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The result provided in this paper helps complete a unified picture of the scaling behavior in heavy-tailed stochastic models for transmission of packet traffic on high-speed communication links. Popular models include infinite source Poisson models, models based on aggregated renewal sequences, and models built from aggregated on-off sources. The versions of these models with finite variance transmission rate share the following pattern: if the sources connect at a fast rate over time the cumulative statistical fluctuations are fractional Brownian motion, if the connection rate is slow the traffic fluctuations are described by a stable Lévy process, while the limiting fluctuations for the intermediate scaling regime are given by fractional Poisson motion.

Introduction

It is well-known that packet traffic on high-speed links exhibit data characteristics consistent with long-range dependence and self-similarity. To explain the possible mechanisms behind this behavior, various network traffic models have been developed where these features arise as heavy-tailed phenomena; see [START_REF] Resnick | Heavy-tail phenomena, Probabilistic and statistical modeling[END_REF] [START_REF] Resnick | Heavy-tail phenomena, Probabilistic and statistical modeling[END_REF]. A natural basis for modeling such systems, applied early on during these developments, is the view of packet traffic composed of a large number of aggregated streams where each source alternates between an active onstate transmitting data and an inactive off-state. The traffic streams generate on average a given mean-rate traffic, they have stationary increments and they are considered statistically independent. In particular, the transmission channel is able to accommodate peak-rate traffic corresponding to all sources being in the on-state. To capture in this model the strong positive dependence manifest in empirical trace data measurements, it is assumed that the duration of on-periods and/or off-periods are subject to heavy-tailed probability distributions. It is then interesting to analyze the workload of total traffic over time and understand the random fluctuations around its cumulative average. Our continued interest in these questions comes from the finding that several scaling regimes exist with disparate asymptotic limits.

The first result of the type we have in mind is Taqqu, Willinger, Sherman (1997) [START_REF] Taqqu | Proof of a fundamental result in self-similar traffic modeling[END_REF], which introduces a double limit technique. In this sequential scheme, if the on-off model is averaged first over the level of aggregation and then over time the resulting limit process is fractional Brownian motion. As the fundamental example of a Gaussian self-similar process with long-range dependence, this limit preserves the inherent long-range dependence of the original workload fluctuations. On the other hand, averaging first over time and then over the number of traffic sources the limit process is a stable Lévy process. This alternative scaling limit is again self-similar but lacks long memory since the increments are independent. Moreover, having infinite variance the limiting workload is itself heavy-tailed. In Mikosh, Resnick, Rootzén, Stegeman (2002), [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF], the double limits are replaced by a single scheme where instead the number of sources grows at a rate which is relative to time. Two limit regimes of fast growth and slow growth are identified and two limit results corresponding to these are established, where again fractional Brownian motion and stable Lévy motion appear as scaled limit processes of the centered on-off workload. The purpose of this paper is to show that an additional limit process, fractional Poisson motion, arises under an intermediate scheme which can be viewed as a balanced scaling between slow and fast growth. In this case the scale of time grows essentially as a power function of the number of traffic sources. As will be recalled, fractional Poisson motion does indeed provide a bridge between fractional Brownian motion and stable Lévy motion.

The intermediate limit scheme discussed here is indicated in [START_REF] Kaj | Stochastic Modeling in Broadband Communications Systems[END_REF] [START_REF] Kaj | Stochastic Modeling in Broadband Communications Systems[END_REF], and introduced in Gaigalas and Kaj (2003) [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF], where limit results are given for a different but related class of traffic models under three scaling regimes referred to as slow, intermediate and fast connection rate. The workload process is again the superposition of independent traffic streams with stationary increments but now each source generates packets according to a finite mean renewal counting process with heavy-tailed interrenewal cycle lengths. The link to the class of on-off models is that each pair of an on-period and a successive off-period forms a renewal cycle and the number of such on-off cycles generate a heavy-tailed renewal counting process. Moreover, if we associate with each renewal cycle a reward given by the length of its on-period and apply a suitable interpretation of partial rewards, then the corresponding renewal-reward process coincides with the on-off workload process.

To explain briefly the limit result in [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF] under intermediate connection rate, let (N i (t)) i be i.i.d. copies of a stationary renewal counting process associated with a sequence of interrenewal times of finite mean µ and a regularly varying tail function F (t) ∼ L(t)t -γ , characterized by an index γ, 1 < γ < 2, and a slowly varying function L. Let m → ∞ and a → ∞ in such a way that mL(a)/a γ-1 → µc γ-1 for some constant c > 0. Then the weak convergence holds, 1 a m i=1

(N i (at) - at µ ) =⇒ - 1 µ c Y γ (t/c),
where Y γ (t) is an almost surely continuous, positively skewed, non-Gaussian and non-stable random process, which is defined by a particular representation of the characteristic function of its finite-dimensional distributions. Additional properties of the limit process are obtained in Kaj (2005) [9] and Gaigalas (2006) [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF], where it is shown with two different methods that Y γ can be represented as a stochastic integral with respect to a Poisson measure N (dx, du)

on R × R + with intensity measure n(dx, du) = γdxu -γ-1 du. Indeed,

Y γ (t) = R×R + t 0 1 [x,x+u] (y) dy (N (dx, du) -γ dxu -γ-1 du), t ≥ 0, ([7] uses F (t) ∼ L(t)γ -1 t -γ , consequently n(dx, du) = dxu -γ-1 du).
We call this process fractional Poisson motion with Hurst index H = (3γ)/2 ∈ (1/2, 1). With 

σ 2 γ = 2 (γ -1)(2 -γ)(3 -γ) = 1 2H(1 -H)(2H -1) = σ 2 H , (1) 
B H (t) = 1 σ H R×R + t 0 1 [x,x+u] (y) dy M (dx, du),
where M (dx, du) is a Gaussian random measure on R × R + which is characterized by the control measure (3 -2H) dxu -2(2-H) du. The covariance functions of B H and P H coincide. The fast connection rate limit for the model of aggregated renewal processes applies if mL(a)/a γ-1 → ∞ and the slow connection rate limit if mL(a)/a γ-1 → 0. For suitable normalizing sequences, the limit processes under these assumptions are fractional Brownian motion with Hurst index H = (3γ)/2 in the case of fast growth and a stable Lévy process with self-similarity index 1/γ in the slow growth situation, see [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF].

A number of other models have been suggested for the flow of traffic in communication networks. The superposition of independent renewal-reward processes applies more generally to sources which attain random transmission rates at random times, and not merely switch between on and off. For a model where the length of a transmission cycle as well as the transmission rate during the cycle are allowed to be heavy-tailed, Levy and Taqqu (2000) [START_REF] Lévy | Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards[END_REF], [START_REF] Pipiras | The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable motion[END_REF] [START_REF] Pipiras | The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable motion[END_REF], and Pipiras, Taqqu and Levy (2004) [START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed[END_REF], established results for slow and fast growth scaling analogous to those for the on-off model. In addition, they obtained as a fast growth scaling limit a stable, self-similar process with stationary but not independent increments, coined the telecom process. A further category of models for network traffic with long-range dependence over time starts from the assumption that long-lived traffic sessions arrive according to a Poisson process. The sessions carry workload which is transmitted either at fixed rate, at a random rate throughout the session, or at a randomly varying rate over the session length. Such models, called infinite source Poisson models, are widely accepted as realistic workload processes for internet traffic. Indeed, it is natural to assume that web flows on a non-congested backbone link are initiated according to a Poisson process while the duration of sessions and transmission rates are highly variable. The conditions under which slow, intermediate and fast scaling results exist and fractional Brownian motion, fractional Poisson motion, stable Lévy processes and telecom processes arise in the asymptotic limits are known in great detail for variants of the infinite source Poisson model, see [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF] [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF]. In [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF], Y γ is called the intermediate telecom process. Mikosh and Samorodnitsky (2007) [START_REF] Mikosch | Scaling Limits for Cumulative Input Processes[END_REF] consider scaling limits for a general class of input processes, which includes as special cases the models already mentioned as well as other cumulative cluster-type processes. It is shown that fractional Brownian motion is a robust limit for a variety of models under fast growth conditions, whereas the slow growth behavior is more variable with a number of different stable processes arising in the limit.

Our current result completes the picture for the intermediate scaling regime, where neither of the mechanisms of fast or slow growth are predominant. In this case, where the system workload is under simultaneous influence of Gaussian and stable domains of attraction, we show that the fluctuations which build up in the on-off model are robust and again described by the fractional Poisson motion, parallel to what is known to be valid for infinite source Poisson and renewal-based traffic models. In the next section 2 we introduce properly both the on-off model and the renewal-based model to be used as an approximation and we state the relevant background results for these models. In section 3 we state the main result and give the structure of the proof. Section 4 is devoted to remaining and technical aspects of the proof.

The on-off model and background results

We begin by introducing the on-off model using similar notations as in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF]. Let X on , X 1 , X 2 , . . . be i.i.d. non-negative random variables with distribution F on representing the lengths of onperiods. Similarly let Y off , Y 1 , Y 2 , . . . be i.i.d. non-negative random variables with distribution F off representing the lengths of off-periods. The X-and Y -sequences are supposed to be independent. For any distribution function F we write F = 1 -F for the right tail. We fix two parameters, α on and α off , such that

1 < α on < α off < 2, (2) 
and assume that Fon (x) = x -αon L on (x) and Foff (x

) = x -α off L off (x), x → ∞, (3) 
with L on , L off arbitrary functions slowly varying at infinity. Hence both distributions F on and F off have finite mean values µ on and µ off but their variances are infinite. Assumption (2) agrees with that of [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF]. However, thanks to a simple symmetry argument, we can also cover the case α on > α off . The case α on = α off , for which the on-off process is an alternating renewal process, falls outside of the class of processes we are able to study within the methodology developed here.

We consider the renewal sequence generated by alternating on-and off-periods. For the purpose of stationarity we introduce random variables (X 0 , Y 0 ) representing the initial onand off-periods as follows: let B, X eq on , Y eq off be independent random variables, independent of {X on , (X n ), Y off , (Y n )}, and such that B is Bernoulli with

P(B = 1) = 1 -P(B = 0) = µ on /µ,
and X eq on and Y eq off have distribution functions

F eq on (x) = 1 µ on x 0 Fon (s) ds and F eq off (x) = 1 µ off x 0
Foff (s) ds, respectively. Now, let X 0 = BX eq on and Y 0 = BY off + (1 -B)Y eq off .

Note that X 0 and Y 0 are conditionally independent given B but not independent. At time t = 0 the system starts in the on-state if B = 1 and in the off-state if B = 0. With this initial distribution, the alternating renewal sequence is stationary and the probability that the system is in the on-state at any time t is µ on /µ. Renewal events occur at the start of each on-period. Inter-renewal times are given by the independent sequence

Z i = X i + Y i , i ≥ 0,
where Z i has distribution F = F on * F off and mean µ = µ on + µ off for i ≥ 1, and Z 0 has distribution function

F eq (x) = 1 µ x 0 F (s) ds.
The renewal sequence (T n ) n≥1 with delay T 0 is defined by

T n = n-1 i=0 Z i ,
and we denote by N (t) the associated counting process

N (t) = n≥0 1 (0,t] (T n ).
Note that N (t) has stationary increments and expectation E[N (t)] = t/µ. Moreover, because of (2), the tail behavior of the inter-renewal times is given by

F (x) ∼ L on (x)x -αon , x → ∞, (4) 
see Asmussen [START_REF] Asmussen | Ruin Probabilities[END_REF], Chapter IX, Corollary 1.11. The on-off input process is the indicator process for the on-state defined by

I(t) = 1 [0,X 0 ) (t) + n≥0 1 [Tn,Tn+X n+1 ) (t), t ≥ 0.
The source is in the on-state if I(t) = 1 and in the off-state if I(t) = 0. The input process I(t) is strictly stationary with mean

E[I(t)] = P(I(t) = 1) = µ on /µ.
The associated cumulative workload defined by

W (t) = t 0 I(s) ds, t ≥ 0
is a stationary increment process with mean E[W t ] = tµ on /µ.

Let (I j , W j , N j ) j≥1 denote i.i.d. copies of the input process I, the accumulative workload process W , and the renewal counting process N for the stationary on-off model. For m ≥ 1, consider a server fed by m independent on-off sources. We define the cumulative workload of the m-server system as the superposition process

W m (t) = m j=1 W j (t), t ≥ 0, m ≥ 1,
and the renewal-cycle counting process for m aggregated traffic sources by

N m (t) = m j=1 N j (t), t ≥ 0, m ≥ 1.
In this paper, we are mainly concerned with the asymptotic properties of the cumulative workload when the number of sources, m, increases and time t is rescaled by a factor a > 0. Thus, we consider the centered and rescaled process

W m (at) -matµ on /µ b(a, m) = 1 b(a, m) m j=1 at 0 (I j (s) - µ on µ ) ds, t ≥ 0,
where the renormalization b(a, m) will be precised in the sequel. The asymptotic is considered when both m → ∞ and a → ∞. The relative growth of m and a have a major impact on the limit. Let a = a m be the sequence governing the scaling of time and suppose a m → ∞ as m → ∞ (we will often omit the subscript m). Following the notation in [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF], we consider the following three scaling regimes:

• fast connection rate mL on (a)/a αon-1 → ∞;

(FCR)

• slow connection rate mL on (a)/a αon-1 → 0; (SCR)

• intermediate connection rate

mL on (a)/a αon-1 → µ c αon-1 , 0 < c < ∞. (ICR)
In [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF], the asymptotic behavior of the cumulative total workload is investigated under conditions (FCR) and (SCR).

Theorem 2.1 (Mikosch et al.) Recall assumptions (2) and (3).

• Under condition (FCR) and with the normalization b(a, m) = (a 3-αon L on (a)m) 1/2 , the following weak convergence of processes holds in the space of continuous functions on

R + : W m (at) -matµ on /µ b(a, m) =⇒ σ αon µ on µ 3/2 B H (t), t ≥ 0
where B H (t) is a standard fractional Brownian motion with index H = (3α on )/2.

• Under condition (SCR) and with the normalization b(a, m) = (1/ Fon ) ← (am) := inf{x ≥ 0 : Fon (x) ≤ 1/am}, then in the sense of convergence of finite dimensional distributions,

W m (at) -matµ on /µ b(a, m) f dd -→ σ 0 µ off µ 1+1/αon X αon,1,1 (t), t ≥ 0,
where X αon,1,1 (t) is a standard α on -stable Lévy motion totally skewed to the right, i.e. such that X αon,1,1 (1) ∼ S αon (1, 1, 0), and

σ αon 0 = Γ(2 -α on ) cos(πα on /2) 1 -α on .
The intermediate regime for renewal processes was investigated in [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF]. The formulation adopted here is given in [START_REF] Kaj | Limiting fractal random processes in heavy-tailed systems[END_REF], and is an immediate consequence of (4). 

N m (at) -mat/µ a =⇒ - 1 µ σ αon c P H (t/c),
where σ αon is given in [START_REF] Asmussen | Ruin Probabilities[END_REF] and P H (t) is the standard fractional Poisson motion

P H (t) = 1 σ αon R×R + t 0 1 [x,x+u] (y) dy (N (dx, du) -dx α on u -αon-1 du) (5)
with Hurst index H = (3α on )/2.

3 Intermediate limit for the on-off model

In this section, we investigate the intermediate scaling limit for the on-off model. The following is our main result.

Theorem 3.1 Under condition (ICR) and with the normalization b(a, m) = a, the following convergence of processes holds in the space of continuous functions on R + :

W m (at) -matµ on /µ a =⇒ σ αon µ off µ c P H (t/c),
with σ αon in [START_REF] Asmussen | Ruin Probabilities[END_REF] and P H (t) the standard fractional Poisson motion in [START_REF] Mikosch | Scaling Limits for Cumulative Input Processes[END_REF].

Remarks 3.2

The fractional Poisson motion is not self-similar but does have a property of aggregate-similarity, introduced in [START_REF] Kaj | Limiting fractal random processes in heavy-tailed systems[END_REF], which allows for an interpretation of the scaling parameter c. Consider for each integer m ≥ 1 the sequence c m = m 1/(αon-1) . Then

c m P H (t/c m ) f dd = m i=1 P i H (t),
where P 1 H , P 2 H , . . . are i.i.d. copies of P H . Consider also the sequence c ′ m = m -1/(αon-1) . For any m,

m i=1 c ′ m P i H (t/c ′ m ) f dd = P H (t).
Hence, by tracing the limit process in Theorem 3.1 as c m → ∞, we recover in distribution the succession of all aggregates 1≤i≤m P i H , m ≥ 1. Also, by letting c ′ m → 0 we find that the limit process represents successively smaller fractions which sum up to recover fractional Poisson motion.

These relations explain the fact that fractional Poisson motion acts as a bridge between the stable Levy process and fractional Brownian motion. First, {c H P H (t/c)} converges weakly

to {B H (t)}, as c → ∞. Indeed, c H m P H (t/c m ) f dd = 1
√ m 1≤i≤m P i H (t) and the central limit Theorem yields the Gaussian limit as m → ∞. The required tightness property is shown in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF]. Moreover, it is shown in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF] that c 1/αon P H (t/c) converges in distribution as c → 0 to the α on -stable Levy process. To see that the limit must be α on -stable, take d = c • c ′ m for any c > 0. Then

c 1/αon P H (t/c) f dd = 1 m 1/αon m i=1 d 1/αon P i H (t/d), m ≥ 1,
and, assuming that the rescaled process (c 1/αon P H (t/c)) t≥0 converge to some non-trivial limit process L, we must have as c → 0 (and hence d → 0)

L(t) f dd = 1 m 1/αon m i=1 L i (t), m ≥ 1.
This indicates that the limit L must be α on -stable.

Heuristics of the proof of Theorem 3.1 To motivate that the limit process in the intermediate connection rate limit appears naturally, we discuss a decomposition of the centered on-off process based on its representation as a renewal-reward model. We first note that the single source cumulative workload has the form

W (t) = X 0 ∧ t + N (t) i=1 X i -(T N (t)-1 + X N (t) -t) + .
Similarly, focusing on off-periods rather than on-periods, we have

t -W (t) = Y 0 ∧ t + N (t) i=1 Y i -(T N (t) -t) ∧ Y N (t) .
The centered single source workload is therefore

W (t) - µ on µ t = -(t -W (t)) + µ off µ t = -µ off (N (t) -t/µ) - N (t) i=1 (Y i -µ off ) + R(t) with R(t) = (T N (t) -t) ∧ Y N (t) -Y 0 ∧ t.
Thus, for the workload of m sources,

W m (t) - µ on µ mt = -µ off (N m (t) -mt/µ) - m j=1 N j (t) i=1 (Y j i -µ off ) + m j=1 R j (t) (6) 
using obvious notations. The balancing of terms under the scaling relation (ICR), makes it plausible that both terms

1 a m j=1 N j (at) i=1 (Y j i -µ off ), 1 a m j=1
R j (at) vanish in the scaling limit. This suggests asymptotically,

W m (at) -µ on mat/µ a ∼ -µ off N m (at) -mat/µ a , (7) 
and so Theorem 2.2 would imply Theorem 3.1. In the next final section, we will compare rigorously the two processes in [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF].

4 Proof of Theorem 3.1

The proof of Theorem 3.1 relies on the following three lemmas: 

W m (at) -matµ on /µ a f dd =⇒ σ αon µ off µ c P H (t/c),
is a consequence of the decomposition given in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF]. By Lemma 4.3 the sequence is tight in the space of continuous functions on R + . Hence weak convergence holds in the space of continuous functions and Theorem 3.1 is proved.

Proof of Lemma 4.1. We construct an alternative representation of the random variable in the left hand side of (8). Define

N 1 (at) = inf{k ≥ 0; X 1 0 + k i=1 Z 1 i ≥ at}
and for j ≥ 2

N j (at) = inf{k ≥ 0; X j 0 + k i=1 Z 1 N j-1 (at)+i ≥ at}.
For m ≥ 1, let N m (at) = m j=1 N j (at). The random variables N j (at), j ≥ 1 are i.i.d and for each fixed t ≥ 0

1 a m j=1 N j (at) i=1 (Y j i -µ off ) and 1 a Nm(at) i=1 (Y 1 i -µ off ),
have the same distribution (note that the uni-dimensional marginal distributions are equal but not the multidimensional distributions). This representation will enable us to prove that under assumption (ICR), in the space of cád-lág functions on R + endowed with the Skorokhod topology, we have the convergence

1 a amu i=1 (Y 1 i -µ off ) u≥0 =⇒ 0. (9) 
Moreover,

1 am Ñm (at) =⇒ t µ . (10) 
Equations ( 9) and ( 10) together imply

1 a Ñm(at) i=1 (Y 1 i -µ off ) =⇒ 0
and this proves the lemma. Thus, it remains to prove ( 9) and [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF].

To this aim, recall that the random variables Y 1 i , i ≥ 1, are i.i.d. with distribution such that the tail function Foff is regularly varying with index -α off . Hence there exists a regularly varying function L such that the centered and rescaled sum

1 (am) 1/α off L(am) amu i=1 (Y 1 i -µ off ) u≥0
converges in the space of cád-lág functions to some α off -stable Lévy process (see [START_REF] Petrov | Sums of Independent Random Variables[END_REF], the exact form of L or of the limit process are not needed here). This implies the convergence property (9), since a >> (am) 1/α off L(am) under the scaling assumption (ICR) with α on < α off .

We now prove equation [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF]. The stationary renewal process N (t) has mean t/µ and variance given asymptotically by Var(N (t)) ∼ σ 2 αon 1 µ 3 t 3-αon L on (t), t → ∞, see [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF], Equation (30), and references therein. Hence, 1 am N m (at) has mean t/µ and variance under scaling (ICR), such that

Var 1 am N m (at) = 1 a 2 m Var[N (at)] ∼ a 1-αon L on (at) m σ 2 αon 1 µ 3 t 3-αon → 0.
This shows that 1 am N m (at) converges in distribution to t/µ, which is [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF]. This ends the proof of 4.1

Proof of Lemma 4.2. Since |R j (t)| ≤ Y j 0 + (T j N j (t) -t) ∧ Y j N j (t) , it is enough to prove that 1 a m j=1 Y j 0 =⇒ 0 and 1 a m j=1 (T j N j t -t) ∧ Y j N j (t) =⇒ 0.
By stationarity, the random variables Y j 0 and (T j N j t t) ∧ Y j N j (t) have the same distribution; they represent the remaining time after 0 and t, respectively, of the first off-period after 0, and after t. Since both sums have the same distribution, we only consider the first one. Using Karamata's Theorem (see [START_REF] Bingham | Regular Variation[END_REF]), the tail function F eq off satisfies

F eq off (x) = 1 µ off ∞ x Foff (s)ds ∼ 1 µ off x -(α off -1) α off -1 L off (x)
as x → ∞. This implies that the random variable Y 0 has a regularly varying tail with index -(α off -1) and hence belongs to the domain of attraction of an (α off -1)-stable distribution. Therefore there exists a slowly varying function L, such that Proof of Lemma 4.3. The proof given in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF] for fast scaling (FCR) can be adapted to our settings. We recall only the main lines. According to Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF], Theorem 12.3, it is enough to prove that for any t 1 , t 2 with |t 1t 2 | ≤ 1 and for some ε > 0, there exists a constant C > 0 and an a 0 > 0, such that for all a ≥ a 0 Using the definition of W m , centering and stationarity, it is enough to prove that for all t ∈ [0, 1] and a ≥ a 0 , m a 2 Var[W at ] ≤ Ct 1+ε

1 m 1/(α off -1) L(m)
(the constant C may change from one appearance to another). However, according to [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF], Equation By [START_REF] Petrov | Sums of Independent Random Variables[END_REF], the function a → Var[W a ] is regularly varying with index 3α on . Then, using Potter bounds (see [START_REF] Bingham | Regular Variation[END_REF]), we conclude that there exist a 0 > 0 and ε < 1α on /2, such that for all t ∈ (0, 1) and a ≥ a 0 /t, Var[W at ] Var[W a ] ≤ 1 1ε t 3-αon-ε .

(see the proof of Lemma 13 in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion of fractional Brownian motion[END_REF] for details). This implies that for all t ∈ (0, 1) and all a such that at ≥ a 0 , m a 2 Var[W at ] ≤ C 1ε t 3-αon-ε ≤ Ct 1+ε .

On the other hand, if t ≤ a 0 /a, then, for a large enough, In the last inequality, we use the fact that 2α onε > 0 and so a 2-αon-ε L on (a) → ∞ as a → ∞; taking a 0 large enough, we can suppose that for a ≥ a 0 , a 2-αon-ε L on (a) remains bounded away from zero.

By combining the estimates for the cases at ≥ a 0 and at ≤ a 0 we obtain [START_REF] Lévy | Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards[END_REF], which completes the proof.
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 4184243 In the scaling (ICR), for all t ≥ 0, iµ off ) =⇒ 0. (Lemma In the scaling (ICR), for all t ≥ 0, In the scaling (ICR), the sequence of processesW m (at)matµ on /µ a , t ≥ 0, m ≥ 1is tight in the space of continuous functions on R + .Proof of Theorem 3.1. By Theorem 2.2, Lemma 4.1 and Lemma 4.2, the convergence of finite-dimensional distributions,

  to a stable law of index α off -1. Under scaling (ICR) with α on < α off , we have a >> m 1/(α off -1) L(m)

  m (at 2 )mat 2 µ on /µ) -(W m (at 1 )mat 1 µ on /µ)| 2 ≤ C|t 2t 1 | 1+ε .

) ∼ σ 2 αon µ 2 on µ 3 t 3 - 2 αon µ 2 µ 2 on 2

 23222 αon L on (t), t → ∞.[START_REF] Petrov | Sums of Independent Random Variables[END_REF] This relation and the scaling (ICR) together imply, as a → ∞,a 2 m ∼ c 1-αon µ a 3-αon L on (a) ∼ c 1-αon σ Var[W a ],and so there is C > 0, such that for a large enoughm a Var[W at ] ≤ C Var[W at ] Var[W a ] .

m a 2 a 3 -so m a 2

 232 Var[W at ] ≤ Ca 2 t 2 Var[W a ] ≤ C a 2 t 2 a 3-αon L on (a) ≤ C (at) 1+ε a 1-ε 0 αon L on (a)andVar[W at ] ≤ C a 1-ε 0 t 1+ε a 2-αon-ε L on (a) ≤ C t 1+ε .