1) > . . . > <(zn0) > 1/2

(2) One needs the following lemma.
�

Lemma 2. Given a sector Sω,k ω < 1/2, of which the sides ∆, ∆′, intersect the axis
<(z) = 1/2 respectively in s, s′, which are not retrogression-point for the ζ∗-image of ∆, ∆′

(i.e. ζ∗′(s) 6= 0, ζ∗′(s′) 6= 0). If s′ is on the extremity sides of all the sectors Sω,k, ω < 1/2,
having the same index k that (∆, ∆′), then, it is of same for s, towards the origin-side of
theses.

Proof. Let us call p, p′ the points respectively on ∆, ∆′ which the ζ∗-image is the point of
contact by which closes the cycle around the origin, formed by one arc of ζ∗(∆) and one
arc of ζ∗(∆′). Thus, on crossing p′ on the right on ∆′, logk ζ

∗(z) changes its determination.
That implies that p′ coincides with s′, because, if not, there is a contradiction with the fact
that logk ζ

∗(z) does not change its determination in p′, regarded as a point of the sector Sω,k,
of apex ω1, near to ω, on its left. It results from it that ζ∗(p)(= ζ∗(p′)) = ζ∗(s′) and is thus
a fixed point (i.e. independent of ω).
Now, p depends continuously on ω. Because the property of the isolated zeros of a holomor-
phic function of one variable, 6= 0; one has necessarily the point p fixed, and consequently,
it coincided with s, on the axis <(z) = 1/2, (here, the argument is similar to that used for
the zj in the 1◦) to show that p is not at left of the axis <(s) = 1/2, on the one hand, and,
on the other hand, it is not, also, in the right.
Reasoning by absurd, let us tend ω towards 1/2, it results from hypothesis that log ζ∗(z)
has the same determination on all the points of the vertical half axis <(z) = 1/2, above of
s′(= ρ′).
Now, clearly, this determination on these points varies : it is the logk ζ

∗(z) determination
for k arbitrary large, for example, these corresponding to ζ-zeros with large ordinate.

�

Let us return to the demonstration of proposition 7, point 2. Given a ζ-zero ρ, one
identifies ρ with the s′ of the lemma because ζ∗′(ρ) is 6= 0 (in fact, if there where ζ∗′(ρ) = 0,
the rebroussement tangent to the curve image ζ∗(ωρ) would make a turn when ω described
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]−∞, 1/2[, and could take, thus a vertical position. There would be, then an image curve
neighbouring with horizontal tangent and concavity turned to the bottom, near the contact
point, which is impossible, according to the proprosition 2 extended (cf remark made in
connection with a similar situation p 12) Then, one thing or the other:

• ζ∗′(s) is also 6= 0, and then, according to the lemma 2, s is the intersection point of
the origin side of all the sectors Sω,k, k fixed, and it satisfies ζ∗(s) = ζ∗(ρ) (let us
recall that ζ∗(ρ) ∈ C(1, 1)). This process can continue with the secteur Sω,k−1 if it
satisfies with the lemma conditions, and so on. . ..
But it is clear that it must cease, before coming at the sector with extremity-side
passing through the zero ρ′ witch precedes, otherwise, one would lead ζ∗(ρ′) = ζ∗(ρ)
thus to 1

ρ′−1
= 1

ρ−1
or ρ′ = ρ(!)

• That leads us to consider the other alternative ; namely the sector Sω,k satisfies to
ζ∗′(s′) 6= 0, but ζ∗′(s) = 0 There the demonstration of proposition 7 is finished.

We give below some details about the new situation. In fact, the sector Sω,k does not
have this only configuration. This is always accompanied by another (at least) whose the
origin-side passes by some point p, with <(p) ≥ 1/2 independent on ω. That which one
distinguished higher is such as p coincided with s.
To the various configurations of Sω,k, it correspond a partition of the interval ]−∞, 1/2[, ω
describing such or such partial interval, according to the configuration considered. Thus,
that which one distinguished has, among the partial intervals who are reserved for him, the
interval with end at 1/2. In fact, it is this possibility for ω to tend towards 1/2, which makes
that the point p coincided with s (situation similar to that treated in the lemma).
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Figure 3

Particular case
Let us suppose that the number of configurations of Sω,k, is 2 and that p1(= s1), p2 the zeros
correspondents of ζ∗′ are with multiplicity = 1. Then, the sector Sω,k, has its origin-side
which passes alternatively by p1 and p2, when its apex ω passes from interval to another, of
a some infinite partition of the interval ]−∞, 1/2[.

Proof. Naturally the first partial interval [ω1, 1/2[ corresponds to s1. Let us call φ the angle
(MT ′,MT ) in M = ζ∗(s1)(= ζ∗(s′)) of the curves image by ζ∗ of the half lines ωs′, ωs1.
If φ0 is its initial value (that which corresponds to ω = 1/2) and ∆θ, ∆θ′, the respective
variation of the polars angles of ωρ and ωρ′, one have φ = φ0 + (2∆θ −∆θ′).
The first phase finishes when ω comes in ω1, such as φ = φ1 = −π. It is then with the turn
of p2 to intervene, ω decreasing from ω1 to ω2. ω2 is 6= −∞.In fact :
Let us call ψ, ∆τ , ∆τ ′ the quantities analogous to φ, ∆θ, ∆θ′ whose intervened in this second
phase. One have : ψ = ψ1 + (2∆τ −∆τ ′) with −π < ψ < 0. At the same time ∆φ have to
remain < −π, φ = −π + β with β < 0. One have then 0 > ψ > −π > φ = −π + β, and
therefore ψ − φ > −β. If ω2 = −∞,

|β| = |2∆θ −∆θ′| = 2

∣∣∣∣∆θ − ∆θ′

2

∣∣∣∣
is > 0 because s1 nearest to s′ than the foot of the bissectrix of the angle 1

2
ω1s

′ on the
[1/2, s′].
In fact, when ω → −∞, the foot of the bissectrix tends about the middle of the side [1/2, s′]
which is clearly below the zero ρ′ of ζ, taking into account the law of well known distribution
of the zeros of on the axis <(z) = 1/2. But, ψ − φ =angle of curves images of s′ω and
p2ω- angle of curves images of s′ω and s1ω =angle of curves-image of s1ω and p2ω = 2p̂2ωs1

which → 0 when ω → −∞. Here the contradiction. One have similar arguments to show
that this process continues indefinitely. �
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