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Abstract

A tool called Belief Scheduler is proposed for state sequence recognition in

the Transferable Belief Model (TBM) framework. This tool makes noisy tem-

poral belief functions smoother using a Temporal Evidential Filter (TEF).

The Belief Scheduler makes belief on states smoother, separates the states

(assumed to be true or false) and synchronizes them in order to infer the

sequence. A criterion is also provided to assess the appropriateness between

observed belief functions and a given sequence model. This criterion is based

on the conflict information appearing explicitly in the TBM when combining

observed belief functions with predictions. The Belief Scheduler is part of a

generic architecture developed for on-line and automatic human action and

activity recognition in videos of athletics taken with a moving camera. In ex-

periments, the system is assessed on a database composed of 69 real athletics

video sequences. The goal is to automatically recognize running, jumping,

falling and standing-up actions as well as high jump, pole vault, triple jump

and long jump activities of an athlete. A comparison with Hidden Markov
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Models for video classification is also provided.

Key words: Sequence recognition, Belief finite state machine, Transferable

Belief Model, Temporal Evidential Filter, Conflict, Human motion analysis.

1. Introduction

1.1. Context

Human motion analysis is an important topic of interest in the Computer

Vision and Video Processing communities. Research in this domain is mo-

tivated by the diversity of applications such as automatic surveillance [1],

video indexing and retrieval [2, 3], human-computer interaction [4] and bio-

metrics [5]. The analysis of human motions generally consists of human

detection, tracking [6] and activity understanding [7] where detection and

tracking aim at locating human limbs while activity understanding is a higher

level task aiming at recognizing human actions and using ordered sequences

of actions to recognize activities [8].

Hidden Markov Models (HMM), initially proposed for speech process-

ing [9] is the most common method used for human action and activity

recognition. Like most approaches in human motion analysis, and more

generally in sequence recognition, HMM rely on Probability Theory. Sev-

eral drawbacks inherent to these usual methods can be mentioned [4, 8].

First, intensive learning of models is necessary, using large and representa-

tive databases representing actions and activities. In these models, adding

new information is difficult and generally implies re-estimating the model

parameters. Moreover, it is difficult to interpret the models and therefore, a

user can barely understand action and activity models since the systems gen-
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erally appear as “black boxes”. Lastly, actions and activities of humans can

generally not be separated. Indeed, in the state of the art, one model is built

for each activity and a log-likelihood is computed for the sequence. However,

information on actions within activities is not available or not reliable.

1.2. Using the Transferable Belief Model for sequence recognition

Possibility, probability and belief functions are three alternative measures

of uncertainty used for knowledge representation [10]. A belief function is a

general measure that can encode and combine a variety of knowledge wider

than probability measures and was the basis of Dempster-Shafer’s theory of

evidence and of the Transferable Belief Model (TBM) [11, 12, 13]. Recently,

new tools were proposed for pattern recognition that showed the efficiency of

approaches based on belief functions [14, 15, 16, 17]. In this paper, we con-

sider the general and sound framework of the TBM proposed by Smets and

Kennes [12] as an alternative to probability methods for temporal sequence

modeling and recognition.

The TBM applications in the context of state sequence recognition and

in human motion analysis from video is just in its infancy, partially because

the TBM is a recent theory compared to Probability Theory. Human motion

analysis based on the TBM was pioneered by Hammal et al. [18, 19] and

Girondel et al. [20]. However the authors focus on static recognition of human

expressions and postures and thus the dynamic aspects of human motion were

not modeled.

One of the first tools used for the analysis of state sequence in the TBM

was proposed by Rombaut et al. [21] in 1999. The authors developed a

generalization of a Petri Net to belief functions based on the Generalized
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Bayesian Theorem (GBT) [22]. This Belief Petri Net is, however, not robust

to noise because links between states at successive times are given by an

evolving and sparse transition matrix depending on sensor measurements.

Moreover, no classification criterion was proposed.

The second tool is the generalized HMM proposed in 2000 by Mohamad

and Gader [23] where the generalization is narrowed down to possibility mea-

sures and thereby their framework is not able to manage belief functions. One

advantage of their framework is the possibility of managing dependent obser-

vations by using fuzzy operators but the authors used the product, thereby

assuming statistical independence.

The third tool is the generalized Kalman filter [24] proposed by Smets and

Ristic in 2004 for joint tracking and classification in the TBM framework.

The Kalman equations in the tracking step are quite similar to the proba-

bilistic version but the TBM showed better results for the classification step

on a military problem using implication rules. The first problem with the

generalized Kalman filters for the application concerned on human motion

analysis is that they rely on linear dynamic systems that must be identified.

However, human motions can be highly non-linear and depend on the camera

view-point and thus are not known in advance, except in specific situations.

Moreover, as presented in Section 2, five features are extracted and twenty

actions are detected in four types of jumps, thus the number of parameters

can be high. In [6], the authors propose an alternative to a Kalman Filter

using particle filter. The second problem is that Kalman filters are used when

the states are continuous while we are interested in detecting human actions

which are discrete. Moreover, in the classification step, the implication rules
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used in [24] also require parameters that can be given by experts in some

applications. Actually, HMM are preferred to Kalman filters for human mo-

tion analysis [1, 2, 4, 7] because HMM are suitable for discrete states and

one can use any type of distribution, while a Kalman filter assumes every

distribution to be Gaussian.

1.3. Contributions and paper overview

The goal of the system is to determine the most likely activity defined as

a sequence of actions. An activity can be described by a graph where each

node corresponds to an action. At anytime, using the features extracted from

the videos, the system determines what the current action is. The transi-

tion is made when the current action becomes false and the next

action becomes true. All the other actions of the graph are false.

The extracted features are noisy and cannot be directly used for activity

recognition. The temporal belief functions associated with the actions are

made smoother by the Temporal Evidential Filter. The main contribution

of this paper is a tool called Belief Scheduler [25], developed in the TBM

framework, which recognizes states (representing actions) and sequences of

states (representing activities) in an on-line manner. This tool is a deter-

ministic state machine where transitions between states are controlled by

additional parameters (experiments showed that only two parameters are

really sensitive). An original inference criterion based on conflict is also pro-

posed for sequence classification. The other contribution is the design of a

generic architecture for human action and activity recognition based on the

TBM. Lastly, we propose several experiments and a comparison with HMM

on athletic videos.
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The paper is organized as follows. Section 2 presents the components

of the architecture for human motion analysis. Background on the TBM

and presentation of the Temporal Evidential Filter [26] (used in the Belief

Scheduler) are given in Section 3. The Belief Scheduler is then described in

Section 4. Finally, Section 5 provides results of experiments on human action

and activity recognition.

2. Architecture for human motion analysis

Human action and activity recognition requires several steps that can

be represented as in the architecture presented in Fig. 1. The proposed

architecture is built so as to be generic enough to add new features and new

actions. The low level part provides relevant features concerning actions

that are extracted from the video stream. The high level part starts with the

conversion of the feature values into beliefs on actions which are then filtered

by the Temporal Evidential Filter (TEF) [26] to make action detection more

reliable. Then, in order to infer activity, sequences of actions are recognized

using the Belief Scheduler. A quality criterion is computed on-line to assess

the confidence of actions and activities.

Robust shape/motion features are automatically extracted each time from

the video using a camera motion estimator and a tracking algorithm. The

camera motion estimator [27] provides horizontal (Phm) and vertical (Pvm)

motions as well as divergence (Pdiv). The dominant motion image is obtained

from the camera motion estimation where the intensity of a pixel depends on

its membership of the dominant motion that is assumed to be the motion of

the background. Fig. 2(b) depicts dominant motion for images corresponding
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Figure 1: System architecture for human motion analysis.

to running, jumping, falling and standing-up actions in a high jump sequence.

The second source of features is a human detection/tracking algorithm which

provides human head, center of gravity and end of legs position (Fig. 2(c))

from the dominant motion images. The variation of the center of gravity

(Pvcg), the angle between horizon and human axis (Pswing) are then computed.

The feature vector is denoted Ot = [Phm Pvm Pdiv Pvcg Pswing].
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(a) Original video sequence.

(b) Dominant motion images.

(c) Human point detection and tracking.

Figure 2: Original video sequence (a), dominant motion images (b) and human point
detection and tracking results (c) for a high jump (with running, jumping, falling and
standing-up actions).

3. Models of actions

At anytime, only the truth of the current action and the next

action is addressed. At this time, the other actions have no influ-

ence on activity recognition. The focus on these two actions can be

done early by directly modeling their truth from the extracted fea-

tures (graph theory approach), or can be done late after a global

fusion process on all the actions (fusion theory approach). Fol-

lowing previous works [21], we have chosen the early focus for its

efficiency.

We present below two evidential methods (“likelihood” and “distance”

models) that link numerical features Ot to belief on actions.

8
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3.1. Basic belief assignment

As in the graph theory, the Frame of Discernment (FoD) for each

action Ak ∈ {running, jumping, falling, standing-up} is binary

(either true or false) and denoted as Ωt
k = {T t

k, F
t
k} where time t

is explicit, since we consider that belief actions evolve over time.

The power set 2Ωt

k = {{T t
k}, {F

t
k}, {T

t
k, F

t
k}, ∅

t
k} gathers the subsets of

the FoD (called propositions). For the sake of simplicity, braces around

the propositions are not written. The belief mass on subset {T t
k, F

t
k} can be

interpreted as the weight of the logical proposition T t
k ∪ F t

k, meaning that

state of action Ak at t is imprecise (either true: T t
k, OR false: F t

k).

The goal is to define the belief functions mΩt

k on 2Ωt

k concerning the actions

Ak related to observed features Ot at time t. Obtaining a belief function from

features can be stated as a problem of pattern recognition [14], i.e. we need to

build a mapping from the feature space R
F to action space Ωt

k. The mapping

can be obtained automatically using:

• The model of likelihood (MLGBT1) which consists in applying the

Generalized Bayesian Theorem (GBT) [22] to likelihood conditional of

action states [28, 29, 14].

• The model of distance (EDC2) of Denœux et al. [30, 31]. This

method is interesting when the models of classes are not known and/or

difficult to obtain.

In order to define the basic belief assignment (BBA) directly

1Stands for Model of Likelihood based on Generalized Bayesian Theorem.
2Stands for Evidential Distance-based Classifier.
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on Ωt
k, it is necessary to build a learning set composed of two sets

of features: one where action Ak is true and one where action Ak is

false. Feature intervals where action Ak is true are easy to find (us-

ing the ground truth) but the problem is to choose intervals where

action Ak is false. That is why we choose to model knowledge by a

(BBA) named mΩt
s on the FoD Ωt

s = {Run, Jmp, Fal, Stu} (standing

for running, jumping, falling, standing-up respectively) which is

the set of the four actions. Then the BBA mΩt

k on the two actions

concerned (current and next) is computed by a coarsening process,

seen as a focus process.

3.2. Model of likelihood (MLGBT)

We first estimate conditional probability densities of observed features Ot

given each action Ak. For example, the densities can be modeled by Gaussian

mixtures where means and variances are estimated using an Expectation-

Maximization algorithm. For each action, a learning set corresponding to

30% of the database is used (with a 3-fold cross-validation). The number

of Gaussians is set using the method proposed in [32] based on Minimum

Description Length: 10, 4, 4 and 8 components are used for running, jumping,

falling and standing-up actions respectively.

Afterward, given an unknown feature vector Ot at t, a likelihood P (Ot|Ak)

is generated for each action Ak. Then, as proposed by Smets et al. [22, 28, 29],

these likelihoods are supposed to represent plausibilities of observations con-

ditional to states, i.e. plR
F

[Ak](Ot), defined in the feature space R
F . They

are used in the Generalized Bayesian Theorem in order to compute the pos-
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terior belief mass mΩt
s [Ot](S

t) of St ⊆ Ωt
s as follows [29]:

mΩt
s [Ot](S

t) =
∏

Ak∈St

plR
F

[Ak](Ot) ·
∏

Ak /∈St

(

1− plR
F

[Ak](Ot)
)

(1)

where mΩt
s is a BBA defined on the set of actions Ωt

s = {Run, Jmp, Fal, Stu}.

3.3. The model of distance (EDC)

A learning set with D samples is available as L = {Od,m
Ωs

d } where

d ∈ {1, 2 . . . D} is a sample index3. Each sample ed is made up of observations

Od labeled by a belief function mΩs

d defined on the set of actions Ωs =

{Run, Jmp, Fal, Stu}. When the class of ed is known then the belief function

is categorical (mΩs

d (Ak) = 1, Ak ∈ Ωs) whereas if the class is unknown then

mΩs

d (Ωs) = 1.

For a given observed feature vector Ot, we need to assess the BBA mΩs [Ot]

that reflects the type of action (this BBA is identical to mΩt
s but the super-

script t is not used for the sake of simplicity). Using the Denœux’s distance

model [30], the BBA is given by the conjunctive combination of the BBA

of the K nearest neighborhoods Ot determined by the Euclidean distance.

For that, let {Oj,m
Ωs

j } ∈ L the subset of the K nearest neighborhoods. The

BBA mΩs

j [Oj] for sample ej in this subset is then obtained by:

mΩs

j [Oj]({Ak}) = ζ · φq(dist(Oj,Ot))

mΩs

j [Oj](Ωs) = 1− ζ · φq(dist(Oj,Ot))

mΩs

j [Oj](B) = 0, B ∈ 2Ωs\{Ωs, {Ak}}

(2)

3We do not use t here but d since time is not important for the modeling process. Time
will be explicitly taken into account during sequence recognition.
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where Ak ∈ Ωt
s, φq(dist(Oj,Ot)) = exp(−γq · dist(Oj,Ot)), the function

dist(Oj,Ot) is the Euclidean distance between Oj and Ot, γq ≥ 0 and ζ is

such that 0 < ζ < 1. The K BBA are then conjunctively combined Smets’

conjunctive rule of combination (CRC) to estimate mΩs [Ot]:

mΩs

∗ [Ot] = mΩs

1 [O1] ∩©· · · ∩©mΩs

j [Oj] ∩©· · · ∩©mΩs

K [OK] (3)

where the CRC ∩© is defined by:

(mΩs

1 ∩©mΩs

2 )(D) =
∑

B∩C=D

mΩs

1 (B) ·mΩs

2 (C) (4)

At this step, the mass mΩs(∅) on the empty set can be different than zero.

That can correspond to a transition between two actions where they seems to-

gether true. Then we normalize the CRC as follows: mΩs(B) = mΩs
∗

(B)

1−mΩs
∗

(∅)
,∀B ⊆

Ωs, B 6= ∅. We have set K = 5 and ζ = 0.99 using heuristics attached to

the application through several tests. The value of γq is optimized using a

gradient-based method proposed in [31]4. The learning set represents 30% of

the whole dataset (as for the MLGBT model).

3.4. Coarsening process

In both modeling methods (MLGBT and EDC), the FoD is Ωt
s.

Because we have chosen to focus early on the current action and

the next action, the BBA mΩt
s is then coarsened onto one mΩt

k for

4Matlab code available at http://www.hds.utc.fr/∼tdenoeux/.
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these actions. The coarsening process is then:

mΩt

k(T t
k) ← mΩt

s(Ak)

mΩt

k(F t
k) ←

∑

Ak∩Bk=∅
Bk⊆Ωt

s

mΩt
s(Bk)

mΩt

k(T t
k ∪ F t

k) ←
∑

Ak∩Bk 6=∅
Bk 6=Ak,Bk⊆Ωt

s

mΩt
s(Bk)

(5)

where Ak is the current and next actions and Bk is the other actions

known as false. Fig. 9 depicts some results (output of the modeling

process).

Another alternative could be to directly carry out a coarsen-

ing process from Ωt
s to the frame of discernment Ωt

i,i+1 where Ai is

the current action and Ai+1 is the next action. The effect of that

alternative is similar to the previous one.

3.5. Temporal Evidential Filter for action state filtering

Because the features extracted from the videos are noisy, not

perfectly reliable and conflicting, it is necessary to filter the BBA

mΩt

k obtained previously. The Temporal Evidential Filter (TEF)

proposed in [26] makes belief on actions temporally consistent (the

resulting belief has no conflict and is made smooth). On the other

hand, this filter is used to detect when the states (false or true) of

actions change. This filter is relatively easy to work out because

the BBA mΩt

k concerned are binary. That is not the case of mΩt
s.

The TEF works on-line on each action Ak independently taking as input

the BBA obtained from feature fusion and the previous TEF output (Fig. 3).
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In this section, the eight steps of the TEF process are recalled [26].

Figure 3: The Temporal Evidential Filter principle.

The TEF uses a model of belief evolutionM∈ {T ,F}, one for each state

(T for T t
k and F for F t

k). Only one model is applied at each time t and each

model assumes that the BBA of the current TEF output mΩt

k at time t is

close to the previous one mΩt−1

k (this is a common hypothesis in filtering, in

particular for our application since human motions are continuous).

1-Prediction: The model of evolution is used to predict the current

state of each action m̂
Ωt

k

M (at time t) by combining the BBA of the current

model of belief evolution and the previous TEF output mΩt−1

k resulting in

two possible BBA [26]: either m̂
Ωt

k

T if the current model is T or m̂
Ωt

k

F if the

current model is F . These BBAs are given by:







m̂
Ωt

k

T (T t
k) = γT ·m

Ωt−1

k (T t−1
k )

m̂
Ωt

k

T (Ωt
k) = γT ·m

Ωt−1

k (Ωt−1
k ) + 1− γT

(6)







m̂
Ωt

k

F (F t
k) = γF ·m

Ωt−1

k (F t−1
k )

m̂
Ωt

k

F (Ωt
k) = γF ·m

Ωt−1

k (Ωt−1
k ) + 1− γF

(7)
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In this paper we always have set parameters γT and γF to 0.9. It is important

to note that the masses sum to one because of the redistribution rule proposed

in step 6 that compels the mass at t− 1 to be a simple belief function.

2-Fusion of prediction and measure: m̂
Ωt

k

M ∩©mΩt

k [Ot] combines the

available information (prediction and observation), where the operator ∩© is

the conjunctive rule of combination defined in equation 4.

3-Conflict: ǫt
k =

(

m̂
Ωt

k

M ∩©mΩt

k [Ot]
)

(∅tk) quantifies the contradiction be-

tween model of belief evolution and data. The higher the conflict, the higher

the necessity to change the current model (true or false). We thus introduce

the concept of unlikelihood in order to give a semantic to the conflict value.

4-Cusum: CSk(t) = λ ×CSk(t − 1) + ǫt
k builds the cumulative sum of

conflict along time where λ ∈ [0, 1] is a fader coefficient to cope with low/high

variation of conflict (smoothing).

5-Decision on model change: when the cumulative sum is too high,

i.e. if CSk(t) > T k
s (stop threshold) at time ts, the model is changed. The

other model is applied from ts and belief on interval of times [ts − W, ts]

is compelled to be vacuous (i.e. mΩt

k(Ωt
k) = 1) to emphasize action state

transition (W = 3 is one window size representing transition size).

The threshold T k
s can be easily estimated in four steps. These steps are

described in the following (and each step is pictorially described in Fig. 4):

a) The ground truth is in the form of an interval of times where the action

is really true. For instance, on Fig. 4, the ground truth appears as a

bold black line on the time axis between time 48 and 61. The vertical

dashed line represents the true beginning of the action. From the Ot

vector, the temporal belief functions are computed and represented in

15

ha
l-0

04
75

78
7,

 v
er

si
on

 1
 - 

23
 A

pr
 2

01
0



the first plot of Fig. 4. The blue, red and green curves represent the

evolution of mΩt

k [Ot](T
t
k), mΩt

k [Ot](F
t
k) and mΩt

k [Ot](T
t
k ∪ F t

k) respec-

tively.

b) First, we set the value of Ts to a unreachable value (infinity for example)

and we apply the filter. Initially, the current model is the false one (F).

We thus obtain the second plot on Fig. 4. As expected, the belief on

mΩt

k [Ot](T
t
k) is always zero (blue curve) due to the unreachable value

of the stop threshold (no model change is possible and F is always the

current one).

c) The cusum is represented in the third plot of Fig. 4. We choose a time

in the ground truth where the cusum is high, for instance at t = 52 we

have CSk(52) = 2. This time should obviously be chosen so as to be

close enough to the beginning of the true action. So choosing T k
s = 2

in this example could allow the proper detection of the action.

d) We set T k
s = 2 and apply the filter with this new threshold. This leads

to the fourth plot on Fig. 4 where the action is correctly detected (a

change correctly occurs from model F to model T model).

This estimation technique (which does not take the sequence into account)

enables a rough value of the stop threshold to be estimated, that can then

be refined by experiments.

6-TEF output: if the current conflict ǫt
k is low then the output is the

fusion result of prediction and observations, otherwise we maintain the pre-

diction (cautious approach). Formally: mΩt

k = m̂
Ωt

k

M ∩©mΩt

k [Ot] if ǫt
k ≤ δ∅ and

m̂
Ωt

k

M otherwise where δ∅ is a threshold reflecting a tolerance to the conflict
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0

2

4

10 20 30 40 50 60 70 80 90
0

0.5

1

Estimated stop threshold

Figure 4: Estimation of Ts. Explanations are given in the text (in the fifth step of sec-
tion 3.5. The blue, green and red curves are respectively the evolution of belief on T t

k
(i.e.

action Ak is true), on F t

k
(i.e. action Ak is false) and on T t

k
∪ F t

k
(i.e. action Ak is true or

false). Bold and black lines on the time axis represent ground truth for this video.

adaptively computed using the mean of conflict over a window (size N = 5)

of a number of times: δ∅ = 1/N ·
∑t

ti=(t−N−1) ǫti
k .

In order to remain coherent with the model of evolution that is used, the

belief mass is modified as follows: if the model used is T then the belief on

the empty set (mΩt

k(∅tk)) and the belief on F t
k (mΩt

k(F t
k)) are transfered onto

T t
k and Ωt

k respectively. The redistribution rule when the model is “T : the

state is true” is given by:

mΩt

k(T t
k)← mΩt

k(T t
k) + mΩt

k(∅tk)

mΩt

k(Ωt
k)← mΩt

k(Ωt
k) + mΩt

k(F t
k)

mΩt

k(∅tk)← mΩt

k(F t
k) = 0

(8)

A similar redistribution rule is used for the case “F : the state is false”
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replacing T t
k by F t

k. This redistribution is empirical and suitable for the TEF

but one can also use other rules defined for instance in [33, 34].

7-Local Quality criterion: It reflects how we can be confident in an

action. This criterion is said to be “local” because it concerns only one action

within a sequence. Given a model of evolution (M), we compute:

LQts:t
i [M](T t

k) =
(

1−
1

t− ts

)

× LQ
ts:(t−1)
i [M](T t

k) +
mΩt

k(T t
k)

t− ts
· (1− ǫt

k) (9)

for each action Ak within each activity Si. This criterion represents a slid-

ing weighted average (thus computed on-line) which uses past events and

innovation. It uses conflict to weigh the current belief on T t
k: the lower the

conflict, the higher the confidence (or the plausibility) in the hypothesis “the

true state is T t
k”. The weighted sum generates a smooth evolution of the

criterion over time.

8-Transition and false alarm detection: Let say that at t0, an action

Ak in a sequence Si is true and thus filtered by the model T . When the

stop threshold is reached at a given time t1, we compare the Local Quality

criterion LQts:t
i [M](T t

k) (of action Ak in sequence Si) with a threshold δFA.

The threshold is the minimal quality value required to make a model change

valid. Thus, if the criterion is higher than δFA, then the model change is

declared to be valid. Otherwise, a false alarm occurs. In the latter case, the

TEF is run again on the interval of time [t0, t1] with a model compelled to

be false (i.e. model F) and with the cusum detector shunted (i.e. it does

not take into account the stop threshold on this interval).
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4. Belief Scheduler

Activity recognition is done when the K understandable actions

Ak of the corresponding sequence have been true in the correct

order. At any time, only the current action and next action states

are taken into account. In the early focus process presented in this

paper, the knowledge about these actions is given directly by the

active models T and F , and by the BBAs mΩt

k.

The method called Belief Scheduler [25] proposed for activity

recognition based on the TBM is a state machine which exploits

the results of the TEF to synchronize actions. It is built on the

classical rules of such a machine: only the current action is assumed

to be true at the given time and the other (K − 1) actions are thus

false. Therefore, only one action uses the model T (in its associated

TEF) whereas the other (K − 1) actions use the model F (in their

associated TEF). The transition is passed when the current action

becomes false and the next action becomes true.

The models F or T are considered as resources to which actions attempt

to access. To access a model, an action has to ask for it and the Belief

Scheduler manages this access. Ideally, the actions are synchronized (in this

case, a simple state machine can be used) but, in real cases they can be either

overlapping or unconnected as is represented in Fig. 5. Using particular rules,

the Belief Scheduler overcomes these problems.
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Figure 5: Due to data imperfection, overlapping (a) and unconnection (b) generally appear
between current action Ak and the next action Ak+1.

4.1. Description

In the sequel, we call natural state the belief provided by the fusion

process without filtering or scheduling. We call constrained state the belief

provided by the scheduling process (it is constrained by the sequence).

4.1.1. preemption process

This process manages overlapped actions (Fig. 5.a). At t = tP , Ak is still

true while Ak+1 becomes true, thus two actions are true at the same time: it

is said that Ak+1 wants to preempt Ak. This process occurs at time t = tP

when the cusum CSk+1(t) of the next action Ak+1 is greater than its stop

threshold T k+1
s :

if CSk+1(t) > T k+1
s and CSk(t) < T k

s

then preemption and tP = t (current time)
(10)
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In this case, the natural state of Ak+1 is temporarily true (true state)

from time tP and the constrained state of Ak is temporarily false (false state)

until validation (see Fig. 5). The validation is enabled when the quality of

the action Ak+1 recognition (which asks for preemption) is satisfactory

(Section 4.1.3 focuses on this process). Information at t = tP concerning

actions (cusum, belief . . . .), i.e. the context, is stored. This allows us to

restore the context in case the preemption is not enabled. Note that, at

the beginning of scheduling, all actions are in the false state. An artificial

initial true state action is added to the sequence (first state) that allows the

Belief Scheduler to wait for a preemption of the first action.

4.1.2. forcing process

This process manages disconnected actions (Fig. 5.b). At t = tF , the

current action Ak is false as well as the next action Ak+1. This process

occurs at time tF when the cusum CSk(t) of the current action Ak is greater

than its stop threshold T k
s :

if CSk(t) > T k
s and CSk+1(t) < T k+1

s

then forcing and tF = t (current time)
(11)

If the two successive actions are disconnected with a gap smaller than a

fixed threshold ∆F , the constrained state of Ak is forced to the true state

until Ak+1 becomes true. However, sometimes, the gap between successive

actions can be large, i.e, with a size greater than ∆F . In this case, the action

requiring a forcing, e.g. constrained state of Ak, keeps on being true until

the time “tF + ∆F ”. At this time, the constrained state of Ak+1 is forced to

be true and constrained state of Ak becomes false (Fig. 5).
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4.1.3. False alarm detection

If actions Ak+1 and Ak+2 are too unconnected and if Ak+1 had previously

preempted Ak, then Ak+1 can be interpreted as a false alarm (see Fig. 6).

It appears when an action becomes true instead of staying false. This false

alarm procedure is applied to validate a preemption.

Figure 6: False alarm processing. a) Natural states of Ak and Ak+1. b) Ak+1 is forced
to be in a true state. c) Ak+2 does not become true and the quality of Ak+1 is bad, thus
Ak+1 is forced to be false.

In order to decide whether action Ak+1 is a false alarm or not, we assess

the recognition performance of this action. The criterion chosen is the Local

Quality recognition performance LQtP :tF +∆F

i [T ](T t
k) (action k in sequence i)

defined in equation 9 and computed on interval of times [tP , tF + ∆F ] (the

bounds are the time of preemption and of forcing). As in Section 3.5,

the following rule is applied to make an action valid or not:

if LQtP :tF +∆F

i [T ](T t
k) < δFA then A is a false alarm
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where δFA is a crisp threshold corresponding to a severity degree on the

quality. When a false alarm is detected, the context of actions at time tP

(such as values of the cusum) is restored and the previous action (true before

preemption), e.g. Ak, becomes true again. If LQtP :tF +∆F

i [T ](T t
k) > δFA

then the quality is sufficient and therefore Ak+2 becomes true and Ak+1 and

Ak+2 are both validated.

When several actions perform consecutive preemption, a validation

must be performed to ensure that they are not false alarms. They are stored

in a FIFO queue to wait for their validation. The number of actions in the

queue is limited, e.g. two actions, so when the queue is full then the oldest

queued action is validated.

4.2. Activity inference

The problem is to determine which activity (sequence of actions) is the

best one at a given sequence. One approach is to assign a score to each

potential activity. For example, in Hidden Markov Models, inference is per-

formed using the forward-backward algorithm which provides a log-likelihood

for each activity. In this paper, we propose a criterion for on-line inference

within the Belief Scheduler that is computed from the Local Quality recog-

nition performance criterion. For that, each LQts:t
i [T ](T t

k) (only for model

true and the true hypothesis), for all actions Ak in a particular activity Si

(composed of Ki actions) is aggregated into a Global Quality recognition per-

formance criterion GQt
i to represent the confidence in activity Si from time

ts (a given start time) to t (the current time). The aggregation is simply the
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arithmetic mean:

GQt
i =

1

Ki

∑

n∈{1..Ki}

LQts:t
n [T ](T t

k) (12)

In order to find the best activity St
∗ at the current time t, we maximize GQt

i

over all possible sequences. Then, a threshold is applied to decide whether

the recognition is satisfactory. Formally:

St
∗ = argmax i GQt

i > θ (13)

where θ is a degree of severity on activity recognition quality which can be

used for a class of rejections (if all activities are not well recognized). Its

value can be the same as the false alarm threshold δFA.

5. Experiments

This part concerns the testing of the action/activity recognition archi-

tecture. The goal is to assess 1) the modeling using MLGBT (Model of

Likelihood based on Generalized Bayesian Theorem) and EDC methods (Ev-

idential Distance-based Classifier) before scheduling, and 2) the performance

of the belief scheduler (BS) after filtering by the TEF (Temporal Evidential

Filter) and scheduling. Because the Hidden Markov Models (HMM) are a

reference in such applications, we have compared the results of the proposed

approach to HMM approach.
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5.1. Settings

The system was tested for action and activity recognition in athletics

jumps. The database5 is composed of 69 videos acquired with a moving

camera and several unknown view angles. There are 26 pole vaults, 15 high

jumps, 12 triple jumps and 16 long jumps equivalent to about 12620 images

(with 5600 images for running, 2700 for jumping, 2550 for falling and 1770

for standing-up). The database is characterized by its heterogeneity (Fig. 7)

with a panel of view angles as well as environments and athletes (out/indoor,

male, female, other moving people).

Figure 7: Heterogeneous database used for testing.

The proposed system was used to recognize actions, running, falling,

jumping and standing-up, and activities (action sequence) high jump, pole

5Some videos and results are available on the author’s website: http:

//www.femto-st.fr/∼emmanuel.ramasso/actionActivityRecognition.htm and www.

csd.uoc.gr/∼cpanag/DEMOS/actionActivityRecognition.htm. Some codes for the
TBM operations can be found in the TBMlab toolbox of Smets available at http:

//iridia.ulb.ac.be/∼psmets.
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vault, triple jump and long jump. The first three activities were described

by a four-state belief scheduler (running → jumping → falling → standing-

up) while triple jumps were described by a eight-state scheduler (running →

jumping → falling → jumping → falling → jumping → falling → standing-

up). The parameters of the TEF and the Belief Scheduler were tuned using

5-fold cross validations: 1) we selected 80% of the database, 2) made an esti-

mation of the parameters so as to maximize recognition performance and 3)

tested on the remaining 20%. We did it 5 times and computed the average

of the performance. The best set of parameters is given in Tab. 1.

Activity
Highjump Longjump Polevault Triplejump
Ts ∆F Ts ∆F Ts ∆F Ts ∆F

Running 3.1 10 3.1 5 3.1 10 1.7 2

Jumping 3.1 15 4.1 5 3.9 30 1.7 2

Falling 3.1 5 4.1 15 4.5 30 1.7 2

Standing-up 2.1 15 3.1 10 4.1 10 1.7 2

Table 1: TEF and scheduler parameter settings for Ts and ∆F . The other parameters
(λ = 0.9, γT = 0.9, γF = 0.9, W = 3 and δFA = 50%) are set at the same value for all
actions and all activities.

5.2. Tests and evaluation protocol

For quantitative evaluation, an action is said to be true if its pignistic

probability (BetP) [35] defined by BetP(T t
k) = 1

(1−m(∅))
(m(TA) + m(TA∪FA)

2
) is

greater than 0.5 (since an action can be true or false), where m is the belief

mass provided by the output of the modeling process or by the scheduler.

We then compared these decisions with the ground truth (the database was

manually annotated). Recall (R) and precision (P) criteria were used [36].

They were computed as R = C∩R
C

and P = C∩R
R

, where C is the set of
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Figure 8: Features observed on the video sequence and used to compute beliefs of Fig. 9.
From top to bottom: horizontal motion (Phm, in pixels by image), vertical motion (Pvm,
in pixel by image), zoom (Pdiv), angle (Pswing, in degree) and vertical variation of center
of gravity (Pvcg, in pixel by image).
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Falling input action − Perf = R:85% − P:53% − F
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(a) MLGBT
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1
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0
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Jumping input action − Perf = R:71% − P:58% − F
1
:64%

20 40 60 80 100 120 140 160 180
0

0.5

1

Falling input action − Perf = R:91% − P:97% − F
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(b) EDC

Figure 9: Beliefs obtained by the model of likelihood (MLGBT) and the model of distance
(EDC) from features observed on the current video (Fig. 8). As on Fig. 4 the blue, green
and red curves are respectively the evolution of belief on T t

k
(i.e. action Ak is true), on F t

k

(i.e. action Ak is false) and on T t

k
∪ F t

k
(i.e. action Ak is true or false). Bold and black

lines on the time axis represent ground truth for this video. The symbols R, P and F1 are
recall, precision and F1-measure for the detection.
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correct images obtained by expert annotations, R is the set of retrieved

images provided by the recognition module using the BetP-based criterion,

and C ∩ R is the number of correctly retrieved images. In order to assess

the method by only one criterion, the F1-measure defined as F1 = 2×R×P
R+P

combines R and P .

Fig. 8 provides the noisy features measured on the video sequence and

from which beliefs are computed. Action detection (Fig. 9), scheduling

(Fig. 10) and the GQ evolution (Fig. 11) are illustrated for a high jump

video using MLGBT (top figures) and EDC (bottom figures). On Figures 9

and 10, blue curves, red curves and green curves represent respectively the

evolution of the beliefs mΩt

k(T t
k) (action Ak is true), mΩt

k(F t
k) (action Ak is

false) and mΩt

k(T t
k ∪ F t

k) (action Ak is true or false) all along time.

5.3. Illustration of the belief scheduler

Let us consider that the beliefs for each action are provided by the model

of distance (EDC) [30]. An example of beliefs is depicted in Fig. 9 (before

scheduling) and in Fig. 10 (after scheduling). One can clearly see the differ-

ences between both modeling methods: MLGBT provides much more noisy

observations but the transitions are quite gradual while EDC provides less

noisy observations but the transitions are much more abrupt. The ground

truth is represented as a bold black line on the time axis. The goal of the BS

is to filter these beliefs, separate actions and recognize activities. The sched-

uler and the filter make these beliefs smoother and ensure good recognition

performance (GQ = 74%).

In order to analyze the scheduler behavior, let us consider two consecutive

actions, e.g. running and jumping, that correspond to the first two lines of
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(a) MLGBT
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(b) EDC

Figure 10: Beliefs of Fig. 9 after filtering and scheduling. Meaning of color is the same as
in Fig. 9. Note that the beliefs on T t

k
(action Ak is true) are generally well detected when

compared with the ground truth (bold black lines on the time axis).
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figures 9 (input) and 10 (output). We consider the case of EDC-modeling

(for MLGBT the same reasoning can be applied). The scheduler starts by

filtering belief on running using model T (natural true state) and uses the

model F for each of the other three actions (natural or constrained false

state). Then at time t ≈ 100, running becomes false and forces jumping

action to become true. The natural state of running is false and the filter on

running uses naturally the model F while jumping action is constrained to

be true and the filter on this action uses the model T . At time t ≈ 130, the

falling action makes a preemption on jumping. Then at t ≈ 155, standing-up

makes a preemption on falling, and since the quality of falling is sufficient

(GQ ≈ 0.95, third figure on the left of fig. 11 where GQ stands for Global

Quality recognition performance), standing-up is allowed to use the model T

(natural true state) while the others use model F . Finally at t ≈ 184, the

sequence ends and the global quality reaches ≈ 75%.

We recall that MLGBT stands for “Model of Likelihood based on Gener-

alized Bayesian Theorem”, EDC stands for “Evidential Distance-based Clas-

sifier” and BS stands for ”Belief Scheduler”. In the sequel, we present ac-

tion detection performance using: a1) MLGBT modeling alone, a2) MLGBT

modeling coupled with BS, b1) EDC modeling alone and b2) EDC modeling

coupled with BS. Tests a1) and a2) enable MLGBT to be compared with

and without BS (Section 5.4), tests b1) and b2) enable EDC to be compared

with and without BS (Section 5.5), tests a2) and b2) enable BS performance

to be quantified with two different modelings (Section 5.6). Three sets of

tables are then presented:

• The first set of 4-by-3 tables where four rows concern one type of
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(a) MLGBT
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(b) EDC

Figure 11: Global quality recognition performance criterion during scheduling.

jump and the three tables represent respectively EDC performance,

EDC+BS performance and difference between both. Thus, there is

one set of three tables for each jump and each table presents action

detection performance (Section 5.4, Tables 2, 3, 4 and 5).

• The second set of 4-by-3 tables is similar to the previous but concerns

the MLGBT (Section 5.5, Tables 6, 7, 8 and 9).

• The last set of four tables compares MLGBT+BS and EDC+BS per-

formances with one table for each jump (Section 5.6, Tab. 10). Perfor-

mance is assessed using recall (first column named R), precision (second

column named P) and F1 measure (third column named F1).

The reader may refer to the latter one (F1) in each table for quick performance

assessment.
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5.4. Results of scheduling with MLGBT modeling

Tables 2, 3, 4 and 5 present recall, precision and F1-measure of action

detection in each activity using MLGBT before (Tables (a)) and after (Tables

(b)) scheduling using the BS.

R P F1

Running 0.6246 0.7904 0.6978

Jumping 0.3989 0.7969 0.5317

Falling 0.3066 0.9601 0.4648

Standing-up 0.1657 0.8092 0.2750

R P F1

0.7919 0.8393 0.8149

0.5115 0.8231 0.6310

0.4064 0.8920 0.5584

0.3014 0.7283 0.4264

∆(F1)

+0.1171

+0.0993

+0.0936

+0.1513

(a) MLGBT (b) MLGBT+BS (c)Diff.

Table 2: Recall (R), precision (P ) and F1-measure for four actions in high jumps with
(a) MLGBT without BS and (b) MLGBT with BS. Table (c) is the difference of detection
(for the F1-measure only) with and without the scheduler.

The BS performance is demonstrated on this dataset by greatly improving

the detection in all jumps. The differences before and after applying the BS

are explicitly given in Tables (c): if a difference is positive then it means that

the belief scheduler improves the criterion.

R P F1

Running 0.5968 0.9211 0.7243

Jumping 0.4336 0.8756 0.5800

Falling 0.3636 0.8999 0.5179

Standing-up 0.2321 0.9043 0.3693

R P F1

0.8652 0.8481 0.8566

0.5271 0.9801 0.6856

0.4700 0.8322 0.6007

0.3452 0.8860 0.4968

∆(F1)

+0.1322

+0.1056

+0.0828

+0.1275

(a)MLGBT (b)MLGBT+BS (c)Diff.

Table 3: Recall (R), precision (P ) and F1-measure for four actions in pole vaults with
(a) MLGBT without scheduler and (b) MLGBT with scheduler. Table (c) is the difference
of detection (for the F1-measure only) with and without the scheduler.

The results illustrate in particular that the BS generally increases the

recall rate (R) through filtering because of the stop threshold Ts that fills
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“gaps”.

R P F1

Running 0.5490 0.8851 0.6777

Jumping 0.1556 0.9619 0.2678

Falling 0.2214 0.9775 0.3610

Standing-up 0.2421 0.9623 0.3868

R P F1

0.6961 0.8396 0.7611

0.4288 0.8619 0.5728

0.4375 0.8684 0.5861

0.3709 0.9393 0.5318

∆(F1)

+0.0834

+0.0938

+0.1251

+0.1450

(a)MLGBT (b)MLGBT+BS (c)Diff.

Table 4: Recall (R), precision (P ) and F1-measure for four actions in long jumps with
(a) MLGBT without scheduler and (b) MLGBT with scheduler. Table (c) is the difference
of detection (for the F1-measure only) with and without the scheduler.

R P F1

Running 0.3917 0.9165 0.5488

Jumping 0.3212 0.8476 0.4658

Falling 0.3569 0.8339 0.4956

Standing-up 0.2058 0.9350 0.3373

R P F1

0.5122 0.7272 0.6010

0.3490 0.7694 0.4801

0.3945 0.7486 0.5167

0.3404 0.8576 0.4873

∆(F1)

+0.0522

+0.0143

+0.0210

+0.1500

(a)MLGBT (b)MLGBT+BS (c)Diff.

Table 5: Recall (R), precision (P ) and F1-measure for four actions in triple jumps with
(a) MLGBT without scheduler and (b) MLGBT with scheduler. Table (c) is the difference
of detection (for the F1-measure only) with and without the scheduler.

5.5. Results of scheduling with EDC modeling

The same study as previously was done using EDC modeling. Tables 6, 7, 8

and 9 present the performance of the detection of each action in each activity

before (Tables (a)) and after (Tables (b)) scheduling based on EDC modeling.

The differences of performance of EDC and EDC+BS are given explicitly

in Tables (c). This latter table shows that the BS greatly improves the

results of action detection. Improvements seem to be a slight less marked

than with MLGBT modeling, but this is due to a globally better performance
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R P F1

Running 0.7207 0.8653 0.7864

Jumping 0.4857 0.7795 0.5985

Falling 0.4877 0.7911 0.6034

Standing-up 0.2606 0.7110 0.3814

R P F1

0.7277 0.9760 0.8338

0.5706 0.8297 0.6762

0.6218 0.7911 0.6963

0.4294 0.8613 0.5731

∆(F1)

+0.0474

+0.0777

+0.0929

+0.1917

(a)EDC (b)EDC+BS (c)Diff.

Table 6: Recall (R), precision (P ) and F1-measure for four actions in high jumps with
(a) EDC without scheduler and (b) EDC with scheduler. Table (c) is the difference of
detection (for the F1-measure only) with and without the scheduler.

R P F1

Running 0.5886 0.9112 0.7152

Jumping 0.4699 0.8211 0.5977

Falling 0.4337 0.8868 0.5825

Standing-up 0.3519 0.6322 0.4522

R P F1

0.6580 0.9136 0.7650

0.5824 0.9264 0.7152

0.4519 0.9636 0.6152

0.3907 0.6843 0.4974

∆(F1)

+0.0498

+0.1175

+0.0327

+0.0452

(a)EDC (b)EDC+BS (c)Diff.

Table 7: Recall (R), precision (P ) and F1-measure for four actions in pole vaults with
(a) EDC without scheduler and (b) EDC with scheduler. Table (c) is the difference of
detection (for the F1-measure only) with and without the scheduler.

R P F1

Running 0.5912 0.9017 0.7142

Jumping 0.4037 0.6548 0.4994

Falling 0.4560 0.7480 0.5665

Standing-up 0.3490 0.7525 0.4769

R P F1

0.5990 0.8330 0.6969

0.4510 0.7329 0.5583

0.5040 0.7769 0.6113

0.3963 0.7295 0.5136

∆(F1)

−0.0173

+0.059

+0.0448

+0.0367

(a)EDC (b)EDC+BS (c)Diff.

Table 8: Recall (R), precision (P ) and F1-measure for four actions in long jumps with
(a) EDC without scheduler and (b) EDC with scheduler. Table (c) is the difference of
detection (for the F1-measure only) with and without the scheduler.
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of EDC modeling compared to MLGBT modeling. Indeed, the detection

performance of EDC+BS compared to MLGBT+BS is in favor of the former

except for some running actions. Running action is better detected with

MLGBT because this action is much more highly represented in the learning

set since it generally takes about 50% of each jump.

R P F1

Running 0.4253 0.9376 0.5851

Jumping 0.3532 0.6542 0.4587

Falling 0.4371 0.7523 0.5529

Standing-up 0.3098 0.9133 0.4626

R P F1

0.4778 0.9332 0.6320

0.4875 0.6783 0.5672

0.5251 0.8282 0.6427

0.3862 0.8204 0.5251

∆(F1)

+0.0468

+0.1085

+0.0898

+0.0624

(a)EDC (b)EDC+BS (c)Diff.

Table 9: Recall (R), precision (P ) and F1-measure for four actions in triple jumps with
(a) EDC without scheduler and (b) EDC with scheduler. Table (c) is the difference of
detection (for the F1-measure only) with and without the scheduler.

5.6. Comparison between EDC and MLGBT modeling with scheduling

Table 10 presents the differences of performance of the detection of each

action (action names are not recalled for better readability) in each activ-

ity after scheduling between both EDC and MLGBT modeling. When the

difference is positive, EDC+BS detection is better than MLGBT+BS.

It can be observed that better results are obtained with EDC which is a

method that directly computes belief functions (whereas, in MLGBT, beliefs

are indirectly computed using a transformation of likelihoods into beliefs

using the GBT). The difference is highly significant for high jumps and triple

jumps but less significant for long jumps and pole vaults. In the last two types

of jumps, running action is better detected with MLGBT because, on the

one hand, it is much more highly represented in the learning set and, in the
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R P F1

+0.0712 −0.0259 +0.0583

+0.0590 +0.0066 +0.0452

+0.2154 −0.1009 +0.1379

+0.1280 +0.1329 +0.1467

R P F1

−0.2073 +0.0655 −0.0916

+0.0553 −0.0538 +0.0296

−0.0181 +0.1314 +0.0145

+0.0455 −0.2017 +0.0006

(a)High jumps (b)Pole vaults

R P F1

−0.0971 −0.0065 −0.0643

+0.0222 −0.1090 −0.0099

+0.0665 −0.0915 +0.0252

+0.0254 −0.2098 −0.0182

R P F1

−0.0344 +0.2060 +0.0310

+0.0710 −0.0912 +0.0871

+0.1306 +0.0796 +0.1260

+0.0158 −0.0372 +0.0378

(c)Long jumps (d)Triple jumps

Table 10: Differences of detection between EDC+BS and MLGBT+BS for the four actions
(one line per table) in each jump (one table per jump).

other hand, MLGBT is a probabilistic method, thus sensitive to frequent

patterns.

5.7. Comparing the Belief Scheduler and Hidden Markov Model for classifi-

cation

As previously, four models of activities are built (for high jumps, long

jumps, pole vaults and triple jumps). Previously, transition matrix and ob-

servation mixtures of Hidden Markov Model (HMM) were learned using the

BNT toolbox [37]. Each state was modeled by a mixture of Gaussians (using

settings in Section 3.2).

For the comparison, we used the same mixtures of Gaussians for both

systems (and only MLGBT modeling). Likelihoods provided by the mix-

tures of Gaussians are transformed into belief functions using the General-

ized Bayesian Theorem (Eq. 1). To assess both systems, we used the Viterbi
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(a) Log-likelihoods in HMM.
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(b) GQ criterion in Belief Scheduler (red: errors, blue: rejection).

Figure 12: Recognition criteria evolution for (a) HMM and (b) Belief Scheduler of the
four jump models applied on 26 pole vault video sequences. The blue bold line represents
results for pole vault model, generally better than the other ones.
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algorithm for HMM [9] and the GQ criterion for the Belief Scheduler. The

Viterbi algorithm was applied given each model of jumps providing four log-

likelihoods, one for each sequence retrieved. The video was classified as a

particular jump if the log-likelihood of this jump is the highest one. For the

same video, we applied the Belief Scheduler and we chose the model that

maximizes the Global Quality recognition performance criterion.

20 40 60 80 100 120 140

 0

10

20

30

40

50

60

70

80

frame number

G
Q

R
P

 (
%

)

 

 
pole vault
high jump
long jump
triple jump

Figure 13: Evolution of a Global Quality recognition performance criterion over time in
the Belief Scheduler for a pole vault video sequence (2nd video of Fig. 12). The bold curve
represents the criterion evolution for the polevault model while the three other curves are
highjump, triplejump and longjump.

The results are gathered in the confusion matrices of Tab. 11. The supe-

riority of the Belief Scheduler is clearly demonstrated on this dataset. The

overall classification rate is 71% without rejections and 93% with rejections

for the Belief Scheduler whereas it is about 54% for HMM. Bad results of

HMM are explained by at least two factors: first, there is no class for re-

jections thus the decision is made without any other alternative. Secondly,

there is a sensitivity to action and sequence length in the computation of

log-likelihoods [38]. This sensitivity is represented in triple jump recogni-

tion. Indeed, running action in triple jumps is very long (generally two or
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three times more than other videos) while other actions are very short (less

than 10 frames). These differences make the state change difficult with the

Viterbi decoder.

Ground truth

pv lj tj hj
pv 19 1 0 0
lj 0 9 0 0
tj 0 0 9 0
hj 2 2 0 12

rej 5 4 3 3

Ground truth

pv lj tj hj
pv 14 5 1 0
lj 11 9 0 9
tj 0 1 9 0
hj 1 1 2 6

Table 11: Classification results. Left: Belief Scheduler classification using the Global Qual-
ity recognition performance. Right: HMM classification using log-likelihood. Legends: pv,
lj, tj, hj and “rej” stand for pole vault, long jump, triple jump, high jump and class of
rejections respectively.

Fig. 12 presents the evolution of log-likelihoods for HMM and of the GQ

criterion for the Belief Scheduler for 26 pole vaults videos analyzed by the four

models (high jump, pole vault, triple jump and long jump). The GQ criterion

(Fig. 12(b)) provides a more reliable decision than HMM’s log-likelihoods

(Fig. 12(a)) since the relative difference between jumps is high, whereas log-

likelihoods are sometimes very close (it is difficult to decide). The dotted

line in Fig. 12(b) represents the threshold on quality (50%) which was used

for adaptation (class of rejections). Big blue points in Fig. 12(b) represent

rejection cases, whereas big red points concern recognition errors (decide

high jumps instead of pole vaults). Interestingly, the system indicates that a

specific model must be learnt for videos 9 and 10 (which were acquired with

a distant view making the recognition difficult) and for video 19, 22 and 24

(for which the athlete motion was perpendicular to the image plane making
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again the recognition difficult).

20 40 60 80 100 120 140 160 180 200
Stand

Fall3

Jump3

Fall2

Jump2

Fall1

Jump1

Run

Init

(a) States by Belief Scheduler.

20 40 60 80 100 120 140 160 180 200
Stand

Fall3

Jump3

Fall2

Jump2

Fall1

Jump1

Run

Init

(b) States by HMM Viterbi.

Figure 14: Recognition of a triple jump (203 images) with some action discovery.

Fig. 13 depicts the evolution of a Global Quality recognition performance

criterion along time (it is an on-line criterion) for a pole vault. This curve is

useful for monitoring. The system indicates that the decision is “pole vault”

with high quality (about 78%) and reliability (high gap with the second which

is high jump). Fig. 14 describes results of action and activitie recognition

for a triple jump described by eight states using the Viterbi decoder and the

Belief Scheduler. Interpretation is clearly much easier using the latter.

6. Conclusion and future work

The generic architecture for sequence recognition applied to human mo-

tion analysis tested on real athletics videos shows the performance of the

higher level part called Belief State Scheduler (BS) which carries out ac-

tion (state) and activity (sequence) recognition. The BS finite state machine
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made up of a Temporal Evidential Filter (TEF) and a set of constraints con-

cerning state evolution makes the recognition of state sequence from noisy

temporal belief functions possible. It generates both filtered belief functions

and an inference criterion used for sequence classification. The original-

ity of this work lies in the proposal of a method for discrete state

sequence recognition in the Transferable Belief Model framework

and the early approach to focus on the current and next actions.

Compared to previous works, in particular we proposed a classification cri-

terion based on conflict that appears between beliefs which are measured on

the system and beliefs generated by a model of evolution. The chosen model

of evolution is simple and consists of discounting of past beliefs. The number

of thresholds is seven but five of them can easily be set heuristically while

the other two are more sensitive and require cross-validation to assess their

value.

The experiments on a first real dataset have shown good performance

of human motion analysis architecture and in particular of the BS used for

the detection of actions and the recognition of activities. This performance

is obtained without adding explicit duration of actions or activities. We

have proposed a thorough comparison of two modeling methods that gener-

ate beliefs from features: the Generalized Bayesian Theorem coupled with

likelihood and the distance model. The latter seems better suited to the ap-

plication concerned in this paper. The difference comes from the fact that the

distance model directly generates a belief function while the former gener-

ates a probabilistic result that is then transformed into a belief function. The

comparison of the BS with probabilistic HMM proved the efficiency of the
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approach proposed. This approach has also shown limitations in detecting

actions in triple jumps. Actually, triple jumps are generally the longest and,

above all, the noisiest activities (due to the poor quality of the videos coming

from analogical TV). The challenge was thus to detect (in noisy data) jump-

ing and falling actions which are very short (less than 10 frames, compared

to more than 160 frames for running). Therefore, when action durations are

short and, at the same time, beliefs contain a lot of noise then it is difficult

to set the Belief Scheduler parameters in order to extract the sequence.

Some improvement can be made for instance by using the caution rules of

combination instead of conjunctive rules as in equation 4. Experiments have

also emphasized that the inference criterion of the BS can be used to create

a class of rejections. This can improve the classification results but, above

all, can point out new sequences. Since the classification criterion is bounded

between 0% and 100%, it can be easily thresholded to create a class of rejec-

tions. This class is a first step toward adaptation since it gathers the cases

for which the system of recognition could not take a decision. Work is under

progress to pursue pattern discovery and adaptation which are promising in

many applications.
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