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On two variations of identifying codés
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binstitut Fourier UMR 5582, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Héres, Egan

Abstract

Identifying codes have been introduced in 1998 to modet{adetection in multiprocessor systems. In this
paper, we introduce two variations of identifying codes:alweodes and light codes. They correspond
to fault-detection by successive rounds. We give exact 8etdior those two definitions for the family of
cycles.
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1. Introduction

Identifying codes are dominating sets having the propéayany two vertices of the graph have distinct
neighborhoods within the identifying code. Also, they carulsed to uniquely identify or locate the vertices
of a graph. Identifying codes have been introduced in 19¢Blinto model fault-detection in multiprocessor
systems. Numerous papers already deal with identifyings¢ske.g.[13] for an up-to-date bibliography).

A multiprocessor system can be modeled as a graph wheree®idre processors and edges are links
between processors. Assume now that at most one of the parsés defective, we would like to locate it
by testing the system. For this purpose, we select someggorse(constituting the code) and have them test
theirr-neighborhoodd . the processors at distance at mgstThe processor sends an alarm if it detects a
fault in its neighborhood. We require that we can, with thesgwers, tell if there is a faulty processor and,
in this case, locate it uniquely. This corresponds exaotfinding an identifying--code of the graph of the
system.

Assume now that a processor can restrict its tests tonighborhood foi € [0,7]. Then, we can
have a detection process by rounds: at the first step, thetselprocessors test th@ineighborhoods, then
they test theiil -neighborhoods, ..., until theneighborhoods. We stop the process when we can locate the
faulty processor. We introduce in this paperakr-codesresp. lightr-code$ that will model this process
without memoryj.e. to identify a faulty processor at the roufidhe supervisor does not need to remember
the collected information of the roungs< i (resp.with memoryi,i.e. to identify a faulty processor at the
rounds, the supervisor needs to remember the collected informatidhe roundg < ) and study them
for the family of cycles.

Let us give some notations and definitions. We denoté&by (V| E) a simple non oriented graph
having vertex seV” and edge seF. Letz andy be two vertices ofy. Thedistanced(z, y) between: and
y is the number of edges of a shortest path betweandy. Letr be an integer. Thball centered on: of
radiusr, denoted byB,.(z) is defined byB,.(z) = {y € V | d(z,y) < r}.

An r-dominating sebf G is a subseC C V such thatU.cc B, (c) = V. This means that each vertex
of G is at distance at mostof a vertex ofC. We say that a subsét C V' r-separates andy if and only
if B.(x) N C # B,(y) N C (we will also say in this case that‘andy are separated by for radiusr” or
that “x is separated from by C for radiusr”). A setC r-identifiese if and only if it »-separates from all
the other vertices.
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(1) Identifying r-code. An identifyingr-codeof G is anr-dominating set”’ C V thatr-identifies all the
vertices:

Ve e V\Vy#xz€V,B.(z)NC #B,(y)NC

(2) Weakr-code. A weakr-codeof G is ar-dominating seC C V such that each vertexis r,-identified
by C for some radius, € [0, ]:

Ve e V,3r, € [0,r],st.Vy £z €V,B, (x)NC# B, (y)yNnC

(3) Light r-code. A light r-codeof G is ar-dominating seC C V such that each pajr, y) of vertices is
rzy-Separated b¢' for some radius,, € [0, r]:

Ve e V,Yy #x € V,3ry, € [0,7],st. B, (x)NC # B, (y)NC

Figure 1 gives an example of a weakcode of P; (elements of the code are in black, as in all the
figures). Indeed, verticas, andv, are identified for radiu8, verticesv, andvs are identified for radius
and vertex; is identified for radiu®. But this code is not an identifyingrcode of P5: verticesvs, vs, vy
andvs are not separated for radigsFigure 2 gives a light-code of P; which is not a weak-code: vertex
vo IS separated from vertex only for radius0 and for this radius, vertex is not separated fromy.

oO—O0—e—e—O e—O0o—O0—O0—e
V1 Vo VU3 (o Vs U1 V2 U3 V4 Us
Figure 1: A weak 2-code that is not an identifyiRgcode Figure 2: A light2-code that is not a wedk-code

A code(C is said to beoptimumif its cardinality is minimum. We denote biC..(G) (resp. WC,.(G),
LC,(@)) the cardinality of an optimum identifyingd€sp. weak, light)r-code. An identifyingr-code is
a weakr-code and a weak-code is a light-code. This implies the following inequalitylC, (G) >
WC,.(G) > LC,.(G). For all graphs and for any, there exits a weak-code and a light-code (using for
instance all the vertices as the code), whereas this isumefdr identifying codes.

Let us now give some bounds for weak codes.

Theorem 1. Letr andk be two integers and,- (k) be the maximum order of a gragh such that has a
weakr-code of sizé:. We have:
wy (k) =k +7(2F - 2)

Proof

First, we construct a grapt® in the following way (see Figure 3 for= 4 andk = 3). The graph{* has
vertex setC U I; U ... U I whereC = {1, ..., k} andI; has siz&* — 2 for1 < j < r. Each vertex of/;
corresponds to a non-empty strict subsefbf..., k}. Each vertex of/; is linked to the vertices of' that
form its subset, and each vertexffor j > 1 is linked to the vertex of;_; that corresponds to the same
subset. Furthermoré€; induce a clique inf*. The graphi* has ordet + r(2* — 2) and one can check
thatC is a weakr-code of H (a vertex ofl; is identified for radiug). Sow, (k) > k + r(2* — 2).

Now let G be a graph and’ be a weak-code sizek of G. Let us try to maximize the number of
identified vertices for each radius< r.

e For radiud), only thek vertices ofC' can be identified.

¢ For radiusl, at most2* additionnal vertices can be identified (one for each subisét)oHowever,
it is not possible to have all the subsets. Indeed, all theetes of{ B1(c) N C' | ¢ € C'} cannot be
used to identify a vertex not i@ for radiusl.
If 2¥ —1 additional vertices are identified at radiyghat means thdtB; (c)NC|c € C} contains only
one element, which is necessarily the wholeefThen all the strict subsets ¢1, ..., k} are used



to identify a vertex for radiug, in particular, one vertex is identified by the emptyset amésanot
1-dominated byC'. As the set”’ must be an-dominating set, then > 2. Furthermore, if we try to
add a new vertex in G, then necessarily3; (z) NC = C andz will not be identified for any radius.
So,G has ordek + (2F — 1) andr > 2. A contradiction with the bound,.(k) > k + 2(2F — 2) for
r > 2, given by the construction of the graph. It follows that at mose* — 2 additionnal vertices
are identified for radiug in G.

e Forradiug2 < i < r, using a similar process, we can show that at rabst 2 vertices are identified
at roundk.

Summing the number of identified vertices at each round, vi@othatG has order at mogt+ (2% —
2). It follows thatw, (k) = k + r(2% — 2).
]
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Figure 3: The grapti{§ — Extremal case for a graph with a wegdcode of size3

Light r-codes are related to other locating notiondight 1-codeis a 1-locating dominating codgr]
for which we require that only pairs of vertices not in the e@dlel-separatedby C. The notion of light
r-codes is a generalization of the notion of metric basis. BsstC' of vertices is anetric basisf every
pair of vertices of the graph is separated by a vertex &br some radius (there is no bound on the radius).
Themetric dimensiowf a graphz, denoted bylim(G), is the cardinal of a minimum metric basis. A light
r-code is a metric basis, sbC,.(G) > dim(G). If r is greater than the diameter 6f, i.e. the largest
distance between two vertices@f then a light--code is exactly a metric basis. For a detailed review about
metric basis, see [6]. As for metric basis, we do not have dimohds of the extremal size of a graph that
has lightr-codes of sizé:.

The optimization problems of finding optimum identifyingdees [5] and optimum metric bases [12] are
NP-complete. Finding optimum light codes is also NP-coreplecause if is larger than the diameter of
the graph, then it is equivalent to metric bases. Therefdesntifying codes and metric bases have been
studied in particular classes of graphs (seg[2, 3, 4, 9]).

For cycles, although metric bases problem in cycles is rfbitdlit (the dimension of a cycle i8), the
case of identifying codes is not as easy: the complete sttidyabes has just been finished in [10] after
numerous contributions (seeg.[1, 8, 14]). We focus on the case of weak and ligttodes.

In this paper, we give exact value forC,. (Section 2) and.C,. (Section 3) for the class of cycles. In
weak codes, we assign a radius to each vertex to separapdeniofher vertices whereas we can assign up
tor + 1 radii to a vertex with light--codes. We show thatradii per vertex is actually sufficient to separate
it from all the other vertices. We adress in Section 4 the tjpe®f the optimum size of a code requiring
only 2 stored radii per vertex.

2. Weakr-codes of cycles

In the following, we will denote byC,, the cycle of sizen and by {vg,v1,...,v,—1} the set of its
vertices. We first assume that> 2r + 2.



Lemma 1. LetS be a set oRr + 2 consecutive vertices dh,. If C' is a weak--code ofC,,, thenS contains
at least two elements ¢f.

Proof
Without loss of generalitys = {vg, v1, ..., v2,41}. AssumeS contains a single element of the code, say
a=v; ,w.lo.g.i <r (see Figure 4).

Vo Vi Ur—1 Uy Ur41 V2r41
-O01+0O0----- O ==-@—8—@============ --
a r Yy =z

Figure 4: Notation of the proof (Lemma 1)

We focus on the vertices = v,_1, y = v, andz = v,;. Then,B,.(y) C S andB,(z) C S. Let
t=d(a,y) =r —i.

Forallr’ € [0,t—1], B, (y)NC = B (2)NC = . Forall?’ € [t+1,r], B, (y)NC = B (2)NC =
{a}. Hencer, = r, = t. It follows thatB,(y) N C = {a} must be different fromB;(x) N C. Hence,
B (xz) N C must contain an element different framsayb. Necessarilyh ¢ S, this impliest = r andz is
notr-dominated, a contradiction. O

A first bound ofWC:,.(C,,) directly follows from Lemma 1:
Corollary 1. LetC be a weak-code ofC,,. Then|C| > [n/(r + 1)].

Proof

InC,, there aren different setsS of 2r + 2 consecutives vertices. f is a weakr-code, by Lemma 1, there
are at leas? vertices of the code in each sg&t Each vertex of the code is counted exaétty+ 2 times, so
IC] = [2n/(2r +2)] = [n/(r +1)]. o

In the following, we seth = (2r + 2)p+ R, with0 < R < 2r + 1 andp > 1 (by assumptiony > 2r + 2).
Then Corollary 1 can be reformulated asCifis a weakr-code ofC,,, then we have

e if R=0,then|C| > 2p;
e if l<R<r+1,then|C|>2p+1;
o if r+2 <R <2r+1,then|C| > 2p+ 2.

Lemmas 2 to 4 give some constructive upper bounds. Morebgermas 2 to 5 provides exact values
of WC,.(Cy,).

Lemma 2. If n = (2r + 2)p, thenC,, has a weak-code with cardinality2p = n/(r + 1); moreover, this
code is optimum.

Proof
We construct the code by repeating the pattern depicted diyr&i5. More precisely, lef = {v; | i =
r[2r+2]ori = r+1[2r+2]}. The seC has cardinalitp. The set” r-dominates all the vertices 6f,.
Letr,, =r—kif k € [0,r] andr,, =k — (r+1)if k € [r + 1, 2r + 1] (the indices of the vertices df,
are taken modul@r + 2). Then for all pair of verticesy, v;, k # 1, we haveBT% (vp)NC # B.,, (u)NC.
HenceC is anr-dominating set that,, -identifies the vertex;,. It follows thatC' is a weakr-code. This
code is optimum by Corollary 1. Figure 6 gives an example ohsacode irC;,.

a

We can easily extend this construction to the general case:

Lemma 3. If R = 1, thenC,, has a weak-code with2p + 1 elements. I2 < R < 2r + 1, thenC,, has a
weakr-code with2p + 2 elements. These codes are optimumAce 1 or R > r + 2.
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Figure 6: An optimum weak 2-code Gfi o Figure 7: An optimum weak 2-code Gfi3

Proof

LetR=1andC ={v; |i=r[2r+2]ori=r+1[2r+2]} U{v,_1}. ThenC is a weakr-code ofC,,
and|C| = 2p + 1. (See Figure 7.)

Assume now thaR > 1 and take for cod€' = {v; |i =r[2r +2]ori=r+ 1[2r+ 2]} if R>r+2and
C={vli=r2r+2]ori=r+1[2r+2]}U{v,—_2,v,-1} otherwise. Ther is a weak--code ofC,,. O

In some cases, the aforementioned codes are not optimum:

Lemma 4. If (r, R) = (1,2), thenC,, has an optimum weakcode of cardinalit@2p+ 1. If (r, R) = (2, 2),
thenC,, has an optimum weékcode of cardinality2p + 1.

Figure 8 tesp. Figure 9) shows an example of an optimum weagode for(r, R) = (1,2) (resp.
(r,R) = (2,2)).

v Vs V2
O ) U1 ° U3
Vo / . V3 . N
. o o Q
V9 O ® U4 Vo @ O V4
o O . y
Vg . Vs Q. O
o @ v7 ° Us
U7 Ve Vg
Figure 8: An optimum weak 1-code 6fo Figure 9: An optimum weak 2-code 6

Proof

For (r, R) = (1,2), the setC = {v; | i = 0]2]} is a weakl-code: each vertex in the code i9-identified
by C and each vertex not in the code ig-identified byC'. For (r, R) = (2,2), the setlC = {v; | i = 0 [6]
ori =2 [6]} is a weak2-code. The optimality of these codes is shown by Corollary 1. |

The next lemma shows that the lower bound of Corollary 1 isshatrp for2 < R < r + 1 and
(r,R) # (1,2) or (2, 2), this implies that in these cases, codes of Lemma 3 are optimu



Lemma5.1f2 < R < r+4+1land(r,R) # (1,2) or (2,2), thenC,, does not have a weakcode of
cardinality 2p + 1.

Proof
Assume that there is a weakcodeC of C,, of cardinality2p + 1. First, observe:

(0.1) In a set ofR consecutive vertices @f,, there must be at most one vertextf Otherwise, in the rest
of C,,, there are at mofp — 1 vertices of the code in a set (#r + 2)p consecutive vertices which
contradicts Lemma 1. In particular there is no pair of consiee vertices ofC.

(0©.2) For similar reasons, in a setdf+ 2 + R consecutive vertices @f,, there must be at mo8tvertices
of C.

Let M be the maximum size of a set of consecutive vertices nétamd letS,; be a set of\/ consec-
utive vertices not irC. We know by (O.1) that\/ > R — 1. MoreoverM > 1;indeed, ifM = 1, then
R = 2 and the code is exactly one vertex over 2|Gp= 5 = 2p + 1,n = 4p + 2 and(r, R) = (1,2).

Let us denote; andc, the two elements of the code boundifig, let S; andS; be the two maximal
sets of consecutive vertices notdhwho are before; and afterc,, and finallycy andes the two vertices
of the code who are beforgy and afterS; (see Figure 10).

S Sm So
S — l ¢ - 000---- I — -
Co C1 Ty z C2 C3

Figure 10: Notation of the proof (Lemma 5)

e Observe thap > 1, soC has cardinality at leagtand observe by (O.1) th&t andS; are not empty.
Hence, the elements, ¢», c3 may be supposed distincts and so on for elements; andc,, but
note thatcy andcz may denote the same vertex.

e Observe by (O0.1)thafs;| > R—1,|S2| > R—1, M > R— 1. Let us denot& the setS; U {c;} U
Sy U {CQ} U Ss.

e Observe thatS| > 2r + 3. Indeed, ifcy andcz are different vertices, thefrg} U S U {c3} is a set
with 4 vertices of the code, so, by (O.§| +2 > 2r+2+ R > 2r +4. If ¢y andc; denote the same
vertex, thenS U {c3} =V (C,),p=1and|S|=n—-1=2r+1+ R > 2r+3.

So there are three consecutive vertigeg, z in S such thaf B, (x) U B, (y) U B.(2)} N C C {¢1,c2} and
y € Su-

To separatg andz, r, must bed(z, c1) ord(y, c2). To separatg andz, r, must bed(y, c¢1) ord(z, cz).
Therefore, either, = d(z,c1) = d(z,¢2), orry = d(y,c2) = d(y, c1). In all casesM is odd andy is the
middle element o6/, sod(y,c1) = d(y, c2). As M # 1thenM > 3 and(z, z) € Sy x Sy

Let d, denoted(y,c1) in the following. Letw be the vertex just before. ThenB,(w) N C C
{co, c1, c2}. To separate from y, r, must bed(y, c2) = d, ord(z,¢1) = dy, — 1. To separate from w,
ry must bed(w, ¢1) = dy, — 2 ord(x, c2) = dy + 1 or d(w, co). Necessarily, we have, = d(w, co). This
implies d(w, ¢p) = r becausel(w,co) = d(z,¢c0) —1 > r andr, < r. Sinced, < r andr, = d, or
ry = d, — 1. Itfollows r, = d, = r. ThereforeM = 2r — 1, |S;| = 1, and finallyR = 2. With similar
arguments for, we obtain the situation depicted by Figure 11.

S

———m—{@o—m&o ————— %—m———

O €LY, wry 2z €2 €3

Figure 11: The set§1, S2 and S, after some deductions

Consider(r, R) # (1,2) or (2,2) andR = 2, thenr > 3 and soM > 5. Letv; andwv, be the two
consecutive vertices ifiy; following ¢; (see Figure 11). We havwvs, co) = M —1 > r andd(vy,ce) > r



sowv; andwvy can only be separated by elements of the code on the left ahdv,. Letr,, be the radius
that identifiesy;. There must be an element of the code at distance exagtlyf v, to separate;, andwvs,
and for similar reasons, there must be an element of the datistancer,, + 1 of v; to separate; from
c1. This implies that two elements of the code are consecwigdges inC,,, which contradicts (0.1).0

We are now able to comput&C,.(C,,) for all n > 2r + 2. Our results are summarized in the following
theorem:

Theorem 2. Letr be an integer aneb = (2r 4+ 2)p + R, with0 < R < 2r 4+ 1 andp > 1, we have:

i) if R =0, thenWC,(C,) = 2p,
i) if R=1orifr <2andR = 2, thenWC,.(C,) = 2p+1,
i) otherwise,R > 2 and(r, R) # (1,2) or (2,2), thenWC,.(Cy,) = 2p + 2.

The following lemma completes the study for the small cases:
Lemma 6. Letr andn be integers witt8 < n < 2r + 1, thenWC,.(C,,) = 2.

Proof

The code cannot be a single vertex, otherwise its two neigrdre not-separated for any soWC,.(C,,) >
2. Two adjacent vertices form a weaicode for any-, soWC,.(C,,) = 2. Note that ifn is odd, the antipodal
vertex to the code in the cycle is identified by the empty set. o

3. Light r-codes of cycles

We now study lightr-codes of the cycl€,,. In this section, we will first assume that> 3r + 2 and
we will study the small values of at the end of the section.

Lemma 7. LetC be a lightr-code ofC,, andc an element of”. There is another element of the cadet
distance at most + 1 of c.

Proof

Let 2 andy be the neighbors af. As C'is a lightr-code, there is an integey,, such thab < r,, < and
B,,, ()N C # B, (y) N C. There consequently exists a vertéxc C such that, w.l.o.gs’ € B, ()
andc ¢ B, (y). Moreoverc # ¢’ becausel(z,c) = d(c,y) = 1. It follows thatd(c’,c) < d(c,z) +
d(z,e) <rgy+1<r+1. O

Lemma 8. Let S be a set o8r + 2 consecutive vertices ah,. If C'is a lightr-code ofC,,, thenS contains
at least two elements ¢f.

Proof

Let C be a lightr-code ofC,,. Let us assume there is a $ebf 3r + 2 consecutive vertices @f, containing
only one elementof C. w.l.0.g., we denot& = {vg, v1,. .., v3.41} ande = v; with i < 2r. By Lemma 7,
there is an element at distance at most+ 1 of c. Butc’ ¢ S so necessarily € {v_1,v_2,...,v_11)}

andi < r. Thenws,.11 is notr-dominated by any element 6f, a contradiction. O

It follows from Lemma 8:
Corollary 2. LetC be a lightr-code ofC,,. Then|C| > [2n/(3r + 2)].

In the following, letn = (3r + 2)p + Rwith0 < R < 3r + 1 andp > 1 (by assumptiong > 3r + 2).
Then Corollary 2 can be reformulated ascifis a lightr-code ofC,,, then we have

e if R=0,then|C| > 2p,
e if 0 <2R < 3r+2,then|C| >2p+1,
e otherwise2R > 3r + 2, and|C| > 2p + 2.

We want to exhibit some optimum codes.



Figure 12: The patters for a lightr-code in the cycle€ (s, ), With p > 1

Lemma 9. If n = (3r+2)p, thenC,, has a light--code with cardinality2p. Moreover this code is optimum.

Proof

We construct the code by repeating the pattgfepicted by Figure 12. More precisely, Bt= {v; | i =
r[3r+2]ori = 2r+1[3r+2]}. SetC is ar-dominating set of sizep and we just need to check that every
pair of vertices is separated I6yfor some radius iff0, r]. Itis sufficient to prove it for all pairév;, v;) in
the patternS, i.e. with (4, j) € [0,3r 4 1] x [0, 3r + 1]. W.L.o.g. we study the case< j, and we define
ri; as follows:

if j <r, thenry; =r — j;

if i <r <y, thenry; =|(2r+1) —j|;
if r <i<2r thenr;; =i—r;

if i > 2r+1,thenr;; =i — (2r +1).

Then,0 < r;; < randitis easy to check thét;, v;) is r;;-separated by’. SoC' is a lightr-code ofC,,
with cardinality2p. This code is optimum by Corollary 2. |

We generalize this construction:

Lemma 10. If 1 < R < r + 1, thenC,, has a lightr-code of cardinality2p + 1. If R > r + 1, thenC,, has
a light r-code of cardinality2p + 2.

Proof
Consider the three following cases: @) [1,7+1], (2) R € [r+2,2r+2],and (3)R € [2r+3,3r+1].
For each case, we define the cadas:

(1) C={vi|i<@r+2)pi=r[3r+2]ori=2r+1[3r+2]}U{vsro)p)
(2 C={vi|i<@Br+2)pi=r[3r+2]ori=2r+1[3r4 2]} U{vEr42)p VEr+2)psr )
B) C={vi|i<@Br+2)p,i=r[3r+2]ori=2r+1[3r+4 2]} U{v@Er42)ptr Var+2)ptar

These sets are lightcodes of cardinalitp + 1, 2p + 2 and2p + 2, respectively. o
Lemma 11. If R > r + 1, thenC,, has no lightr-code of cardinality2p + 1.

Proof
Assume that there is a codéof cardinality2p + 1. First observe that in a sétof R consecutive vertices,
there is at most one element of the c@deOtherwise, there will be onlgp — 1 elements of the code in the
rest of the cycle which can be divided indisjoint sets of siz&r + 2. One of this set will have only one
element of the code, a contradiction by Lemma 8.
Now, take an elementof the codeC, by Lemma 7 there is a vertek of the code at distanaé < r + 1 of
c. Take the sef of all vertices between andc’, ¢ andc’ included. S has cardinality at most+ 2 < R
and has two vertices @f, a contradiction.

|

Our results are summarized in the following theorem:

Theorem 3. Letr be an integer aneb = (3r 4+ 2)p + R, with0 < R < 3r + 2, andp > 1, we have:

i) if R=0,thenLC,(C,) = 2p;
i) if R<r+1,thenLC,.(C,) =2p+1;
iii) otherwise,R > r + 1 and thenLC,.(C,,) = 2p + 2.



Theorem 3k (resp. 3-ii, 3-iii ) follows from Lemma 9 fesp. Corollary 2 and Lemma 10, and from Lemmas
10 and 11).

The next lemma completes the study for the small values of
Lemma 12. Letr andn be integers witt8 < n < 3r + 1, thenLC,(C,,) = 2.

Proof

A light r-code cannot be a single vertex otherwise the neighborseoEament of the code are not
separated for any Two adjacent vertices form a lightcode for anyn < 2r + 2. Forn > 2r + 2, take
two vertices at distance+ 1. a

With light r-codes, we can assign up+tot 1 radii to a vertex to separate it from all the other vertices.
Actually, for cycles, we just need three radii:

Proposition 1. Let C be a lightr-code ofC,, andx be a vertex of,,. Assume that > 2r + 1. There is
a subsetR,, of [0, r] of size at mos38 such that for all other verticeg of C,, there isr,, € R, such that
B, (x)NC # B,,, (y)NC.

Proof
Without loss of generality, we can assume that vg.

Assume first that there exist two vertices of the code, ®say v; andb = v;, such that-r < i <
0<j<r(fzeC, thenwe havee = b = z). ThusR, = {d(z,a),d(z,b)} separates from all the
other vertices: vertices andv;, are separated for radiu§x, a) if 0 < k < n/2 and for radiusi(z, b) if
-n/2<k<0.

Otherwise, letz = v; be the element of the code closestzto We can assume that< ¢ < r. By
Lemma 7 we know that there exists another element of the kede; such that < j andj —¢ < r + 1.
Thenz is separated from all vertices not BB (a) by radiusi, and from all vertices im3;_1(a) by radius
i — 1. It remains one vertexy;, that is separated fromfor radiusd(vs;, b) < r. Finally the three radii,
i — 1, d(va;, b) are enough to separatdrom all vertices. O

This proposition leads to the following question: what is flive of an optimum light-code orC,, that
need to assign onl¥ radii to each vertex? We solve this question in the nexteecti

4. Codes with 2 radii

A (2,0, r])-codeC of a graphG is a subset of vertices @¥ thatr-dominates every vertex and such
that for each vertex, we can assign a s&, = {r,, ..} ofintegers in[0, ] such that every pair of distinct
vertices(x, y) is r,, or r,-separated by’

Lemma 13. Letk = |(r +1)/3]| ands = 3r — k + 2. If s dividesn, then the code defined by repeating
the patternS depicted by Figure 13 is &2, [0, r[)-code ofC,,.

Figure 13: The patters for a (2, [0, r])-code of the cycle&,, with n multiple of s (cf. Lemma 13)

Proof

We focalize on a patterf. Denote byc; ande; the two vertices of the code ¢f and assume that = .
Thency = v,._k41 and the vertices aof' are the vertices between ,. andvsy,-_x1. Partition the vertices
of S in five subsets:4; = {v_,,...,v_p_1}, Ao = {v_k,...,v_1}, As = {vo,. .., Vp—gt1}, Ag =
{Vp—k+t2, - Urp1} @NdAs = {vy12,...,02—k+1}. If r = 1, thenA, and A4 are empty; ifr = 0, then
As is non empty and the other sets are empty.aLbé a vertex of5. Let R, the set of radii associated 10



if x € Ay, thenseR, = {d(x,c1),d(z,c1) — 1};
if x € Ag, then seR, = {d(x,c1),d(z,c2) — 1};
if x € A3, then selR, = {d(z,c1),d(z, c2)};

if x € Ay, thenseR, = {d(x,c1) — 1,d(z,c2)};
if x € As, then seR, = {d(x,c2),d(z,c2) — 1}.

One can check tha&k, C [0,r] in all cases. By symmetry, we just need to check that evergxerof
A; U As U Az is separated from all the other vertices for a radiug jn

If z € Ay, thenz is separated from the vertices notfy, .,)(c1) for radiusd(z, ¢;) and from the
vertices iNBy(, .,)—1(c1) for radiusd(xz,c;) — 1. Remains the vertey at distanced(z, c;) of ¢;. If
z=v_,Wthk+1<i<r theny=v;andd(y,co) =r—k+1—-i<r—-2k<k+1<d(z,c1)by
definition of k. Notice thatd(x, cz) > d(x, ¢1), SOz andy are separated for radidéz, c;).

If z € Ay, thenz is separated from the vertices notfy, .,)(c1) for radiusd(z, c¢;) and from the
vertices inBy ;. .,)—1(c1) for radiusd(z, co) — 1. That covers all the vertices of the cycle.

One can check by the same kind of arguments:ithatA; is also separated from all the other vertices
for d(z, c1) ord(z, ca). |

Lemma 14. LetC be a(2, [0, r])-code of,,. LetS be a set o = 3r—k+2 vertices withk = | (r+1)/3].
ThenS contains at least two vertices 6f.

Proof

Forr = 0, the lemma is true as all the vertices mustObdominated. The lemma is also true for= 1,
as a(2, [0, 1])-code is a lightl-code. Now, let- > 2. Notice that3r — k + 2 > 2r, thusS contains at
least one vertex af’. By contradiction, assume thétcontains only one vertexof C, and w.l.0.g. assume
c = vg. Letv_, be the first vertex of andv, be the last vertex o, a + b = 3r — k + 1. We can assume
thata < b. C'is also a lightr-code so by Lemma @ < r, thenb > 2r — k + 1. C is r-dominating so
b < 2r,and them > r — k+ 1. We haveB,.(vy) N C = B,(vp—1) NC = B,.(vi4+1) N C = {c} because
d(vg,v—q) = a+k >r+1andd(vg,vp) =b—k > 2r —2k+1 > r+ 1. Then,v, andvg_; are only
separated for radius— 1, v, andvy; are only separated for radiéts So necessarily,, andv_; must be
separated for radidsor k — 1. That means there is a vertex of the ceti¢ S different ofc at distance at
mostk of v_j. Butd(c',v_i) = d(¢/,v_o) +d(v_q,v_) > 1+a—k > r—2k+2 > k+1 (by definition
of k), a contradiction. m]

As corollary, the code of Lemma 13 is optimum and we have tHeviing lower bound, as for light
and weak codes:

Corollary 3. LetC be a(2,[0,r])-code ofC,,. Then|C| > [2n/s] withs =3r — |(r +1)/3| + 2.

It remains the case whesaloes not divide:, with similar arguments used for light codes, one can show
that:

Theorem 4. Letn,r, s, p, R be integers, set = |[(r +1)/3|,s = 3r — k + 2 andn = sp + R, with
0 < R < s. Then the size of an optimu(®, [0, r])-code ofC,, is:

i) 2pif R=0;
i) 2p+1ifR<r+1;
i) 2p+ 2 otherwise.
5. Perspectives
Section 4 suggests the following definition that will getieeaall the previous ones:

Definition 1. Letp be an integer andk be a set of non-negative integers.(A R)-identifying codeof a
graphG = (V, E) is a subseC of V such that:

(domination) Vz € V,3r € R, B,.(z) N C # ()

Ve e V,3R, C R,|R;| <p,Vy € V,y # x,3ry, € R, S.t.:

(identification)

10



Integerp corresponds to the number of radii we can assign to a verteggarate it from all the others
whereas the séR denotes the set of radii we can use. This definition unifiethallprevious ones: &
identifying code is 41, {r})-identifying code, a weak-code is &1, [0, ] )-identifying code, a light-code
isa(r + 1, [0, r])-identifying code, a-locating dominating code is@, {0, r})-identifying code.

Proposition 1 is equivalent to say that evépy [0, r])-code in a cycle, withp > 3 is a (3, [0,r])-
identifying code. Section 4 and Section 2 consi@ef0, r])-identifying codes andl, [0, r])-identifying
codes of the cycle, respectively. Hence we solved the probfdinding an optimuntp, [0, r]))-identifying
code (for anyp) in a cycle. However, the general problem of finding an optimip, R)-identifying codes
in the cycle is still unknown.
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