
HAL Id: hal-00475745
https://hal.science/hal-00475745v1

Preprint submitted on 22 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ac2lus: Bringing SMT-solving and Abstract
Interpretation Techniques to Real-Time Calculus

through the Synchronous Language Lustre
Karine Altisen, Matthieu Moy

To cite this version:
Karine Altisen, Matthieu Moy. ac2lus: Bringing SMT-solving and Abstract Interpretation Techniques
to Real-Time Calculus through the Synchronous Language Lustre. 2010. �hal-00475745�

https://hal.science/hal-00475745v1
https://hal.archives-ouvertes.fr

ac2lus: Bringing SMT-solving and Abstract Interpretation Techniques to

Real-Time Calculus through the Synchronous Language Lustre

Karine Altisen Matthieu Moy
Email: {Karine.Altisen,Matthieu.Moy}@imag.fr

Verimag (Grenoble INP), Grenoble, France

Abstract—We present an approach to connect
the Real-Time Calculus (RTC) method to the syn-
chronous data-flow language Lustre, and its associ-
ated tool-chain, allowing the use of techniques like
SMT-solving and abstract interpretation which were
not previously available for use with RTC. The ap-
proach is supported by a tool called ac2lus. It allows
to model the system to be analyzed as general Lustre
programs with inputs specified by arrival curves; the
tool can compute output arrival curves or evalu-
ate upper and lower bounds on any variable of the
components, like buffer sizes. Compared to existing
approaches to connect RTC to other formalisms, we
believe that the use of Lustre, a real programming
language, and the synchronous hypothesis make the
task easier to write models, and we show that it allows
a great flexibility of the tool itself, with many variants
to fine-tune the performances.

Keywords-Real-Time Calculus, Lustre, Modular
Performance Analysis, Observer, Formal methods

I. Introduction

Modern real-time embedded systems are increasingly
complex and heterogeneous. Due to real-time require-
ments, the timing performances require accurate evalu-
ation that help taking or validating decisions on the con-
ception of a system as early as possible in the design pro-
cess. Many modeling and analysis techniques have been
developed among which we can distinguish two fami-
lies. Computational approaches study fine-grain models
of the system to represent its complete behavior. The
validation of the system using such a model may involve
simulation, testing and verification. Simulating precisely
an embedded system gives very precise results, but
only for one simulation, and one instance of a system.
Formal methods such as model-checking, when possible,
quickly face the state explosion problem if they are not
associated to modular techniques. As opposed to this,
analytical techniques, such as Real Time Calculus [1],
use purely analytical models, based on mathematical
equations that can be solved efficiently. These models
can represent in a simple way the amount of events
to be processed and how fast the processing occurs.
Solving these equations is very fast and may provide, for
example, the best and worst cases for performances. The
main drawbacks of those techniques is that they imply

rough abstraction of the system, leading to results that
may lack accuracy. For example, Real-Time Calculus
cannot handle the notion of state in the modeling of a
system. Recent studies try to compositionally combine
the approaches to take the best of both [2], [3], [4]. We
present in this paper another way of combining Real-
Time Calculus with computational models, in the case
of synchronous programs written in Lustre [5].

Real-Time Calculus (RTC): RTC [1] is a framework
to model and analyze heterogeneous system in a com-
positional manner. It relies on the modeling of timing
properties of event streams and available resources with
curves called arrival curves and service curves. A compo-
nent can be described with curves for its input stream
and available resources and some other curves for the
outputs. For already-modeled components, RTC gives
exact bounds on the output stream of a component as
a function of its input stream. This result can then be
used as input for the next component.

An arrival curve is an abstraction to represent the set
of event streams that can be input to (resp. output from)
a component; it is expressed as a pair of curves (αl, αu).
For k ≥ 0, αl(k) and αu(k) respectively provide, for any
potential stream, the lower and upper bounds on the
number of events that occur during any time interval of
size k. Similarly, the processing capacity of a component
is specified by a service curve (βl, βu). The number of
events that may be processed in any time interval of size
k is at least βl(k) and at most βu(k).

These curves do not allow to consider sequences of
different abstract behaviors, since it is based on infor-
mation valid for all intervals of a given length. This also
implies that no notion of states is allowed in RTC com-
ponents. When using such abstractions for components
with several intrinsic modes, the obtained results are
particularly coarse. For example, a component with an
initial mode and then a stationary behavior cannot be
described without unreasonable approximation.

Interfacing RTC with other formalisms: to over-
come these drawbacks, a commonly used approach is to
individually analyze some state-based or new component
of an RTC framework with tools that support it and
to re-inject the results into the RTC framework. This
implies making the interfaces between those tools and

the RTC analysis compatible, namely, each component
inputs and outputs arrival curves.

This approach has already been used successfully to
connect RTC to various other formalisms in the past: [6]
proposed a connection to a simulation model that al-
lows testing models or actual embedded systems. [7]
presents a connection to event-count automata and [3] a
connection to timed automata: they both represent the
component and the input arrival curve as event-count
(resp. timed) automata and then use a model checker to
compute the output arrival curve. The connection with
timed automata has been further improved to reduce the
size of the models by focusing on a particular shape of
curves [2] or by changing the granularity of events [4].

Overview of the approach: in this paper we propose
to extend the RTC interfacing the Lustre synchronous
data-flow programming language. When some compo-
nent is well-suited for modeling and analysis with Lustre
and its toolbox, we propose to individually analyze it
and then to use the results in the RTC framework.
Other components can still be analyzed with the usual
RTC toolbox. We develop a method to analyze Lustre
programs interfaced with RTC, with many options that
can be tried to obtain some better results. A tool called
ac2lus supports the framework.

An RTC component can be seen as an arrival curve
transformer: taking some arrival curve as input, this
specifies an output arrival curve for the component (see
Figure 1 (a)). We now improve the expressiveness of the
component by writing it in Lustre. This implies to make
the interfaces between the Lustre component and the
arrival curves compatible. Indeed, the new component,
as Lustre is dataflow, computes on a given stream of
events, whereas arrival curve describes a set of event
streams in a very declarative way using relative time.
To be able to come back and forth between the Lustre
component and the arrival curves, we develop adapters
and back adapters between them (see Figure 1 (b)).

We then run the analysis to compute the output ar-
rival curve. It is done with an abstract interpretation tool
(nbac [8]) and a model-checker (kind [9]) doing bounded
model-checking and k-induction via SMT-solving (“Sat-
isfiability Modulo Theory”, i.e. SAT + a numeric solver).

We develop the tool ac2lus. It provides a library of
predefined Lustre components (greedy processing com-
ponents, fixed-priority scheduler, simple examples of
power-managed components. . .) that the user can use to
model a system. Some other components can easily be
programmed. The user also provides the input arrival
curves which ac2lus uses to generate the Lustre code
for adapters and back-adapters. The tool implements
some runners for the verification tools, which allows to
compute the output arrival curves automatically.

The first goal of the approach it to extend the RTC

framework by the local analysis of some Lustre compo-
nent. It can also be used to evaluate some logical or
quantitative property on the component. For example,
given some arrival curve for a Lustre component, one can
use the tool to compute the maximum buffer fill-level.

A similar approach was followed by [10]: they com-
pute maximum delays of data-acquisition modules using
Lustre models and abstract interpretation. The main
differences with our work are that ac2lus allows mod-
ular analysis through the use of RTC arrival curves
and enables the evaluation of any quantitative measure
expressed in the Lustre model whereas [10] is better-
suited to compute maximum delay.

Contributions: we propose a new combination of
the RTC framework with Lustre components which is
fully automatized by the tool ac2lus. It increases the
variety of validation techniques (abstract interpreters,
SMT-solvers) available for analysis: if some system fails
to be analyzed using some tools, one can change his
strategy and try another one. With the same idea, the
whole framework contains many variants and is easily
configurable and extensible.

Comparing to the classical RTC analysis, those com-
ponents are more expressive and allow to design state-
based systems which is mandatory while studying e.g.
power aware systems; in this case, the analysis via Lustre
leads to much more precise evaluations than RTC.

Comparing to other state-based RTC interfacing
frameworks, and in particular with [2] which is the most
recent and the closest of our work :

– the shape of the curves they take into account is a bit
less general (since we enable points between segments)
and they strictly focus on discrete events whereas we can
also handle fluid event models by changing to real the
typing of event streams (with similar performance);

– we believe that the use of a programming language
instead of any other formal models, makes the modeling
of new components more intuitive and easier;

– the efficiency of the analysis and its precision are
highly correlated, for both approaches. When the analy-
sis succeed, the precision is the same since it is optimal.
The performances bottleneck, in both cases, are due to
the use of formal validation tools and to the size of the
models. As usual, tools behave differently for various
shapes of models and it is good having several strategies
to try. For example, our approach scales nicely with
the order of magnitude of numerical constants, while [2]
scales better with respect to the timing constants.

Organization: the paper is organized as follows.
Section II gives some details on the Lustre language and
shows some RTC components written in Lustre; Sec-
tion III details the adapters and back-adapters, explains
the tool and the analysis; Section IV shows applications
of the framework, illustrated on an example and Sec-

input
arrival
curve

(a) RTC
component

output
arrival
curve

input
arrival
curve

adapter
(b) Lustre
component

back
adapter

output
arrival
curve

Figure 1. From RTC analysis (a) to other analysis (b)

tion V gives conclusions and future works.

II. Lustre

We use the synchronous data-flow language Lustre [5]
to program the component to be analyzed. This is a
simple but formally defined language which is dedicated
to program embedded system or abstractions of it.

The motivation for choosing Lustre is multiple. First
it is supported by a wide variety of validation tools
such as model-checkers [11], [9], abstract interpreter [8],
testers and simulators. By connecting RTC to the Lustre
language, ac2lus opens the door to several other formal
methods and tools that were not previously available
within RTC. Second, the execution model of Lustre fits
the RTC model rather well: both are dataflow-oriented.
A Lustre program computes directly on event streams,
hence, the constraints expressed by arrival curves corre-
spond directly to properties of Lustre flows. This allows
to program the interface (adapters) with arrival curve
using the same language as the components; we use the
technique of the so-called synchronous observers [12] to
express the constraints of the arrival curve as a safety
property of an event stream. Finally, an interesting
property of Lustre is its simplicity of use. Lustre is not
only a modeling language, but also an implementation
language, that has already been successfully used to
implement large systems. We believe that the use of an
actual programming language makes the task of writing
models for components easier than other formalisms.

Lustre programs manipulate infinite streams of values.
When one writes x = y + 2; it should be read as “at
each clock tick, the value of x is equal to the value of y

plus 2”, so if the stream of values for y is 1, 5, 12, 42, . . .,
then the stream of values for x is 3, 7, 14, 44, It is
also possible to refer to past values of a variable, by
using the operator pre which means “previous value”.
Since “previous value” is meaningless at the first instant,
the operator pre has to be used together with the
“initialization operator” ->: x -> y means “x at the first
instant, and y afterwards”.

A Lustre function is called a node; it takes and com-
putes streams of values as input and output parameters.
Figure 2 shows a simple node which computes identity
on a stream of integers.

Model of a Lustre Component: to model a compo-
nent in Lustre, we naturally represent its input/output
event streams with input/output Lustre flows. As Lustre

node infinite_capacity (in_seq : int)
returns (out_seq : int)

let

out_seq = in_seq ;
te l

Figure 2. Simple Lustre Node

node gpc (in_seq : int ; in_res : int)
returns (out_seq : int ; out_res : int)

var

backlog : int ; work: int ;
empty_queue : bool;

let

−− event s to compute at the current
−− i n s t a n t (accumulated + new work)
work = in_seq -> (in_seq + pre(backlog));
−− whether we ’ l l empty the queue at the
−− current i n s t a n t
empty_queue = (work <= in_res);
−− amount o f work accumulated in the pas t
backlog = i f (empty_queue) then 0

else work - out_seq ;
−− event s produced
out_seq = i f (empty_queue) then work

else in_res ;
−− resource remaining a f t e r running
out_res = in_res - out_seq ;

te l

Figure 3. Greedy Processing Component in Lustre

programs computes a value “at each clock tick”, time is
obviously discrete. At each clock tick, a given amount of
events arrives to (resp. is output by) the component. We
do not consider individual events, but instead consider
the number of events occurrences during a clock tick.

The node in Figure 2 can be seen as the Lustre model
of a component with an infinite processing capacity: it
receives events and immediately process them.

We consider the case where event count are integers:
this model is usually called the discrete event model,
as opposed to the fluid event model where the amount
of data to process and resource can be continuous.
Extension to the fluid model would be straightforward
by replacing int Lustre flows with real.

A Common RTC Component in Lustre: to illustrate
and validate the approach, we first model well-known
RTC components in Lustre. A typical example of RTC
component is the so-called Greedy Processing Component
(GPC). It models a process that enqueues the incoming
events in a buffer and treats the events in a greedy
fashion while being restricted by the available resource.
It can be modeled in Lustre by the program in Figure 3,
while in_res represents the maximum number of events
that can be processed at this instant, and out_res the
unused resource during this clock tick.

Other examples of Lustre components, that RTC can-
not model because of states, will be given in Section IV.

III. Interfacing Lustre and RTC

In this section, we explain how to interface a Lustre
component C with RTC arrival curves. This means that

we have to transform the constraints of the input arrival
curve αin into explicit Lustre flows that complies with
those constraints; those flows will then be input into C.
On the other side, we have to express a set of explicit
flows coming out of C into constraints for the output
arrival curve αout.

In fact, for the output part, we do not directly infer
αout from the outputs of the component. We build a
candidate arrival curve and then check with a verifi-
cation tool if it conforms to the output streams. The
building for the candidate curve is done with a binary
search procedure. This method allows to apply the same
technique at the input and at the output; this choice is
mainly due to the proof engines we use which are able
to verify properties. A valuable extension to our work
would be to try a tool such as aspic [13] which is able
to infer numerical invariants on the program, from which
we could deduce αout.

The technique we use is to characterize an arrival
curve with an observer encoded by a Lustre node.
Observers do not compute a curve, but they give a yes/no
answer to the question “is the event stream compliant
with the curve?”.

The models of observers we propose are restricted to
either finite specification of an arrival curve, namely a
finite number of points specifies the curve (individual
values αu(1), αu(2), . . . and αl(1), αl(2), . . .), a piecewise-
affine function, which should be convex for lower-curve
and concave for upper-curve (i.e. αu(δ) = min{au1δ +
bu1 , a

u
2δ+b

u
2 , ...} and αl(δ) = max{al1δ−b

l
1, a
l
2δ−b

l
2, ...}),

or a combination of both. We call the individual αu(i)
and αl(i) values points, and the linear portions of curves
αu(δ) = aui δ + bui α

l(δ) = aliδ + bli segments. Figure 4
shows an example with 3 points, two segments for the
upper part, 3 points, one segment for the lower part.

10

9

8

segment: (δ + 12)/2

segment: δ + 3 segment: (δ − 2)/2

αl(δ)

αu(δ)

109876543210

7

6

5

4

3
2

1

0

#events

δ

Figure 4. An example arrival curve

In the rest of the section, we first give a generic
modeling of an arrival curve that is available for input
and output adapter, called deterministic observers. Af-
terwards, we show how to use them to actually search for
the best valid curve and describe the ac2lus tool which
performs the overall computation. We finish with some
variants for the node describing either the input adapter
or the output adapter.

A. Adapters using Deterministic Observers

In the family of synchronous languages, where the
communication between parallel components is the syn-
chronous broadcast, observers [12] are a powerful and
well-understood mechanism: an observer is a node that
observes the inputs and the outputs of another node
and computes some safety property. Here, we model the
set of event streams that satisfy an arrival curve with
a deterministic observer (see Figure 5 for the node).
The observer inputs a stream of events called sequence

and checks whether it satisfies or not the constraints
of a given arrival curve (it outputs the Boolean stream
ok). It exactly characterizes the arrival curve, by the
property: an input stream sequence satisfies the curve
iff ok remains true forever. The property to be expressed
(and the code of the node) is divided into subproperties,
one for checking compliance with the points of the curve
and one per segment to be satisfied. The last line of the

node curve_det_obs (sequence : int)
returns (ok: bool)

let

ok = ok_points (sequence) and

ok_segment_0 (sequence) and

ok_segment_1 (sequence) and ... and

(true -> pre(ok));
te l

Figure 5. Deterministic Observer

node ensures the property of permanent failure: as soon
as the arrival curve is falsified, ok remains false forever.

Deterministic Observer for Points: the part of the
arrival curve specified by the points (let us say N points)
expresses N constraints, one per time interval from size
1 to size N . The idea of the deterministic observer is
to use one counter ci per size i of interval and to check
its constraint. ci represents the amount of events that
occurred during the i previous instants. At each new
instant, it is updated by the previous value of c(i − 1)
(the number of events in the former window of size
(i− 1)) plus the amount of events that occurred at the
instant (current value of sequence). The constraint to
be verified is: for each i, ci is between αl(i) and αu(i).

The node shown in Figure 6 is the deterministic
observer for the points of the example curve of Figure 4.
The additional variables interi are used at the begin-
ning of the execution: for example, during the first two
instants, the constraint on c3 has no sense since it should
hold on interval of size 3. interi expresses the fact that
less than i instants elapsed since the beginning of the
execution. It can be computed with bounded integers
or Boolean encoding (as shown in the code), leading to
different analysis performances.

Deterministic Observer for Segments: the parts of
the curves expressed by αu(δ) = min{au1δ + bu1 , a

u
2δ +

bu2 , ...} and αl(δ) = max{al1δ − b
l
1, a
l
2δ − b

l
2, ...} can

node ok_points (sequence : int)
returns (ok: bool)

var

c1 , c2 , c3: int ;
inter1 , inter2 : bool;

let

c1 = sequence ;
c2 = sequence -> pre(c1) + sequence ;
c3 = sequence -> pre(c2) + sequence ;
inter1 = true -> false ;
inter2 = true ->pre(inter1);
ok = (0 <= c1 and c1 <= 2)
and (inter1 or (0 <= c2 and c2 <= 3))
and (inter2 or (1 <= c3 and c3 <= 5));

te l

Figure 6. Deterministic Observer for Points

be expressed as a conjunction of observers for affine
functions aiδ+ bi, where ai and bi are constant. We call
each observer a segment observer. The codes for lower
and upper segments are a bit different but both use the
common principle of the leaky bucket. We explain it for
the upper segment, and the reader can refer to [14] for
the explanation of the lower curve.

The constraints from the arrival curve expresses the
fact that the cumulated amount of events must stay be-
low the segment. We model it as a bucket, whose content
correspond to the number of events that can be emitted
in burst at the current instant. It initially contains bi
events. At each clock tick, the bucket is refilled by ai
events, and the amount of events that occurred is poured
off. After this computation, the bucket’s content must
still be within [0, bi]: if the new value is above bi, the
extra events are lost, and if it gets below 0, it means the
arrival curve is violated.

Figure 7 shows the generic code for the upper segment.
The scale factor is a constant input which is used to keep
the variables integer, while allowing ai to be rational.

node segment_observer_u
(sequence : int ; init_val : int ;

refill_speed : int ; scale_factor : int)
returns (ok: bool)
var bucket , new_bucket : int ;
let

new_bucket = (init_val -> pre(bucket))
- (sequence * scale_factor)
+ refill_speed ;

bucket = min(init_val , new_bucket);
ok = new_bucket >= 0;

te l

Figure 7. Deterministic Observer for an Upper Segment

The lower segment observer segment_observer_l is
slightly different: the bucket is initially empty, and
whenever the bucket’s content crosses bi, the property is
violated. The lower segment does not give upper bound
on the number of events, hence, emitting more events
than the bucket’s capacity is allowed, and results in an
empty bucket.

The observer for the first upper segment of the curve
in Figure 4 simply instanciates the generic observer: ok

= segment_observer_u(seq, 3, 1, 1);

The leaky bucket idea comes from the ancestor of
RTC, namely Network Calculus [15], and was already ap-
plied to the connection of RTC to computational models
in [2], which directly inspired this part. The synchronous
hypothesis greatly simplifies the implementation, which
becomes just 3 simple Lustre equations including the
property itself. Furthermore, the use of synchronous
observers here makes the combination of segments easy:
to describe a curve made of multiple segments (up
and/or low), one can simply use an arbitrary Boolean
combination of observers. Unlike [2], we do not have to
introduce an additional scheduler automaton which does
the combination by scheduling the “must emit” and “can
emit” signals emitted by different automata.

B. The analysis procedure

This paragraph explains the procedure to compute
one output arrival curve αout, given an input arrival
curve αin and a Lustre component C. Although, the
framework can handle multiple input and output arrival
curves, we explain first the procedure for one input and
one output, in this paragraph, and then extend it to
multiple inputs and outputs in the next paragraph III-C.

We first express the property that the triple
(αin, C, αout) is conformant. The building of a candidate
for αout is done using a binary-search procedure.

Checking input and output arrival curves (together):
the goal here is to validate that given an input arrival
curve αin, a Lustre component C and an output arrival
curve αout, this triple is conformant, namely: every
streams that may be output from C, when it executes
with input streams that satisfies αin, should satisfy αout.
For both αin and αout, we instantiate deterministic
observer nodes which respectively output the Boolean
streams ok_in and ok_out and we combine them to
obtain a global observer. This observer expresses the
simple property: ok = ok_in => ok_out.

Proving that the property is invariant shows that the
triple is conformant, if αin has a good shape. Indeed,
Lustre observers in general models safety properties and
the above observer expresses that at each instant t,
ok_in(t) => ok_out(t). But, the observer for αin (resp.
αout) characterizes the constraints expressed by the ar-
rival curve with: ∀t, ok_in(t) (resp. ∀t, ok_out(t)). We
thus need to express: (∀t, ok_in(t) => (∀t, ok_out(t))

which is not equivalent to the former formula in general.
However, the two formulations become equivalent if the
following three conditions are verified [12]: Permanent
failure (last line of Fig. 5), determinism of the precondi-
tion, and causality [16] (see [14] for details).

Building the output arrival curve: the tools we are
using for verification of the global model was designed
to prove properties, not to discover invariants, so a little
additional work has to be performed to compute the
output analytic description based on the input ones.
This step is based on a binary search, with an algorithm
which tries different values until it finds the best ones
which are provably correct.

Let us explain the procedure for building the points
of the curve on an example. To compute αu(4), we start
with the hypothesis αu(4) = 0, generate the observer for
this particular curve (assuming αl = 0 and αu(t) = +∞
for t 6= 4). If the curve is incorrect, we try with αu(4) =
1, and then 3, 7, (after trying value n, we try 2n + 1)
... until we find one acceptable value. At that point, we
have one provably correct value, and the previously tried
one (or just 0) which is not, and we can proceed with
a binary search between these two values. This implies
launching the proof engine log(n) times for each point
(where n is the value to be computed), but this has not
been a problem in practice.

The procedure is quite the same for building the
segments of the curve. For each segment aix+bi, the two
values ai and bi has to be evaluated. We first fix bi to
an arbitrarily big value, and perform a binary search on
ai, and then fix ai to the value just computed to find bi.
More details, and the description of some optimizations
can be found in [14]

C. The ac2lus Tool

The approach is implemented in the toolbox ac2lus.
We present here the structure of the tool, some more
implementation details can be found in [14]. From the
user point of view, one provides a component C to
analyze as a Lustre node, having any number of inputs
Ii and output Oj . For each input, one must provide an
arrival curve αi. The tool computes the curves (αout)j
for each output. The execution is done as follows.

For each Ii, the tool generates the Lustre code for
the adapters (as described in section III-A, or using
one of the variants below). Then, it generates the main
Lustre node, which instantiates the input adapters, the
component C, and the output adapters. This nodes
defines the property to verify, which is of the form
ok = (

∧
i ok_ini) => (

∧
j ok_outj).

We then start the binary search. We compute each
output independently. To compute the curve for Oj ,
we first generate stubs for each Ok, k 6= j for which
ok_outj= true, and apply the binary search algorithm
of section III-B for Oj to compute each of its points, and
optionally a segment to describe the long-term rate. The
search consists in trying values, and asking proof engines
whether the value is a correct bound or not.

We delegate the verification of the model to different
tools. The ability to deal with numerical variables is
a must-have, hence plain model-checking (enumerative
or symbolic with BDDs) is not an option. ac2lus can
currently use the abstract interpretation tool nbac [8],
and the kind [9] verifier which is based on k-induction
and uses SMT-solving. From the user point of view, both
accept Lustre programs as input, and can prove prop-
erties of the form “OK is always true”. nbac works on
an abstract domain, and cannot find counter examples,
hence its output is either “true” or “don’t know”. The
SMT solver used internally by kind actually provides
a set of values when given a satisfiable problem, hence
kind’s output is either “true” or “false with counter
example”, or can sometimes reach a timeout.

By default, ac2lus launches kind on the generated
code. If kind proves the property or finds a counter-
example, we move on to the next value to try. If kind

reaches a timeout then nbac is tried. Optionally, on
failure of nbac, we try kind -loop which sometimes give
better results.

D. Variants for Adapters

The adapter presented above has the advantage of
being applicable both for inputs and outputs. However,
this is not the only option. Some variants produce Lustre
programs with different number of variables, some non-
determinism, and yield different results in the proofs.
We give here the overall idea for each variant. The
implementation details can be found in [14].

Generator: one commonly used approach to imple-
ment an adapter for the input of a component is to
write a generator (as done in [2], [4], [7]), which instead
of telling whether an arbitrary event stream is correct,
generates a stream which is correct by construction (us-
ing non-determinism to be able to generate all possible
streams). When using a generator (if one input and
one output), the global property to prove is no longer
"ok = ok_in => ok_out", but simply "ok = ok_out".

Non-Deterministic Observer: while using observers,
another variant is to allow non-determinism in the ob-
server. In Lustre, non-determinism will be modeled with
additional inputs called oracles. With deterministic ob-
server, the property is false iff the observer outputs “OK
= false” at some point in time. With a non-deterministic
observer, the property is false iff there exist an oracle for
which the observer outputs “OK = false” at some point
in time. Such observer are obviously not convenient for
testing, since showing a trace incorrect requires choosing
an oracle, but are equivalent to deterministic observers
for formal verification when computing the output curve
(but as said above, they cannot be applied to the input).

At time t, the deterministic observer checks the num-
ber of events for all windows [t− δ, t]. Instead, the non-

deterministic observer can chose non-deterministically a
time t0 where it starts checking, and then at time t > t0,
checks only the window of time [t0, t]. For any incorrect
stream, there exists an oracle t0 for which the observer
emits “OK = false”. The advantage of this method is
that it requires only one numerical variable to count the
number of variables in the interval [t0, t].

Other Variants: in some cases, the Lustre code
generated from arrival curves can be written differently
to get better results in the proof engine. The variants we
implemented are based on a trade-off between numerical
and Boolean variables. The details are given in [4].

IV. Applications of the Framework

This section shows applications of the framework and
illustrates them on a concrete example. These applica-
tions are: Modular analysis analyzes the compo-
nents of a complex system one by one, by using the com-
puted output of the first component as the input for the
analysis of the next one; Global analysis analyzes
several components together to get better precision,
but sacrificing performance; Invariant discovery by

proving a property: in addition to computing arrival
curves for the output of a system, one can directly prove
properties on a component. With a simple binary search
algorithm, one can find the best provable bounds for any
variable of the Lustre program (for example, the buffer
fill-level).

We show that ac2lus is able to give results for these 3
applications, in cases where RTC would not be applica-
ble, or too approximate. When the proof engine is able
to conclude, the results provided by ac2lus are optimal.

The experiments were made on a dual-core, Pen-
tium D CPU running at 3.40GHz, with 2GB of RAM.

A. A Simple power-aware component

Our original motivation for this work was to be able
to model power-managed components, which cannot be
modeled and analyzed precisely in pure RTC, because
their behavior is state-based.

Figure 8 gives an example of a simple power-managed
component. It is not meant to be realistic, but illustrate
a state-based behavior: the component starts in sleep
mode, and wakes up only when its input buffer fill-level
(backlog) reaches a certain threshold. When it starts
processing, it does so according to its input resource until
the buffer is emptied.

The state of the system is modeled in the equation
for serving, which means: initially, the component is
asleep, then, if it used to be serving, it remains so
until the backlog is 0, and otherwise, it goes in service
state when the amount of work to do is greater than
threshold. The other equations are a straightforward
adaptation of the GPC component presented in Figure 3.

−− Parametrized component
node power_aware

(in_seq , resource , threshold : int)
returns (out_seq : int)
var backlog , work: int ;

serving , empty_queue : bool;
let

−− t h i n g s to do at the current i n s t a n t
−− (accumulated work + new work)
work = in_seq -> (in_seq + pre(backlog));
−− whether we ’ l l wake up
serving = false -> i f (pre serving)

then (pre(backlog) > 0)
else (work >= threshold);

−− whether we ’ l l empty the queue at the
−− current i n s t a n t .
empty_queue = serving

and (work <= resource);
out_seq = i f serving then

i f (empty_queue) then work
else resource

else 0;
backlog = i f serving then

i f (empty_queue) then 0
else work - out_seq

else work;
te l

−− I n s t a n t i a t i o n with parameters (4 , 5)
node power_aware_1 (in_seq : int)
returns (out_seq : int) let

out_seq = power_aware (in_seq , 4, 5);
te l

Figure 8. Lustre model for a simple power-aware component

The node power_aware_1 is basically an instantiation of
the previous node, setting the threshold and resource to
constant values.

Computing an Output Arrival Curve: we perform
the analysis on the input curve: αu(δ) = min{9δ, δ +
15} and αl(δ) = δ. The analysis lasts 46 seconds, and
launches kind 76 times. It gives the following result:
αuout = 0, 4, 8, 12, 16, 20, 24, 26, 27, 28, 29

αlout = 0, 0, 0, 0, 0, 2, 6, 6, 6, 6, 6

Here comes an explanation of the result on αuout: we can
see a first linear fragment up to αuout(6) = 24, which
corresponds to case where the component empties its
buffer, at the speed of 4 events per time-unit. Starting
from αuout(7), the rate decreases because the speed of the
component is greater than the rate of arrival. Hence, the
backlog is bounded, and the worst-case corresponds to
the bursts of the input at the instant when the buffer
crosses the threshold.

The result computed by the tool is optimal when
kind answers (i.e. no time-out), namely, the obtained
value is the tighter one. To explain this, let us consider

a precise example: when trying to prove αuout(10)
?
=

23, kind concluded with a counter-example, which ex-
hibits strictly more than 23 events in 10 time units.
This counter-example corresponds to the input sequence
1, 1, 1, 1, 2, 1, 1, 5, 1, 5, 1, 7, 1, 1. Hence, 23 is provably not
a valid bound, while αuout(10) = 24 is valid and thus the

optimal value. In the complete example, kind concluded
(with either true or false property) each time it was
called, so this optimality result applies to each point of
αuout and αlout, which are therefore optimal.

Notice that examining the counter-examples produced
by kind is of great help! It allows the user to better
understand the results and to find non trivial corner-
cases leading e.g. to bursts or low number of emitted
events. For example, on αlout, the tool shows that it’s
not possible to remain in sleeping mode for more than
4 time units. The point αlout(5) = 2 corresponds to an
execution where the component emits 2 events to finish
emptying its buffer, and then emits nothing for some
4 time units. kind’s counter-example for αlout(5) 6= 3
shows that this lower bound is obtained for in_seq =
2, 3, 1, 1, 1, 1, 1, which leads to out_seq = 0, 4, 2, 0, 0, 0, 0.
Even on a simple system like this example, the above
counter-example and the proof that αlout(5) = 2 could
hardly be found manually.

Comparing with RTC, it would produce very coarse
results on the same example. Indeed, it would not be
able to handle the two modes of operation and thus
could only consider the best-case and worst-case for the
availability of resources: the worst-case is the sleeping
mode, which does not compute at all, so we would get
αlout(δ) = 0,∀δ; in the other side, RTC service curves
would not forbid the scenario where the component
remains in sleeping mode, accumulating events in its
buffer, for an arbitrarily long time, and therefore emit
4 events per seconds for an arbitrarily long time after-
wards. Hence,the best we could get is αuout(δ) = 4δ.

Quantitative properties to compute bounds on vari-
ables of the system: in addition to being able to compute
output arrival curves, we can also prove properties on the
component itself, and find bounds on any of the variable
of the system. For example, to compute a bound on the
buffer, we add backlog as an output of the module, and
replace the output observer in the main node with the
equation obs_ok_out_seq = backlog <= N; By trying
different values of N, we can find which is the best bound
for backlog. On this example, a quick binary search
yields N = 13 for which the property is proved, and N
= 12 gives the counter example in_seq = 8, 9. Hence,
13 is the best possible bound on the backlog.

The proof do not need to previously compute the
output arrival curve and is very quik since it took 0,4
seconds. Notice also that RTC would not be able to get
any bound on the backlog of this system.

To sum up on the example, we got the optimal values
for αuout(δ) and αlout(δ) up to δ = 10, a bound for the size
of the buffer, and counter-examples showing that any
value more precise than the ones we computed would be
incorrect, in less than a minute, in a case where RTC
does not apply.

Comparison of different versions of the adapters:
this above experiment was performed with the default
settings of ac2lus. Using any other leads to slower
performance and/or computation of suboptimal curves,
because the proof engine fails to conclude in some cases,
as shown in the table below (see [14] for more details).

When using deterministic observers, kind appears
to be strictly better than nbac: faster, and able to
prove more properties. Conversely, when using non-
deterministic observers, kind does not prove any of
them, and nbac is the only tool giving a result.

Default (deterministic observer) 46” optimal
Non-deterministic observer 8min5” suboptimal
Generator 1min26” suboptimal
Non-deterministic observer and
generator

6min11” suboptimal

Boolean encoding of segments
disabled

2min18” optimal

B. Composing power-aware components

Approach for Analyzing Complex Systems: the way
to tackle complexity in RTC is to split a system into
multiple small components, and reduce the analysis of
the system to a set of local, simple analysis. ac2lus

inherits from this possibility: a component is modeled
with a Lustre node, having inputs and outputs, and the
components can easily be plugged together.

This can obviously be used to model a system with
several physical components, and applies particularly
well when the architecture is well pipelined. Actually,
this can also be used to model simple scheduling strate-
gies: the Lustre flows can model event streams, but
also resource units streams (denoted by β). Input flows
represent the amount of resource available during a
clock tick (β), and the output flows give the amount
of resource remaining after the modeled task has ran
(βout). A fixed-priority scheduling between N tasks can
therefore easily be represented by connecting the output
βnout to the input βn+1 of the next one (component
n having more priority than component n + 1). An
example of a fixed-priority scheduler, re-using the GPC
component defined in Figure 3 page 3, with two tasks is
written as:
node fp_scheduler (in_res : int ;

in1 , in2: int)
returns (out1 , out2: int ;

out_res : int)
var remaining : int ;
let

out1 , remaining = gpc(in1 , in_res);
out2 , out_res = gpc(in2 , remaining);

te l

The connection from a component to another can
be done in two ways. Either we compute the arrival
curves for the output of the first component, and we

apply the usual modular analysis for RTC (using a fix-
point computation for circular dependencies [17]), or
we actually connect the Lustre nodes to do a global
computation.

An Example of Two-Components System: we con-
tinue the experiment with a second load-dependent com-
ponent: if its backlog is greater than 4, the compo-
nent computes at the rate of 10 events per time unit.
Otherwise, it computes only 1 event per time unit.
The source code for this module is given in [14]. The
node load_depend_gpc is defined following the principle
of the GPC, but the incoming resource in_res is re-
placed with if (work >= threshold) then res_fast

else res_slow; in the equations .
We now consider a system composed of the two com-

ponents. Assembling the components is done in a few
lines of Lustre code:
node system (in_seq : int)
returns (out_seq : int)
var i: int ;
let

i = power_aware_1 (in_seq);
out_seq = load_depend_gpc (i, 4, 10, 1);

te l

Running ac2lus on this system, with the same arrival
curve as in the previous section for the input, we get the
output (in 10min44”):
αuout = 0, 5, 9, 13, 17, 21, 24, 25, 27, 28, 30

αlout = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

In this case, the curves are approximate: we run the proof
engine with a timeout of 10 seconds, and the results
show only the provable points of the curves, within this
timeout. In this experiment, the timeout has been

reached when trying to prove the point αuout(9)
?
= 27

(kind proves αuout(9) = 28 it if we increase the timeout
to 20). The points αlout(δ) = 0 are provably the best
points for δ ≤ 4, but the next points are approximate
(and indeed, disappointing since the tool could not prove
anything here).

Another option is to run the analysis in a modular
way: first, analyze power_aware_1, get the output ar-
rival curve, and use this arrival curve as input for the
local analysis of load_depend_gpc. This approach gives
different results:
αuout = 0, 6, 10, 14, 18, 22, 26, 28, 80

αlout = 0, 0, 0, 0, 0, 1, 4, 5, 0

The results are exact bounds given the input arrival
curve up to δ = 7, and are approximate afterwards.

Performance-wise, the first points of the curves are
computed much faster when using the modular method:
computing the first 5 points takes 8 seconds modularly,
and 34 seconds when done with the global approach.
The complexity grows linearly with the number of com-
ponents of the system.

The approach is flexible and allows multiple ways to

analyze the same system. Obviously, since each analysis
give a valid bound, the min/max of all analysis is also
valid and may give better bounds. For the example, com-
bining both results, and applying subadditive closure, we
get: αuout= 0, 5, 9, 13, 17, 21, 24, 25, 27, 28, 30

αlout= 0, 0, 0, 0, 0, 1, 4, 5, 5, 5, 5

C. Evaluation and Comparison

Apart from obtaining output arrival curves, the
above experiments show that: the tool provides counter-
examples which enable subtle understanding of the sys-
tem; quantitative or logical properties can easily be
expressed and directly analyzed with the tool; many
strategies of the tool can be tried to obtain the tightest
results.

Compared to [2], the closest approach to our work,
component can be easily written and extended. For
example, the fixed-priority scheduler is just 2 lines of
Lustre, while the model with Timed Automata is far
less trivial. Both tools use exact model-checking (we use
abstract interpretation through nbac as a fall-back when
kind fails). When the analysis succeeds, they both give
the same result. But on both sides, the proof may be
too long, and may have to be stopped with a timeout,
leading to imprecision. The bottleneck is therefore the
performance.

To the best of our knowledge, there exist no com-
prehensive benchmark for the problem we are solving,
hence, we can compare only with a few examples, usually
chosen to perform well with the tool they benchmark.

We tried the case study of [2] on ac2lus, but it showed
bad results: we are able to compute a few points of the
curves, but not enough to get relevant results, and the
long-term rate ac2lus computes is over-approximated
by a factor of 2 (the proof fails with a timeout for the
actual long-term rate). Our interpretation of these bad
results is that our model uses large timing constants (we
wrote the model with a timing granularity of 1ms), and
the number of variables we use is proportional to the
order of magnitude of numerical constants. Uppaal, used
by [2], uses an efficient symbolic encoding of time (based
on zones), and doesn’t suffer from this.

On the other hand, our experiments with timed au-
tomata and RTC [4] showed that the performance of
the analysis was proportional to the order of magnitude
of counters (since counters are managed enumeratively
by Uppaal). ac2lus and the underlying model-checkers
are far less sensitive to this. For example, we tried
multiplying all the constants of the model (and arrival
curves) of the system of section IV-B by 20 and re-
run the analysis, which took 44min instead of 6min11
(dividing the result by 20 yields the same result as the
initial one). The performance degradation is here less
than linear with respect to the size of counters (this

is partly due to the number of iterations of the binary
search). With an enumerative algorithm, we would pay
a factor 20 in four places: the generator, each of the two
components, and the observer.

V. Conclusion

We presented ac2lus, a new combination of the RTC
framework with the Lustre language. It allows to model
the system to be analyzed (or parts of it) as Lustre
components with inputs specified with arrival curves; the
tool can compute output arrival curves using modular
analysis or global analysis and it can also evaluate some
quantitative property on any variable of the components.
As other RTC interfacing techniques [2], [7], [3], this
results in a considerable increase of the expressiveness
of the framework, essential to model power-managed
components, while keeping the modular aspect of RTC.
Nevertheless, compared to them, ac2lus complements
the state of the art by allowing a wider variety of modern
methods to be used, namely Abstract Interpretation and
SMT-solving. As a side effet, we believe that the use of a
synchronous programming language makes easy for the
user to write models, and allows a lot of variants of the
adapters to fine-tune the performances.

In the future, we plan to try other verification tools
as alternatives to kind and nbac. The tool aspic [13]
sounds promising. It adds acceleration techniques to
abstract interpretation, which should apply to the Lustre
code we generate for adapters. Also, aspic does not only
prove properties, but it is also able to discover invariants.
This could allow us to get rid of the binary search, and
launch the tool only once to compute a value.

An interesting application of ac2lus would be to con-
sider the counter-examples provided by the proof engines
for the last points which fails during the binary search.
These counter-example exhibit an execution for which
the computed bounds (αu, αl) are actually reached.
These executions can be interesting for diagnosis, and
could also be used to generate test-cases for the actual
system, since they exhibit corner-case behaviors, hardly
reproducible randomly or manually.

Our long term goal is to be able to actually handle
energy: handling state-based behavior in RTC allows
proving timing properties on energy-aware systems, but
still gives no information on energy consumption.

Finally, we are looking for alternatives to RTC’s ar-
rival curves to model abstraction of event streams. After
introducing state-based behaviors in the components, we
believe the next, logical step is to introduce the same in
the interfaces between components.

References

[1] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time
calculus for scheduling hard real-time systems,” in IS-
CAS, 2000.

[2] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-
time analysis and timed automata: A hybrid method for
analyzing embedded real-time systems,” in EMSOFT,
2009.

[3] “Cats tool,” 2007, http://www.timestool.com/cats.

[4] K. Altisen, Y. Liu, and M. Moy, “Performance evalua-
tion of components using a granularity-based interface
between real-time calculus and timed automata,” in
QAPL, 2010.

[5] J.-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and
E. Pilaud, “Outline of a real time data-flow language,”
in RTSS, 1985.

[6] S. Künzli and L. Thiele, “Generating event traces based
on arrival curves,” in MMB, 2006.

[7] L. T. Phan, S. Chakraborty, P. Thiagarajan, and
L. Thiele, “Composing functional and state-based per-
formance models for analyzing heterogeneous real-time
systems,” in RTSS, 2007.

[8] B. Jeannet, “Dynamic partitioning in linear relation
analysis. application to the verification of reactive sys-
tems,” Formal Methods in System Design, 2003.

[9] G. Hagen and C. Tinelli, “Scaling up the formal verifi-
cation of Lustre programs with SMT-based techniques,”
in FMCAD, 2008.

[10] L. Morel, J.-P. Babau, and B. Ben-Hedia, “Formal mod-
elling framework of data acquisition modules using a
synchronous approach for timing analysis,” in WRT-
P/RTS, 2009.

[11] N. Halbwachs, F. Lagnier, and C. Ratel, “Program-
ming and verifying critical systems by means of the
synchronous data-flow programming language lustre,”
Transactions on Software Engineering, 1992.

[12] N. Halbwachs, F. Lagnier, and P. Raymond, “Syn-
chronous observers and the verification of reactive sys-
tems,” in AMAST, 1993.

[13] L. Gonnord and N. Halbwachs, “Combining widening
and acceleration in linear relation analysis,” Lecture
Notes in Computer Science, 2006.

[14] M. Moy and K. Altisen, “ac2lus: Bringing SMT-solving
and abstract interpretation techniques to real-time cal-
culus through the synchronous language lustre,” Ver-
imag, Tech. Rep. TR-2010-2, 2010.

[15] J.-Y. Le Boudec and P. Thiran, Network Calculus.
Springer Verlag, 2001.

[16] K. Altisen and M. Moy, “Arrival curves for real-time
calculus: the causality problem and its solutions,” in
TACAS, March 2010.

[17] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic
dependencies in modular performance analysis,” in EM-
SOFT, 2008.

