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On two variations of identifying codés

Olivier Delma$, Sylvain Gravie?, Mickael Montassi€t, Aline Parreal

aUniversité de Bordeaux, LaBRI, 351 cours de la Libérati®®400 Talence, France
PInstitut Fourier (UMR 5582, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Héres e

Abstract

Identifying codes have been introduced in 1998 to modet{fadetection in multiprocessor systems. In this
paper, we introduce two variations of identifying codes:aweodes and light codes. They correspond
to fault-detection by successive rounds. We give exact 8stdior those two definitions for the family of
cycles.
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1. Introduction

Identifying codes are dominating sets having the prop&dyany two vertices of the graph have distinct
neighborhoods within the identifying code. Also, they caruged to uniquely identify or locate the vertices
of agraph. Identifying codes have been introduced in 1998ljto model fault-detection in multiprocessor
systems. Numerous papers already deal with identifyings¢sbe.g.[13] for an up-to-date bibliography).

A multiprocessor system can be modeled as a graph wheree®idre processors and edges are links
between processors. Assume now that at most one of the parsés defective, we would like to locate it
by testing the system. For this purpose, we select somegsorse(constituting the code) and have them test
theirr-neighborhoods fe. the processors at distance at mgstThe processor sends an alarm if it detects a
fault in its neighborhood. We require that we can, with thesswers, tell if there is a faulty processor and,
in this case, locate it uniquely. This corresponds exaotfiniding an identifying-code of the graph of the
system.

Assume now that a processor can restrict its tests terigighborhood foi € [0,r]. Then, we can
have a detection process by rounds: at the first step, thetegélprocessors test théineighborhoods, then
they test theid-neighborhoods, ..., until theneighborhoods. We stop the process when we can locate the
faulty processor. We introduce in this paperakr-codeqresp.light r-code$ that will model this process
without memory (resp. with memory) and study them for theifaof cycles.

Let us give some notations and definitions. We denotéby (V, E') a simple non oriented graph
having vertex seV” and edge seF. Letz andy be two vertices ofy. Thedistanced(z, y) between: and
y is the number of edges of a shortest path betweandy. Letr be an integer. Thball centered on: of
radiusr, denoted byB,.(z) is defined byB,.(z) = {y € V | d(z,y) < r}.

An r-dominating sef G is a subseC C V such thatU.ccB,(c) = V: each vertex of7 is at
distance at most of a vertex ofC. We say that a subsét C V r-separatesc andy if and only if
B, (z)NC # B,(y)NC (we will also say in this case that:‘andy are separated by for radiusr” or that
“x is separated from by C for radiusr”). A set C r-identifiesz if and only if it r-separates from all the
other vertices. For two integeis< j, we denote byi, j] the set of integers betweémnd;.

(1) Identifying r-code. An identifyingr-codeof G is anr-dominating setC’ C V thatr-identifies all the
vertices:

VeeV\Vy#xzeV,B.(x)NC # B,.(y)yNnC
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(2) Weakr-code. A weakr-codeof G is ar-dominating seC C V such that each vertexis r,-identified
by C for aradiusr, € [0,7]:

Ve e V,3r, € 0,r],st.Vy#z €V,B, (x)NC # B, (y)NC

(3) Light r-code. A light r-codeof G is ar-dominating seC C V such that each pajr, y) of vertices is
rzy-Separated by’ for a radius,, € [0, 7]:

Ve e V,Vy #x € V,3ry, €[0,7],st. B, (x) NC # B,,, (y)yNC

Figure 1 gives an example of a weakcode of P; (elements of the code are in black, as in all the
figures). Indeed, verticag andv, are identified for radiu8, verticesv, andvs are identified for radius
and vertex; is identified for radiu®. But this code is not an identifyingrcode of P5: verticesuvs, vs, vy
andvs are not separated for radigsFigure2 gives a light2-code of P; which is not a weak-code: vertex
vy IS separated from vertex only for radius0 and for this radius, vertex, is not separated fromy.

O—O0—e—e—0 ® ®
U1 V2 U3 Vg U5 U1 V2 U3 Vg U5
Figure 1: A weak 2-code that is not an identifyigcode Figure 2: Alight2-code that is not a wedk-code

A code( is said to beoptimumif its cardinality is minimum. We denote biC,.(G) (resp. WC,.(G),
LC,(G)) the cardinality of an optimum identifying (resp. weakhyr-code. An identifyingr-code is
a weakr-code and a weak-code is a lightr-code. This implies the following inequalitylC,.(G) >
WC,.(G) > LC,.(G). For all graphs and for any, there exits a weak-code and a light-code (using for
instance all the vertices as the code), whereas this isumefdr identifying codes.

Let us now give some bounds for weak codes.

Theorem 1. Letr andk be two integers and,. (k) be the maximum order of a gragh such that5 has a
weakr-code of sizé. We have:
wy (k) =k + 72" - 2)

Proof

We construct a graply in the following way. (See Figur8 for r = 4 andk = 3.) The graphG has
vertex setC' U I; U ... U I, whereC = {1,...,k} andI; has size* — 2 for 1 < j < r. Each vertex of
corresponds to a non-empty strict subsefbf..., k}. Each vertex of; is linked to the vertices of' that
form its subset, and each vertex@ffor j > 1 is linked to the vertex of;_; that corresponds to the same
subset. Furthermor€; induce a clique irG. The graphG has ordek + (2% — 2) and one can check that
C'is a weakr-code ofG (a vertex ofl; is identified for radiug). Sow, (k) > k + r(2% — 2).

Let nowG be a graph of ordew, (k) which has a weak-codeC of sizek. For radius), only thek
vertices ofC' can be identified. For radius at most2* additionnal vertices can be identified (one for each
subset ofC)). However, it is not possible to have all the subsets: allleenents of Bi(¢) N C' | ¢ € C}
cannot be used to identify a vertex notGffor radiusl. If 2¢ — 1 additional vertices are identified at radius
1, that means thaB;(c) N C | ¢ € C} contains only one element, which is necessarily the whdl€'se
Then all the strict subsets 4, ..., k} are used to identify a vertex for radidisin particular, one vertex
is identified by the emptyset and so is netlominated byC'. The setC' is anr-dominating set, so > 2.
Furthermore, if there is another vertexf G, then necessarily3; () N C = C andz will not be identified
for any radius. S@ has ordew, (k) = k+(2¥—1). A contradiction with the bound, (k) > k+2(2F —2)
for r > 2. It follows that at mose* — 2 additionnal vertices are identified for radiuis Using a similar
process, we can show that at ma&t— 2 vertices are identified at each round and we obtain thaas
order at most + (2% — 2). It follows thatw, (k) = k + r(2% — 2). i

Light r-codes are related to other locating notiondight 1-codeis a 1-locating dominating cod§7]
for which we require that only pairs of vertices not in the e@del-separatecby C. The notion of light
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Figure 3: Extremal case for a graph with a welakode of size3

r-codes is a generalization of the notion of metric basis. BsstC' of vertices is anetric basisf every

pair of vertices of the graph is separated by a vertex &6r one radius (there is no bound on the radius).
Themetric dimensiof a graph’, denoted bylim(G), is the cardinal of a minimum metric basis. A light
r-code is a metric basis, sbC,.(G) > dim(G). If r is greater than the diameter 6f, i.e. the largest
distance between two vertices@f then a light--code is exactly a metric basis. For a detailed review about
metric basis, seed]. As for metric basis, we do not have good bounds of the exdtaire of a graph that
has lightr-codes of sizé:.

The optimization problems of finding optimum identifyingdes b] and optimum metric base&?] are
NP-complete. Finding optimum light codes is also NP-corepliecause if is larger than the diameter of
the graph, then it is equivalent to metric bases. Therefdentifying codes and metric bases have been
studied in particular classes of graphs (sag|[2, 3, 4, 9)).

For cycles, although metric bases problem in cycles is rféitdlit (the dimension of a cycle i8), the
case of identifying codes is not as easy: the complete stiidyabes has just been finished ih(] after
numerous contributions (seeg.[1, 8, 14]). We focus on the case of weak and lightodes.

In this paper, we give exact value farC,. (Section2) and LC,. (Section3) for the class of cycles. In
weak codes, we assign a radius to each vertex to separadeniofther vertices whereas we can assign up
tor 4 1 radii to a vertex with light--codes. We show thatradii per vertex is actually sufficient to separate
it from all the other vertices. We adress in Sectibtihe question of the optimum size of a code requiring
only 2 stored radii per vertex.

2. Weakr-codes of cycles

In the following, we will denote byC,, the cycle of sizen and by {vg,v1,...,v,—1} the set of its
vertices. We first assume that> 2r + 2.

Lemma 1. LetS be a set o®r + 2 consecutive vertices dh,. If C is a weakr-code ofC,,, thenS contains
at least two elements @f.

Proof
Without loss of generalitys = {vg, v1, ..., v2,41}. AssumeS contains a single element of the code, say
a =v;,W.lo.g.i <r(see Figurel).

Vo (o Vr—1 Uy Ur41 V2r41
--O1O----- @----@—@—@----------== --
a r Yy =z

Figure 4: Notation of the proof (Lemnig



We focus on the vertices = v,_1, y = v, andz = v,4;. Then,B,.(y) C S andB,(z) C S. Let
t=d(a,y) =r —i.

Forallr’ € [0,t—1], B/ (y)NC = B (2)NC = . Forallr’ € t+1,r], B (y)NC = B (2)NC =
{a}. Hencer, = r, = t. It follows thatB,(y) N C = {a} must be different fromB;(x) N C. Hence,
By (z) N C must contain an element different framsayb. Necessarilyp ¢ S, this impliest = r andz is
notr-dominated, a contradiction. a

A first bound ofWC,.(C,,) directly follows from LemmalL:

Corollary 1. LetC be aweak-code oC,,. Then|C| > [n/(r + 1)]. More precisely, let = (2r+2)p+R
with0 < R < 2r + 1, we have:

e if R =0, then|C| > 2p;
o ifl<R<r+1,then|C|>2p+1;
o ifr+2< R<2r+1,then|C| > 2p+2.

Proof
In C,, there aren different setsS of 2r + 2 consecutives vertices. (f is a weakr-code, by Lemmd, there
are at leas? vertices of the code in each s¢t Each vertex of the code is counted exacth 2 times, so

1> 2] - ] :

In the following, we setr = (2r + 2)p + R, with0 < R < 2r + 1 andp > 1 (by assumptiony > 2r + 2).
Lemmas2 to 4 give some constructive upper bounds. Moreover, Lem2iass provides exact values of
WC,.(Cy).

Lemma 2. If n = (2r + 2)p, thenC,, has a weak-code with cardinality2p = n/(r + 1); moreover, this
code is optimum.

Proof
We construct the code by repeating the pattern depicted diyr&b. More precisely, leC = {v; | i =
r[2r+2]ori =r+1[2r+2]}. The setC has cardinalit2p. The seiC' r-dominates all the vertices 6f,.
Letr,, =r—kif k € [0,r]andr,, =k — (r+1)if k € [r + 1, 2r + 1] (the indices of the vertices @f,
are taken modul@r +2). Then for all pair of verticesy, v, k # [, we haveB,, (vx)NC # B,., (v)NC.
HenceC is anr-dominating set that,, -identifies the vertexy,. It follows thatC' is a weakr-code. This
code is optimum by Corollary. Figure6 gives an example of such a codelis.

O

Figure 5: The pattern for a weakcode in the cycle€ ..y 2), Withp > 1

We can easily extend this construction to the general case:

Lemma 3. If R = 1, then(,, has a weak-code with2p + 1 elements. IR < R < 2r + 1, then(C,, has a
weakr-code with2p + 2 elements. These codes are optimumAoce 1 or R > r + 2.

Proof

LetR=1andC ={v; |i=r[2r+2]ori=r+1[2r+2]} U{v,_1}. ThenC is a weakr-code ofC,,
and|C| = 2p + 1. (See Figurd'.)

Assume now thaR > 1 and take for cod€’ = {v; | i = r[2r + 2] ori =r + 1[2r + 2]} if R > r + 2 and
C=A{vi|i=r2r+2]ori=r+1[2r+2]} U{v,—_2,v,—1} otherwise. Ther is a weakr-code ofC,,. O

In some cases, the aforementioned codes are not optimum:
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Lemma 4. If (r, R) = (1, 2), thenC,, has an optimum weakcode of cardinalitp + 1. If (r, R) = (2, 2),
thenC,, has an optimum weékcode of cardinality2p + 1.

Figure 8 (resp. Figure9) shows an example of an optimum wesicode for(r, R) = (1,2) (resp.
(r,R) = (2,2)).

U1 V2 V2
o ° V1 b U3
vy - U3 o o
p 9 , ;
Vg O ® U4 Vo @ O V4
[ ] O . y
Vg . Vs Q. O
o e v7 ° Vs
U7 Ve Vg
Figure 8: An optimum weak 1-code Gfo Figure 9: An optimum weak 2-code 6§

Proof

For (r,R) = (1,2), the setC’ = {v; | i = 0[2]} is a weakl-code: each vertex in the code i9)-identified
by C and each vertex not in the code ig-identified byC'. For (r, R) = (2, 2), the setC = {v; | i = 0 [6]
ori =2 [6]} U {v,_2} is a weak2-code. The optimality of these codes is shown by Corollary O

The next lemma shows that the lower bound of Corollang not sharp foRk < R < r + 1 and
(r,R) # (1,2) or (2, 2), this implies that in these cases, codes of Len3mge optimum.

Lemma5.1f2 < R < r+1and(r,R) # (1,2) or (2,2), thenC, does not have a weakcode of
cardinality 2p + 1.

Proof
Assume that there is a weakcodeC of C,, of cardinality2p + 1. First, observe:

(0.1) In a set ofR consecutive vertices af,,, there must be at most one vertex@f Otherwise, in the
rest ofC,,, there are onl2p — 1 vertices of the code in a set (#r + 2)p consecutive vertices which
contradicts Lemma. In particular, if R > 2, then there is no pair of consecutive verticeg€of

(0©.2) For similar reasons, in a setdf+ 2 + R consecutive vertices @f,, there must be at mo8tvertices
of C.

Let M be the maximum size of a set of consecutive vertices nétamd letS,,; be a set of\/ consec-
utive vertices not inrC. We know by (0.1) thaf/ > R — 1. MoreoverM > 1; indeed, ifM = 1, then
R = 2 and the code is exactly one vertex over 2|Gp= § = 2p + 1,n = 4p + 2 and(r, R) = (1,2).



Let us denote; andc, the two elements of the code boundifig, let S; andSs be the two maximal
sets of consecutive vertices notdhwho are before; and afterc,, and finallycy andes the two vertices
of the code who are beforgy and afterS; (see Figurel0).

Sl SM SZ
———o{ ————— }of --0-00----- }of -- }o———
Co C1 z Yz C2 C3

Figure 10: Notation of the proof (Lemn&g

e Observe thap > 1, soC has cardinality at leastand observe by (O.1) th&t andS; are not empty.
Hence, the elements, ¢z, cs may be supposed distincts and so on for elements; andc,, but
note thatcy andcsz may denote the same vertex.

e Observe by (0.1)thafS;| > R—1,|S3| > R—1, M > R — 1. Let us denote the setS; U {¢; } U
Sy U {CQ} U Ss.

e Observe thatS| > 2r + 3. Indeed, ifcy andcs are different vertices, thefrg} U S U {c3} is a set
with 4 vertices of the code, so, by (0. +2 > 2r + 2+ R > 2r + 4. If ¢q andcz denote the same
vertex, thenS U {c3} =V (C,), p=1and|S|=n—1=2r+1+ R > 2r+ 3.

So there are three consecutive vertigeg, z in S such tha{B,.(z) U B,.(y) U B, (2)] N C C {c1,¢2} and
Yy € Sir.

To separatg andz, r, must bed(z, c1) ord(y, c2). To separatg andz, r, must bed(y, ¢1) or d(z, cz).
Therefore, either, = d(z,¢1) = d(z,¢2), orry = d(y, c2) = d(y,c1). In all cases)M is odd andy is the
middle element 06/, S0d(y, ¢1) = d(y, c2). As M # 1thenM > 3 and(z, z) € Sar x Sur.

Let d, denoted(y, c1) in the following. Letw be the vertex just before. ThenB, (w) C {cy, c1, c2}.
To separate: from y, 7, must bed(y, c2) = d, or d(z,c1) = d, — 1. To separate from w, r, must be
d(w,c1) = dy —20rd(z,c2) = dy + 1 ord(w, co). Necessarily, we have, = d(w, cy). This implies
d(w, ¢p) = r becausel(w, co) = d(x,co) — 1 > randr, < r. Sinced, < r andr, =d, orr, =d, — 1.

It follows r, = d,, = r. ThereforeM = 2r — 1, |S1] = 1, and finallyR = 2. With similar arguments for
z, We obtain the situation depicted by Figure

———m—{@o—oom ————— %&04———

O LY, wxy 2 €2 €3

Figure 11: The set§1, S2 and S, after some deductions

Consider(r, R) # (1,2) or (2,2) andR = 2, thenr > 3 and soM > 5. Letv; andwv, be the two
consecutive vertices ifiy; following ¢, (see Figurd 1). We havei(va, co) = M —1 > r andd(vy,c2) > r
sowv; andvy can only be separated by elements of the code on the left afidv,. Letr,, be the radius
that identifiesy;. There must be an element of the code at distance exacthyf v, to separate; andvs,
and for similar reasons, there must be an element of the datistancer,, + 1 of v; to separate; from
c1. This implies that two elements of the code are consecwigdies inC,,, which contradicts (0.1).0

We are now able to comput&C,.(C,,) for all n > 2r + 2. Our results are summarized in the following
theorem:
Theorem 2. Letr be an integer andh = (2r 4+ 2)p + R, with0 < R < 2r 4+ 1 andp > 1, we have:

i) if R =0, thenWC,(C,) = 2p,
i) if R=1orifr <2andR = 2,thenWC,(C,) =2p+1,
i) otherwise,R > 2 and(r, R) # (1,2) or (2,2), thenWC,.(C,) = 2p + 2.

Theorem2-i (resp. 2-ii and2-iii) follows from Lemma2 and Corollaryl (resp. from Lemmas3, 4 and
Corollary1 and from Lemmas, 5 and Corollaryl).

The following lemma completes the study for the small cases:



Lemma 6. Letr andn be integers witl8 < n < 2r + 1, thenWC,.(C,,) = 2.

Proof

The code cannot be a single vertex, otherwise its two neigrdre nog-separated for any soWcC,.(C,,) >
2. Two adjacent vertices form a weaicode for any-, soWC,.(C,,) = 2. Note that ifn is odd, the antipodal
vertex to the code in the cycle is identified by the empty set. o

3. Light r-codes of cycles

We now study light--codes of the cycl€,,. In this section, we will first assume that> 3r + 2 and
we will study the small values of at the end of the section.

Lemma 7. LetC be alightr-code ofC,, andc an element of’. There is an other element of the cadet
distance at most + 1 of c.

Proof

Letx andy be the neighbors af. As C'is a lightr-code, there is an integeg,, such thab < r,, < and
B,,, (x)nC # B,,,(y) N C. There consequently exists a vertéxc C such that, w.l.o.gs’ € B, (z)
andc ¢ B, (y). Moreoverc # ¢’ becausel(z,c) = d(c,y) = 1. It follows thatd(c’,c) < d(c,z) +
d(z,c) <rgy+1<7r+1. O

Lemma 8. Let S be a set o8r + 2 consecutive vertices ah,. If C'is a lightr-code ofC,,, thenS contains
at least two elements ¢f.

Proof

Let C be a lightr-code ofC,,. Let us assume there is a $ebf 3r + 2 consecutive vertices @f, containing
only one elementof C. w.l.0.g., we denot& = {vg, v1,. .., v34+1} ande = v; with i < 2r. By Lemmaz,
there is an element at distance at most+ 1 of c. Butc’ ¢ S so necessarily; € {v_1,v_2,...,v_(11)}
and: < r. Thenvg,41 is notr-dominated by any element 6f, a contradiction. |

It follows from Lemmas:

Corollary 2. LetC be alightr-code ofC,,. Then|C| > [2n/(3r + 2)]. More precisely, i = (3r+2)p+
Rwith0 < R<3r+1,p>1, we have:

e if R =0, then|C| > 2p,
o if 0 <2R < 3r+2,then|C| > 2p+1,
e otherwise2R > 3r 4 2, and|C| > 2p + 2.

In the following, letn = (3r 4+ 2)p+ Rwith 0 < R < 3r + 1 andp > 1 (by assumptiony > 3r + 2).
We want to exhibit some optimum codes.

Lemma 9. If n = (3r+2)p, thenC,, has a light-code with cardinality2p. Moreover this code is optimum.

Figure 12: The pattern for a lightcode in the cycle€ (3, 2), Withp > 1

Proof

We construct the code by repeating the pattern depictedduy&12. More precisely, leC = {v; | i =

r [3r+2]ori=2r+1[3r+2]}. SetC is ar-dominating set of sizép and we just need to check that
every pair of vertices is separated Gyfor some radius in0, r|. It is sufficient to prove it for pair$v;, v;)
with (z,7) € [0,3r + 1] x [0,3r + 1]. Let0 < ¢ < j < 3r + 1 be two integers and defing; as follows:



if j <r, thenr;; =r— j;

if i <r <y, thenry; =|(2r+1) —j];
ifr<i§27‘,thenmj =1i—r,

if 4 > 2r + 1,then’l"ij =17 — (2T—|— 1)

Then,0 < r;; < randitis easy to check thét;, v;) is r;;-separated b¢’. SoC' is a lightr-code ofC,,
with cardinality2p. This code is optimum by Corolla: O

We generalize this construction:

Lemma 10. If 1 < R < r + 1, thenC,, has a lightr-code of cardinalityp + 1. If R > r + 1, thenC,, has
a light r-code of cardinality2p + 2.

Proof
Consider the three following cases: @)c [1,7+1], (2) R € [r+2,2r+2], and (3)R € [2r+3,3r +1].
For each case, we define the cadas:

(1) C={vi|i<@r+2)p,i=r[3r+2lori=2r+1[3r+ 2]} U{vgr12)p}
(2 C={vi|i<@r+2)pi=r[3r+2]ori=2r+1[3r+ 2]} U{vEr12)p V(3r+2)ptr)
B) C={vili<@r+2)p,i=r[3r+2]ori=2r+1[3r+ 2]} U{vEr12)ptr VEr+2)ptar )

These sets are lightcodes of cardinalitgp + 1, 2p + 2 and2p + 2, respectively. ]
Lemma 11. If R > r + 1, thenC,, has no lightr-code of cardinality2p + 1.

Proof

Assume that there is a code of cardinality2p + 1. First observe that in a sét of R consecutive
vertices, there is at most one element of the c6d®therwise, there will be onlgp — 1 elements of the
code in the rest of the cycle which can be divideg idisjoint sets of siz&8r + 2. One of this set will have
only one element of the code, a contradiction by Len@na
Now, take an elementof the codeC, by Lemma? there is a vertex’ of the code at distancé< r + 1 of
c. Take the sef of all vertices between and¢’, c and¢’ included. S has cardinality at most+ 2 < R
and has two vertices @, a contradiction.

a

Our results are summarized in the following theorem:

Theorem 3. Letr be an integer anab = (3r 4+ 2)p + R, with0 < R < 3r + 2, andp > 1, we have:

i) if R=0,thenLC,(C,) = 2p;
i) if R<r+1,thenLC,(C,) =2p+1;
iii) otherwise,R > r + 1 and thenLC,.(C,,) = 2p + 2.

Theorem3-i (resp. 3-ii, 3-iii) follows from Corollary2 and Lemma® (resp. Corollary 2 and Lemmal0,
and from Corollary2, LemmaslOand1l).

The next lemma completes the study for the small values of
Lemma 12. Letr andn be integers witl3 < n < 3r + 1, thenLC..(C,,) = 2.

Proof

A light r-code cannot be a single vertex otherwise the neighborseoEkbment of the code are nit
separated for aniy Two adjacent vertices form a lightcode for anyn < 2r + 2. Forn > 2r + 2, take
two vertices at distance+ 1. a

With light r-codes, we can assign up#tor 1 radii to a vertex to separate it from all the other vertices.
Actually, for cycles, we just need three radii:



Proposition 1. Let C be a lightr-code ofC,, andx be a vertex of,,. Assume that > 2r + 1. There is
a subsetR, of [0, r] of size at mos$ such that for all other verticeg of C,,, there isr,,, € R, such that
B,, (x)NC # B,,, (y)NC.

Tay

Proof

Without loss of generality, we can assume that vy. Assume first that there exist two vertices of the
code, sayn = v; andb = v;, such that-r < i < 0 < j < r (if x € C we havea = b = z). Then
R, = {d(z,a),d(x,b)} separates from all the other vertices. Verticesandv,, are separated for radius
d(z,a) if 0 < k < n/2and for radiusi(z, b) if —n/2 < k < 0.

Otherwise, letz = v; be the element of the code closestito We can assume that< i < r. By
Lemma7 we know that there exists another element of the dodev; such that < j andj —¢ < r + 1.
Thenz is separated from all vertices not B (a) by radiusi, and from all vertices im;_1(a) by radius
i — 1. It remains one vertexyy;, that is separated fromfor radiusd(vs;,b) < r. Finally the three radii,

i — 1, d(v2;, b) are enough to separaterom all vertices. O

This proposition leads to the following question: what is flice of an optimum light-code orC,, that
need to assign onl¥ radii to each vertex? We solve this question in the nexteecti

4. Codes with 2 radii

A (2,]0,r])-codeC of a graphG is a subset of vertices @¥ thatr-dominates every vertex and such
that for each vertex, we can assign a s&, = {r,,r,} of integersin[0, r] such that every pair of distinct
vertices(z, y) is r,, or r,-separated by

Lemma 13. Letk = [(r +1)/3] ands = 3r — k + 2. If s dividesn, then the code defined by repeating
the patternS depicted by Figurd 3is a (2, [0, r])-code ofC,,.

Figure 13: The patters§ for a (2, [0, r])-code of the cycl€,, with n multiple of s (cf. Lemmal3)

Proof

We focalize on a patter. We denote by; andc, the two vertices of the code of and we assume that
c1 = vg. Thenes = v,._;41 and the vertices of are the vertices between . andwvs, ;1. We partition
the vertices of5 in five subsetsA; = {v_,,...,v_k_1}, A2 ={v_p,...,v_1}, A3 = {vo, .. ., Vr—ft1 1}
Ay ={vr—ky2,...,pp1raNdAs = {vpq9, ..., V2041 }. Ifr =1, Ay and A4 are empty, ifr = 0, A3 is
non empty, the other sets are empty. kdte a vertex o5. Let R, the set of radii associated 0

if z € Ay, thenselR, = {d(z,c1),d(z,¢c1) — 1};
if x € Ay, thensetR, = {d(z,c1),d(z,c2) — 1};
if x € As, thensetR, = {d(z,c1),d(z,c2)};

if z € Ay, thenseR, = {d(z,c1) — 1,d(x,c2)};
if z € As, then setR, = {d(z, ¢2), (a: co) — 1}

One can check tha&k, C [0, 7] in all cases. By symmetry, we just need to check that evergxerof
Ay U As U Az is separated from all the other vertices for a radiug jn

If z € Ay, thenz is separated from the vertices notiy, .,(c1) for radiusd(z, ¢1) and from the
vertices iNBy(, .,)—1(c1) for radiusd(x,c;) — 1. Remains the vertey at distanced(z, c;) of ¢;. If
x=v_;,Withk+1<i<rtheny =v; andd(y,co) =r—k+1—i<r -2k <k+1<d(z,c1)by
definition ofk. Sox andy are separated for radid$z, ¢4 ).

If z € Ay, thenz is separated from the vertices notiy, .,(c1) for radiusd(z, ¢1) and from the
vertices inBy ;. ¢,)—1(c1) for radiusd(z, co) — 1. That covers all the vertices of the cycle.

One can check by the same kind of arguments:ithat A3 is also separated from all the other vertices
for d(z, c1) ord(z, c2). a



Lemma 14. LetC be a(2, [0, r])-code ofC,,. LetS be a set of = 3r—k+2 vertices withk = | (r+1)/3].
ThenS contains at least two vertices 6f.

Proof

Assume thatS contains only one vertexof C. Forr = 0, the lemma is true as all the vertices must be
0-dominated. The lemma is also true for= 1, as a(2, [0, 1])-code is a lightl.-code. Now, for- > 2, for
convenience = vy. Letv_, be the first vertex of andv, be the last vertex of, a+b = 3r—k+1. We can
assume that < b. C'is also a lightr-code so by Lemm&a < r, thenb > 2r — k + 1. C' is r-dominating
sob < 2r,and themu > r — k+ 1. We haveB,.(vy) NC = B, (vix—1) NC = B, (vg4+1) NC = {c} because
d(vg,v_q) = a+k > r+1andd(vg,v) =b—k > 2r —2k+1 > r+ 1. Then,v, andv,_; are only
separated for radius — 1, v, andvy,1 are only separated for radiés So necessarily, andv_; must be
separated for radiUsor k — 1. That means there is a vertex of the cetlg S different ofc at distance at
mostk of v_g. Butd(c',v_) = d(¢',v_a) + d(v_q,v_k) > 14+a—k > r—2k+2 > k+1 (by definition
of k), a contradiction. ]

As corollary, the code of Lemm&3 is optimum and we have the following lower bound, as for light
and weak codes:

Corollary 3. LetC be a(2,[0,r])-code ofC,,. Then|C| > [2n/s] withs =3r — [(r +1)/3] + 2.

It remains the case whesadoes not divide:, with similar arguments used for light codes, one can show
that:

Theorem 4. Letn,r, s, p, R be integers, set = |[(r +1)/3], s = 3r —k +2andn = sp + R, with
0 < R < s. Then the size of an optimu(®, [0, r])-code ofC,, is:

i) 2pif R=0;
i) 2p+1IfR<r+1;
i) 2p+ 2 otherwise.

5. Perspectives
Section4 suggests the following definition that will generalize &ktprevious ones:

Definition 1. Letp be an integer andk be a set of non-negative integers.(A R)-identifying codeof a
graphG = (V, E) is a subseC of V such that:

(domination) Vz € V,3r € R, B, (x) N C #

(identification) {\m € V,3R, C R,|Ry| < p, Wy € V,y # 2,3y, € R, SiL:
B, (x)n C# B, (y)yNnC
Integerp corresponds to the number of radii we can assign to a vertsggarate it from all the others
whereas the seéR denotes the set of radii we can use. This definition unifiethallprevious ones: &
identifying code is 41, {r})-identifying code, a weak-code is &1, [0, 7] )-identifying code, a light-code
isa(r + 1, [0, r])-identifying code, a-locating dominating code is@, {0, })-identifying code.

Propositionl is equivalent to say that evefy, [0, r])-code in a cycle, wittp > 3 is a(3,[0,7])-
identifying code. Sectiod and Sectior consider(2, [0, r])-identifying codes and1, [0, r])-identifying
codes of the cycle, respectively. Hence we solved the pnoblginding an optimun{p, [0, r])-identifying
code (for anyp) in a cycle. However, the general problem of finding an optimip, R )-identifying codes
in the cycle is still unknown.
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