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On two variations of identifying codes✩

Olivier Delmasa, Sylvain Gravierb, Mickael Montassiera, Aline Parreaub

aUniversité de Bordeaux, LaBRI, 351 cours de la Libération, 33400 Talence, France
bInstitut Fourier (UMR 5582), 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères, France

Abstract

Identifying codes have been introduced in 1998 to model fault-detection in multiprocessor systems. In this
paper, we introduce two variations of identifying codes: weak codes and light codes. They correspond
to fault-detection by successive rounds. We give exact bounds for those two definitions for the family of
cycles.
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1. Introduction

Identifying codes are dominating sets having the property that any two vertices of the graph have distinct
neighborhoods within the identifying code. Also, they can be used to uniquely identify or locate the vertices
of a graph. Identifying codes have been introduced in 1998 in[11] to model fault-detection in multiprocessor
systems. Numerous papers already deal with identifying codes (seee.g.[13] for an up-to-date bibliography).
A multiprocessor system can be modeled as a graph where vertices are processors and edges are links
between processors. Assume now that at most one of the processors is defective, we would like to locate it
by testing the system. For this purpose, we select some processors (constituting the code) and have them test
theirr-neighborhoods (i.e. the processors at distance at mostr). The processor sends an alarm if it detects a
fault in its neighborhood. We require that we can, with theseanswers, tell if there is a faulty processor and,
in this case, locate it uniquely. This corresponds exactly to finding an identifyingr-code of the graph of the
system.

Assume now that a processor can restrict its tests to itsi-neighborhood fori ∈ [0, r]. Then, we can
have a detection process by rounds: at the first step, the selected processors test their0-neighborhoods, then
they test their1-neighborhoods, . . . , until ther-neighborhoods. We stop the process when we can locate the
faulty processor. We introduce in this paperweakr-codes(resp.light r-codes) that will model this process
without memory (resp. with memory) and study them for the family of cycles.

Let us give some notations and definitions. We denote byG = (V,E) a simple non oriented graph
having vertex setV and edge setE. Letx andy be two vertices ofG. Thedistanced(x, y) betweenx and
y is the number of edges of a shortest path betweenx andy. Let r be an integer. Theball centered onx of
radiusr, denoted byBr(x) is defined byBr(x) = {y ∈ V | d(x, y) ≤ r}.

An r-dominating setof G is a subsetC ⊆ V such that∪c∈CBr(c) = V : each vertex ofG is at
distance at mostr of a vertex ofC. We say that a subsetC ⊆ V r-separatesx and y if and only if
Br(x)∩C 6= Br(y)∩C (we will also say in this case that “x andy are separated byC for radiusr” or that
“x is separated fromy byC for radiusr”). A setC r-identifiesx if and only if it r-separatesx from all the
other vertices. For two integersi < j, we denote by[i, j] the set of integers betweeni andj.

(1) Identifying r-code. An identifyingr-codeof G is anr-dominating setC ⊆ V thatr-identifies all the
vertices:

∀x ∈ V, ∀y 6= x ∈ V,Br(x) ∩ C 6= Br(y) ∩ C
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(2) Weakr-code. A weakr-codeof G is ar-dominating setC ⊆ V such that each vertexx is rx-identified
byC for a radiusrx ∈ [0, r]:

∀x ∈ V, ∃rx ∈ [0, r], s.t. ∀y 6= x ∈ V,Brx(x) ∩C 6= Brx(y) ∩ C

(3) Light r-code. A light r-codeof G is ar-dominating setC ⊆ V such that each pair(x, y) of vertices is
rxy-separated byC for a radiusrxy ∈ [0, r]:

∀x ∈ V, ∀y 6= x ∈ V, ∃rxy ∈ [0, r], s.t. Brxy
(x) ∩C 6= Brxy

(y) ∩ C

Figure1 gives an example of a weak2-code ofP5 (elements of the code are in black, as in all the
figures). Indeed, verticesv3 andv4 are identified for radius0, verticesv2 andv5 are identified for radius1
and vertexv1 is identified for radius2. But this code is not an identifying2-code ofP5: verticesv2, v3, v4
andv5 are not separated for radius2. Figure2 gives a light2-code ofP5 which is not a weak2-code: vertex
v2 is separated from vertexv1 only for radius0 and for this radius, vertexv2 is not separated fromv3.

v1 v2 v3 v4 v5

Figure 1: A weak 2-code that is not an identifying2-code

v1 v2 v3 v4 v5

Figure 2: A light2-code that is not a weak2-code

A codeC is said to beoptimumif its cardinality is minimum. We denote byICr(G) (resp.WCr(G),
LCr(G)) the cardinality of an optimum identifying (resp. weak, light) r-code. An identifyingr-code is
a weakr-code and a weakr-code is a lightr-code. This implies the following inequality:ICr(G) ≥
WCr(G) ≥ LCr(G). For all graphs and for anyr, there exits a weakr-code and a lightr-code (using for
instance all the vertices as the code), whereas this is not true for identifying codes.

Let us now give some bounds for weak codes.

Theorem 1. Let r andk be two integers andwr(k) be the maximum order of a graphG such thatG has a
weakr-code of sizek. We have:

wr(k) = k + r(2k − 2)

Proof
We construct a graphG in the following way. (See Figure3 for r = 4 andk = 3.) The graphG has
vertex setC ∪ I1 ∪ ... ∪ Ir whereC = {1, ..., k} andIj has size2k − 2 for 1 ≤ j ≤ r. Each vertex ofIj
corresponds to a non-empty strict subset of{1, ..., k}. Each vertex ofI1 is linked to the vertices ofC that
form its subset, and each vertex ofIj for j > 1 is linked to the vertex ofIj−1 that corresponds to the same
subset. Furthermore,C induce a clique inG. The graphG has orderk + r(2k − 2) and one can check that
C is a weakr-code ofG (a vertex ofIj is identified for radiusj). Sowr(k) ≥ k + r(2k − 2).

Let nowG be a graph of orderwr(k) which has a weakr-codeC of sizek. For radius0, only thek
vertices ofC can be identified. For radius1, at most2k additionnal vertices can be identified (one for each
subset ofC). However, it is not possible to have all the subsets: all theelements of{B1(c) ∩ C | c ∈ C}
cannot be used to identify a vertex not inC for radius1. If 2k − 1 additional vertices are identified at radius
1, that means that{B1(c) ∩ C | c ∈ C} contains only one element, which is necessarily the whole set C.
Then all the strict subsets of{1, ..., k} are used to identify a vertex for radius1, in particular, one vertex
is identified by the emptyset and so is not1-dominated byC. The setC is anr-dominating set, sor ≥ 2.
Furthermore, if there is another vertexx of G, then necessarily,B1(x)∩C = C andx will not be identified
for any radius. SoG has orderwr(k) = k+(2k−1). A contradiction with the boundwr(k) ≥ k+2(2k−2)
for r ≥ 2. It follows that at most2k − 2 additionnal vertices are identified for radius1. Using a similar
process, we can show that at most2k − 2 vertices are identified at each round and we obtain thatG has
order at mostk + r(2k − 2). It follows thatwr(k) = k + r(2k − 2). 2

Light r-codes are related to other locating notions: alight 1-codeis a1-locating dominating code[7]
for which we require that only pairs of vertices not in the code are1-separatedby C. The notion of light
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Figure 3: Extremal case for a graph with a weak4-code of size3

r-codes is a generalization of the notion of metric basis. A subsetC of vertices is ametric basisif every
pair of vertices of the graph is separated by a vertex ofC for one radius (there is no bound on the radius).
Themetric dimensionof a graphG, denoted bydim(G), is the cardinal of a minimum metric basis. A light
r-code is a metric basis, soLCr(G) ≥ dim(G). If r is greater than the diameter ofG, i.e. the largest
distance between two vertices ofG, then a lightr-code is exactly a metric basis. For a detailed review about
metric basis, see [6]. As for metric basis, we do not have good bounds of the extremal size of a graph that
has lightr-codes of sizek.

The optimization problems of finding optimum identifying codes [5] and optimum metric bases [12] are
NP-complete. Finding optimum light codes is also NP-complete because ifr is larger than the diameter of
the graph, then it is equivalent to metric bases. Therefore,identifying codes and metric bases have been
studied in particular classes of graphs (seee.g.[2, 3, 4, 9]).

For cycles, although metric bases problem in cycles is not difficult (the dimension of a cycle is2), the
case of identifying codes is not as easy: the complete study of cycles has just been finished in [10] after
numerous contributions (seee.g.[1, 8, 14]). We focus on the case of weak and lightr-codes.

In this paper, we give exact value forWCr (Section2) andLCr (Section3) for the class of cycles. In
weak codes, we assign a radius to each vertex to separate it from other vertices whereas we can assign up
to r+1 radii to a vertex with lightr-codes. We show that3 radii per vertex is actually sufficient to separate
it from all the other vertices. We adress in Section4 the question of the optimum size of a code requiring
only 2 stored radii per vertex.

2. Weakr-codes of cycles

In the following, we will denote byCn the cycle of sizen and by{v0, v1, . . . , vn−1} the set of its
vertices. We first assume thatn ≥ 2r + 2.

Lemma 1. LetS be a set of2r+2 consecutive vertices onCn. If C is a weakr-code ofCn, thenS contains
at least two elements ofC.

Proof
Without loss of generality,S = {v0, v1, . . . , v2r+1}. AssumeS contains a single element of the code, say
a = vi , w.l.o.g.i ≤ r (see Figure4).

S

x y za

v0 vr−1 vr+1vrvi v2r+1

Figure 4: Notation of the proof (Lemma1)
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We focus on the verticesx = vr−1, y = vr andz = vr+1. Then,Br(y) ⊆ S andBr(z) ⊆ S. Let
t = d(a, y) = r − i.

For allr′ ∈ [0, t−1],Br′(y)∩C = Br′(z)∩C = ∅. For allr′ ∈ [t+1, r],Br′(y)∩C = Br′(z)∩C =
{a}. Hencery = rz = t. It follows thatBt(y) ∩ C = {a} must be different fromBt(x) ∩ C. Hence,
Bt(x) ∩ C must contain an element different froma, sayb. Necessarily,b /∈ S, this impliest = r andz is
notr-dominated, a contradiction. 2

A first bound ofWCr(Cn) directly follows from Lemma1:

Corollary 1. LetC be a weakr-code ofCn. Then|C| ≥ ⌈n/(r + 1)⌉. More precisely, letn = (2r+2)p+R
with 0 ≤ R ≤ 2r + 1, we have:

• if R = 0, then|C| ≥ 2p;
• if 1 ≤ R ≤ r + 1, then|C| ≥ 2p+ 1;
• if r + 2 ≤ R ≤ 2r + 1, then|C| ≥ 2p+ 2.

Proof
In Cn there aren different setsS of 2r+2 consecutives vertices. IfC is a weakr-code, by Lemma1, there
are at least2 vertices of the code in each setS. Each vertex of the code is counted exactly2r + 2 times, so

|C| ≥
⌈

2n
2r+2

⌉

=
⌈

n
r+1

⌉

. 2

In the following, we setn = (2r+2)p+R, with 0 ≤ R ≤ 2r+1 andp ≥ 1 (by assumption,n ≥ 2r+2).
Lemmas2 to 4 give some constructive upper bounds. Moreover, Lemmas2 to 5 provides exact values of
WCr(Cn).

Lemma 2. If n = (2r + 2)p, thenCn has a weakr-code with cardinality2p = n/(r + 1); moreover, this
code is optimum.

Proof
We construct the code by repeating the pattern depicted by Figure5. More precisely, letC = {vi | i ≡
r [2r+2] or i ≡ r+1 [2r+2]}. The setC has cardinality2p. The setC r-dominates all the vertices ofCn.
Let rvk = r − k if k ∈ [0, r] andrvk = k − (r + 1) if k ∈ [r + 1, 2r + 1] (the indices of the vertices ofCn
are taken modulo2r+2). Then for all pair of verticesvk, vl, k 6= l, we haveBrvk

(vk)∩C 6= Brvk
(vl)∩C.

HenceC is anr-dominating set thatrvk -identifies the vertexvk. It follows thatC is a weakr-code. This
code is optimum by Corollary1. Figure6 gives an example of such a code inC12.

2

r r

Figure 5: The pattern for a weakr-code in the cyclesC(2r+2)p with p ≥ 1

We can easily extend this construction to the general case:

Lemma 3. If R = 1, thenCn has a weakr-code with2p+ 1 elements. If2 ≤ R ≤ 2r + 1, thenCn has a
weakr-code with2p+ 2 elements. These codes are optimum forR = 1 or R ≥ r + 2.

Proof
Let R = 1 andC = {vi | i ≡ r [2r + 2] or i ≡ r + 1 [2r + 2]} ∪ {vn−1}. ThenC is a weakr-code ofCn
and|C| = 2p+ 1. (See Figure7.)
Assume now thatR ≥ 1 and take for codeC = {vi | i ≡ r[2r + 2] or i ≡ r + 1[2r + 2]} if R ≥ r + 2 and
C = {vi | i ≡ r[2r+2] or i ≡ r+1[2r+2]}∪{vn−2, vn−1} otherwise. ThenC is a weakr-code ofCn. 2

In some cases, the aforementioned codes are not optimum:
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Figure 6: An optimum weak 2-code ofC12

v4
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v2
v1v0
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v8 v7
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Figure 7: An optimum weak 2-code ofC13

Lemma 4. If (r, R) = (1, 2), thenCn has an optimum weak1-code of cardinality2p+1. If (r, R) = (2, 2),
thenCn has an optimum weak2-code of cardinality2p+ 1.

Figure8 (resp. Figure9) shows an example of an optimum weakr-code for(r, R) = (1, 2) (resp.
(r, R) = (2, 2)).

v4

v3

v2v1

v0

v9

v8

v7 v6

v5

Figure 8: An optimum weak 1-code ofC10

v4

v3

v2

v1

v0

v7

v6

v5

Figure 9: An optimum weak 2-code ofC8

Proof
For (r, R) = (1, 2), the setC = {vi | i ≡ 0[2]} is a weak1-code: each vertexx in the code is0-identified
byC and each vertexx not in the code is1-identified byC. For(r, R) = (2, 2), the setC = {vi | i ≡ 0 [6]
or i ≡ 2 [6]} ∪ {vn−2} is a weak2-code. The optimality of these codes is shown by Corollary1. 2

The next lemma shows that the lower bound of Corollary1 is not sharp for2 ≤ R ≤ r + 1 and
(r, R) 6= (1, 2) or (2, 2), this implies that in these cases, codes of Lemma3 are optimum.

Lemma 5. If 2 ≤ R ≤ r + 1 and (r, R) 6= (1, 2) or (2, 2), thenCn does not have a weakr-code of
cardinality2p+ 1.

Proof
Assume that there is a weakr-codeC of Cn of cardinality2p+ 1. First, observe:

(O.1) In a set ofR consecutive vertices ofCn, there must be at most one vertex ofC. Otherwise, in the
rest ofCn, there are only2p− 1 vertices of the code in a set of(2r + 2)p consecutive vertices which
contradicts Lemma1. In particular, ifR ≥ 2, then there is no pair of consecutive vertices ofC.

(O.2) For similar reasons, in a set of2r+2+R consecutive vertices ofCn, there must be at most3 vertices
of C.

Let M be the maximum size of a set of consecutive vertices not inC and letSM be a set ofM consec-
utive vertices not inC. We know by (O.1) thatM ≥ R − 1. MoreoverM > 1; indeed, ifM = 1, then
R = 2 and the code is exactly one vertex over 2, so|C| = n

2 = 2p+ 1, n = 4p+ 2 and(r, R) = (1, 2).
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Let us denotec1 andc2 the two elements of the code boundingSM , letS1 andS2 be the two maximal
sets of consecutive vertices not inC who are beforec1 and afterc2, and finallyc0 andc3 the two vertices
of the code who are beforeS1 and afterS2 (see Figure10).

S1 SM S2

c0 c1 c2 c3x y z

Figure 10: Notation of the proof (Lemma5)

• Observe thatp ≥ 1, soC has cardinality at least3 and observe by (O.1) thatS1 andS2 are not empty.
Hence, the elementsc1, c2, c3 may be supposed distincts and so on for elementsc0, c1 andc2, but
note thatc0 andc3 may denote the same vertex.

• Observe by (O.1) that|S1| ≥ R− 1, |S2| ≥ R− 1, M ≥ R− 1. Let us denoteS the setS1 ∪ {c1} ∪
SM ∪ {c2} ∪ S2.

• Observe that|S| ≥ 2r + 3. Indeed, ifc0 andc3 are different vertices, then{c0} ∪ S ∪ {c3} is a set
with 4 vertices of the code, so, by (O.2)|S|+2 > 2r+2+R ≥ 2r+4. If c0 andc3 denote the same
vertex, thenS ∪ {c3} = V (Cn), p = 1 and|S| = n− 1 = 2r + 1 +R ≥ 2r + 3.

So there are three consecutive verticesx, y, z in S such that[Br(x) ∪Br(y) ∪Br(z)] ∩ C ⊆ {c1, c2} and
y ∈ SM .

To separatey andx, ry must bed(x, c1) ord(y, c2). To separatey andz, ry must bed(y, c1) or d(z, c2).
Therefore, eitherry = d(x, c1) = d(z, c2), or ry = d(y, c2) = d(y, c1). In all cases,M is odd andy is the
middle element ofSM , sod(y, c1) = d(y, c2). AsM 6= 1 thenM ≥ 3 and(x, z) ∈ SM × SM .

Let dy denoted(y, c1) in the following. Letw be the vertex just beforex. ThenBr(w) ⊆ {c0, c1, c2}.
To separatex from y, rx must bed(y, c2) = dy or d(x, c1) = dy − 1. To separatex from w, rx must be
d(w, c1) = dy − 2 or d(x, c2) = dy + 1 or d(w, c0). Necessarily, we haverx = d(w, c0). This implies
d(w, c0) = r becaused(w, c0) = d(x, c0)− 1 ≥ r andrx ≤ r. Sincedy ≤ r andrx = dy or rx = dy − 1.
It follows rx = dy = r. ThereforeM = 2r − 1, |S1| = 1, and finallyR = 2. With similar arguments for
z, we obtain the situation depicted by Figure11.

SM

c0 c1 c2 c3v1v2 w x y z

Figure 11: The setsS1, S2 andSM after some deductions

Consider(r, R) 6= (1, 2) or (2, 2) andR = 2, thenr ≥ 3 and soM ≥ 5. Let v1 andv2 be the two
consecutive vertices inSM following c1 (see Figure11). We haved(v2, c2) = M−1 > r andd(v1, c2) > r
sov1 andv2 can only be separated by elements of the code on the left ofv1 andv2. Let rv1 be the radius
that identifiesv1. There must be an element of the code at distance exactlyrv1 of v1 to separatev1 andv2,
and for similar reasons, there must be an element of the code at distancerv1 + 1 of v1 to separatev1 from
c1. This implies that two elements of the code are consecutivesvertices inCn, which contradicts (O.1).2

We are now able to computeWCr(Cn) for all n ≥ 2r + 2. Our results are summarized in the following
theorem:

Theorem 2. Letr be an integer andn = (2r + 2)p+R, with 0 ≤ R ≤ 2r + 1 andp ≥ 1, we have:

i) if R = 0, thenWCr(Cn) = 2p,
ii) if R = 1 or if r ≤ 2 andR = 2, thenWCr(Cn) = 2p+ 1,
iii) otherwise,R ≥ 2 and(r, R) 6= (1, 2) or (2, 2), thenWCr(Cn) = 2p+ 2.

Theorem2-i (resp. 2-ii and2-iii ) follows from Lemma2 and Corollary1 (resp. from Lemmas3, 4 and
Corollary1 and from Lemmas3, 5 and Corollary1).

The following lemma completes the study for the small cases:
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Lemma 6. Let r andn be integers with3 ≤ n ≤ 2r + 1, thenWCr(Cn) = 2.

Proof
The code cannot be a single vertex, otherwise its two neighbors are noti-separated for anyi, soWCr(Cn) ≥
2. Two adjacent vertices form a weakr-code for anyr, soWCr(Cn) = 2. Note that ifn is odd, the antipodal
vertex to the code in the cycle is identified by the empty set. 2

3. Light r-codes of cycles

We now study lightr-codes of the cycleCn. In this section, we will first assume thatn ≥ 3r + 2 and
we will study the small values ofn at the end of the section.

Lemma 7. LetC be a lightr-code ofCn andc an element ofC. There is an other element of the codeC at
distance at mostr + 1 of c.

Proof
Let x andy be the neighbors ofc. AsC is a lightr-code, there is an integerrxy such that0 ≤ rxy ≤ r and
Brxy

(x) ∩ C 6= Brxy
(y) ∩ C. There consequently exists a vertexc′ ∈ C such that, w.l.o.g.,c′ ∈ Brxy

(x)
andc′ /∈ Brxy

(y). Moreover,c 6= c′ becaused(x, c) = d(c, y) = 1. It follows thatd(c′, c) ≤ d(c′, x) +
d(x, c) ≤ rxy + 1 ≤ r + 1. 2

Lemma 8. LetS be a set of3r+2 consecutive vertices onCn. If C is a lightr-code ofCn, thenS contains
at least two elements ofC.

Proof
LetC be a lightr-code ofCn. Let us assume there is a setS of 3r+2 consecutive vertices ofCn containing
only one elementc of C. w.l.o.g., we denoteS = {v0, v1, . . . , v3r+1} andc = vi with i < 2r. By Lemma7,
there is an elementc′ at distance at mostr+1 of c. But c′ /∈ S so necessarily,c′ ∈ {v−1, v−2, . . . , v−(r+1)}
andi ≤ r. Thenv2r+1 is notr-dominated by any element ofC, a contradiction. 2

It follows from Lemma8:

Corollary 2. LetC be a lightr-code ofCn. Then|C| ≥ ⌈2n/(3r + 2)⌉. More precisely, ifn = (3r+2)p+
R with 0 ≤ R ≤ 3r + 1, p ≥ 1, we have:

• if R = 0, then|C| ≥ 2p,
• if 0 < 2R ≤ 3r + 2, then|C| ≥ 2p+ 1,
• otherwise,2R > 3r + 2, and|C| ≥ 2p+ 2.

In the following, letn = (3r + 2)p+R with 0 ≤ R ≤ 3r + 1 andp ≥ 1 (by assumption,n ≥ 3r+ 2).
We want to exhibit some optimum codes.

Lemma 9. If n = (3r+2)p, thenCn has a lightr-code with cardinality2p. Moreover this code is optimum.

r r r

Figure 12: The pattern for a lightr-code in the cyclesC(3r+2)p with p ≥ 1

Proof
We construct the code by repeating the pattern depicted by Figure12. More precisely, letC = {vi | i ≡
r [3r + 2] or i ≡ 2r + 1 [3r + 2]}. SetC is ar-dominating set of size2p and we just need to check that
every pair of vertices is separated byC for some radius in[0, r]. It is sufficient to prove it for pairs(vi, vj)
with (i, j) ∈ [0, 3r + 1]× [0, 3r + 1]. Let 0 ≤ i < j ≤ 3r + 1 be two integers and definerij as follows:

7



• if j ≤ r, thenrij = r − j;
• if i ≤ r < j, thenrij = |(2r + 1)− j|;
• if r < i ≤ 2r, thenrij = i− r;
• if i ≥ 2r + 1, thenrij = i− (2r + 1).

Then,0 ≤ rij ≤ r and it is easy to check that(vi, vj) is rij -separated byC. SoC is a lightr-code ofCn
with cardinality2p. This code is optimum by Corollary2. 2

We generalize this construction:

Lemma 10. If 1 ≤ R ≤ r + 1, thenCn has a lightr-code of cardinality2p+ 1. If R > r + 1, thenCn has
a light r-code of cardinality2p+ 2.

Proof
Consider the three following cases: (1)R ∈ [1, r+1], (2)R ∈ [r+2, 2r+2], and (3)R ∈ [2r+3, 3r+1].
For each case, we define the codeC as:

(1) C = {vi | i < (3r + 2)p, i ≡ r [3r + 2] or i ≡ 2r + 1 [3r + 2]} ∪ {v(3r+2)p}
(2) C = {vi | i < (3r + 2)p, i ≡ r [3r + 2] or i ≡ 2r + 1 [3r + 2]} ∪ {v(3r+2)p, v(3r+2)p+r}
(3) C = {vi | i < (3r + 2)p, i ≡ r [3r + 2] or i ≡ 2r + 1 [3r + 2]} ∪ {v(3r+2)p+r, v(3r+2)p+2r}

These sets are lightr-codes of cardinality2p+ 1, 2p+ 2 and2p+ 2, respectively. 2

Lemma 11. If R > r + 1, thenCn has no lightr-code of cardinality2p+ 1.

Proof

Assume that there is a codeC of cardinality2p + 1. First observe that in a setS of R consecutive
vertices, there is at most one element of the codeC. Otherwise, there will be only2p− 1 elements of the
code in the rest of the cycle which can be divided inp disjoint sets of size3r + 2. One of this set will have
only one element of the code, a contradiction by Lemma8.
Now, take an elementc of the codeC, by Lemma7 there is a vertexc′ of the code at distanced ≤ r + 1 of
c. Take the setS of all vertices betweenc andc′, c andc′ included.S has cardinality at mostr + 2 ≤ R
and has two vertices ofC, a contradiction.

2

Our results are summarized in the following theorem:

Theorem 3. Letr be an integer andn = (3r + 2)p+R, with 0 ≤ R < 3r + 2, andp ≥ 1, we have:

i) if R = 0, thenLCr(Cn) = 2p;
ii) if R ≤ r + 1, thenLCr(Cn) = 2p+ 1;
iii) otherwise,R > r + 1 and thenLCr(Cn) = 2p+ 2.

Theorem3-i (resp. 3-ii , 3-iii ) follows from Corollary2 and Lemma9 (resp. Corollary2 and Lemma10,
and from Corollary2, Lemmas10and11).

The next lemma completes the study for the small values ofn:

Lemma 12. Let r andn be integers with3 ≤ n ≤ 3r + 1, thenLCr(Cn) = 2.

Proof
A light r-code cannot be a single vertex otherwise the neighbors of the element of the code are noti-
separated for anyi. Two adjacent vertices form a lightr-code for anyn ≤ 2r + 2. Forn > 2r + 2, take
two vertices at distancer + 1. 2

With light r-codes, we can assign up tor + 1 radii to a vertex to separate it from all the other vertices.
Actually, for cycles, we just need three radii:

8



Proposition 1. LetC be a lightr-code ofCn andx be a vertex ofCn. Assume thatn > 2r + 1. There is
a subsetRx of [0, r] of size at most3 such that for all other verticesy of Cn, there isrxy ∈ Rx such that
Brxy

(x) ∩ C 6= Brxy
(y) ∩ C.

Proof
Without loss of generality, we can assume thatx = v0. Assume first that there exist two vertices of the
code, saya = vi andb = vj , such that−r ≤ i ≤ 0 ≤ j ≤ r (if x ∈ C we havea = b = x). Then
Rx = {d(x, a), d(x, b)} separatesx from all the other vertices. Verticesx andvk are separated for radius
d(x, a) if 0 < k < n/2 and for radiusd(x, b) if −n/2 < k < 0.

Otherwise, leta = vi be the element of the code closest tox. We can assume that0 < i ≤ r. By
Lemma7 we know that there exists another element of the codeb = vj such thati < j andj − i ≤ r + 1.
Thenx is separated from all vertices not inBi(a) by radiusi, and from all vertices inBi−1(a) by radius
i − 1. It remains one vertex,v2i, that is separated fromx for radiusd(v2i, b) ≤ r. Finally the three radiii,
i− 1, d(v2i, b) are enough to separatex from all vertices. 2

This proposition leads to the following question: what is the size of an optimum lightr-code onCn that
need to assign only2 radii to each vertex? We solve this question in the next section.

4. Codes with 2 radii

A (2, [0, r])-codeC of a graphG is a subset of vertices ofG thatr-dominates every vertex and such
that for each vertexx, we can assign a setRx = {rx, r′x} of integers in[0, r] such that every pair of distinct
vertices(x, y) is rx or r′x-separated byC.

Lemma 13. Let k = ⌊(r + 1)/3⌋ ands = 3r − k + 2. If s dividesn, then the code defined by repeating
the patternS depicted by Figure13 is a (2, [0, r])-code ofCn.

r r − k r

Figure 13: The patternS for a (2, [0, r])-code of the cycleCn with n multiple ofs (cf. Lemma13)

Proof
We focalize on a patternS. We denote byc1 andc2 the two vertices of the code ofS and we assume that
c1 = v0. Thenc2 = vr−k+1 and the vertices ofS are the vertices betweenv−r andv2r−k+1. We partition
the vertices ofS in five subsets:A1 = {v−r, . . . , v−k−1}, A2 = {v−k, . . . , v−1}, A3 = {v0, . . . , vr−k+1},
A4 = {vr−k+2, . . . , vr+1} andA5 = {vr+2, . . . , v2r−k+1}. If r = 1, A2 andA4 are empty, ifr = 0, A3 is
non empty, the other sets are empty. Letx be a vertex ofS. LetRx the set of radii associated tox:

• if x ∈ A1, then setRx = {d(x, c1), d(x, c1)− 1};
• if x ∈ A2, then setRx = {d(x, c1), d(x, c2)− 1};
• if x ∈ A3, then setRx = {d(x, c1), d(x, c2)};
• if x ∈ A4, then setRx = {d(x, c1)− 1, d(x, c2)};
• if x ∈ A5, then setRx = {d(x, c2), d(x, c2)− 1}.

One can check thatRx ⊂ [0, r] in all cases. By symmetry, we just need to check that every vertexx of
A1 ∪ A2 ∪ A3 is separated from all the other vertices for a radius inRx.

If x ∈ A1, thenx is separated from the vertices not inBd(x,c1)(c1) for radiusd(x, c1) and from the
vertices inBd(x,c1)−1(c1) for radiusd(x, c1) − 1. Remains the vertexy at distanced(x, c1) of c1. If
x = v−i, with k + 1 ≤ i ≤ r theny = vi andd(y, c2) = r − k + 1 − i ≤ r − 2k ≤ k + 1 ≤ d(x, c1) by
definition ofk. Sox andy are separated for radiusd(x, c1).

If x ∈ A2, thenx is separated from the vertices not inBd(x,c1)(c1) for radiusd(x, c1) and from the
vertices inBd(x,c2)−1(c1) for radiusd(x, c2)− 1. That covers all the vertices of the cycle.

One can check by the same kind of arguments thatx ∈ A3 is also separated from all the other vertices
for d(x, c1) or d(x, c2). 2
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Lemma 14. LetC be a(2, [0, r])-code ofCn. LetS be a set ofs = 3r−k+2 vertices withk = ⌊(r+1)/3⌋.
ThenS contains at least two vertices ofC.

Proof
Assume thatS contains only one vertexc of C. For r = 0, the lemma is true as all the vertices must be
0-dominated. The lemma is also true forr = 1, as a(2, [0, 1])-code is a light1-code. Now, forr ≥ 2, for
conveniencec = v0. Letv−a be the first vertex ofS andvb be the last vertex ofS, a+b = 3r−k+1. We can
assume thata ≤ b. C is also a lightr-code so by Lemma7 a ≤ r, thenb ≥ 2r − k + 1. C is r-dominating
sob ≤ 2r, and thena ≥ r− k+1. We haveBr(vk)∩C = Br(vk−1)∩C = Br(vk+1)∩C = {c} because
d(vk, v−a) = a + k ≥ r + 1 andd(vk, vb) = b − k ≥ 2r − 2k + 1 ≥ r + 1. Then,vk andvk−1 are only
separated for radiusk − 1, vk andvk+1 are only separated for radiusk. So necessarilyvk andv−k must be
separated for radiusk or k − 1. That means there is a vertex of the codec′ 6∈ S different ofc at distance at
mostk of v−k. Butd(c′, v−k) = d(c′, v−a)+d(v−a, v−k) ≥ 1+a−k ≥ r−2k+2 ≥ k+1 (by definition
of k), a contradiction. 2

As corollary, the code of Lemma13 is optimum and we have the following lower bound, as for light
and weak codes:

Corollary 3. LetC be a(2, [0, r])-code ofCn. Then|C| ≥ ⌈2n/s⌉ with s = 3r − ⌊(r + 1)/3⌋+ 2 .

It remains the case wheres does not dividen, with similar arguments used for light codes, one can show
that:

Theorem 4. Let n, r, s, p, R be integers, setk = ⌊(r + 1)/3⌋, s = 3r − k + 2 andn = sp + R, with
0 ≤ R < s. Then the size of an optimum(2, [0, r])-code ofCn is:

i) 2p if R = 0;
ii) 2p+ 1 if R ≤ r + 1;
iii) 2p+ 2 otherwise.

5. Perspectives

Section4 suggests the following definition that will generalize all the previous ones:

Definition 1. Let p be an integer andR be a set of non-negative integers. A(p,R)-identifying codeof a
graphG = (V,E) is a subsetC of V such that:

(domination) ∀x ∈ V, ∃r ∈ R, Br(x) ∩ C 6= ∅

(identification)

{

∀x ∈ V, ∃Rx ⊂ R, |Rx| ≤ p, ∀y ∈ V, y 6= x, ∃rxy ∈ Rx s.t.:

Brxy
(x) ∩ C 6= Brxy

(y) ∩ C

Integerp corresponds to the number of radii we can assign to a vertex toseparate it from all the others
whereas the setR denotes the set of radii we can use. This definition unifies allthe previous ones: ar-
identifying code is a(1, {r})-identifying code, a weakr-code is a(1, [0, r])-identifying code, a lightr-code
is a(r + 1, [0, r])-identifying code, ar-locating dominating code is a(2, {0, r})-identifying code.

Proposition1 is equivalent to say that every(p, [0, r])-code in a cycle, withp ≥ 3 is a (3, [0, r])-
identifying code. Section4 and Section2 consider(2, [0, r])-identifying codes and(1, [0, r])-identifying
codes of the cycle, respectively. Hence we solved the problem of finding an optimum(p, [0, r])-identifying
code (for anyp) in a cycle. However, the general problem of finding an optimum (p,R)-identifying codes
in the cycle is still unknown.
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