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Multifractal analysis of images:

New connexions between analysis and geometry

Yanick Heurteaux∗ and Stéphane Jaffard†

Abstract: Natural images can be modelled as patchworks of homogeneous textures
with rough contours. The following stages play a key role in their analysis:

- Separation of each component
- Characterization of the corresponding textures
- Determination of the geometric properties of their contours.
Multifractal analysis proposes to classify functions by using as relevant parameters

the dimensions of their sets of singularities. This framework can be used as a classi-
fication tool in the last two steps enumerated above. Several variants of multifractal
analysis were introduced, depending on the notion of singularity which is used. We
describe the variants based on Hölder and Lp regularity, and we apply these notions
to the study of functions of bounded variation (indeed the BV setting is a standard
functional assumption for modelling images, which is currently used in the first step
for instance). We also develop a multifractal analysis adapted to contours, where the
regularity exponent associated with points of the boundary is based on an accessi-
bility condition. Its purpose is to supply classification tools for domains with fractal
boundaries.
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1 Mathematical modelling of natural images

In order to develop powerful analysis and synthesis techniques in image processing,
a prerequisite is to split the image into simpler components, and to develop some
classification procedures for these components. Consider the example of a natural
landscape: It consists in a superposition of different pieces which present some homo-
geneity. Perhaps, there will be a tree in the foreground, mountains in the background
and clouds at the top of the picture. An efficient analysis procedure should first be
able to separate these components which will display completely unrelated features and
analyse each of them separately, since they will individually present some homogeneity.
Considering an image as a superposition of overlapping components is referred to as
the “dead-leave” model, introduced by Matheron, see [14] (and [2] for recent devel-
opments). Each piece appears as a relatively homogeneous part which is “cut” along
a certain shape Ω. The homogeneous pieces are the “textures” and their modelling
can be performed by interpreting them as the restriction on the “shape” Ω of random
fields of R2 with particular statistical properties (stationarity,...). If a statistical model
depending on a few parameters is picked, then one needs to devise a robust statistical
test in order to estimate the values of these parameters. Afterwards, the test can be
used as a classification tool for these textures. Furthermore, once the relevant values
of the parameters have been identified, the model can be used for simulations. The
procedure is now standard to classify and generate computer simulations of clouds for
instance, see [1, 16].

Another problem is the modelling of the shape of Ω ; indeed natural scenes often
do not present shapes with smooth edges (it is typically the case for the examples of
trees, mountains or clouds that we mentioned) and the challenge here is to develop
classification tools for domains with non-smooth (usually ”fractal”) boundaries. Until
recently, the only mathematical tool available was the box-dimension of the boundary
(see Definition 3.1) which is an important parameter but nevertheless very insufficient
for classification (many shapes share the same box dimension for their boundary, but
clearly display very different features).

Let us come back to the separation of the image into ”simpler” components that
present some homogeneity. It can be done using a ”global” approach: The image
is initially stored as grey-levels f(x, y) and is approximated by a simple “cartoon”
u(x, y). What is meant by ”simple” is that textures will be replaced by smooth pieces
and rough boundaries by piecewise smooth curves1. The building of a mathematical
model requires to summarize these qualitative assumptions by choosing an appropriate
function space setting. In practice, the space BV (for ”bounded variations”) is usually
chosen. A function f belongs to BV if its gradient (in the distribution sense) is a
bounded measure (the name BV refers to the one-dimensional case where a function f
belongs to BV if the sums

∑
i |f(xi+1)−f(xi)| are uniformly bounded, no matter how

1This kind of simplification was anticipated by Hergé in his famous ”Tintin” series and by his
followers of the Belgian ”la ligne claire” school.
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we chose the finite increasing sequence xi). Indeed, the space BV presents several of
the required features : It allows only relatively smooth textures but, on the other hand,
it allows for sharp discontinuities along smooth lines (or hypersurfaces, in dimension
> 2). It is now known that natural images do not belong to BV , see [8], but this does
not prevent BV to be used as a model for the ”sketch” of an image: f is decomposed as
a sum u+v where u ∈ BV and v is an approximation error (for instance it should have
a small L2 norm) and one uses a minimization algorithm in order to find u. In such
approaches, we may expect that the discontinuities of the “cartoon” u will yield a first
approximation of the splitting we were looking for. Such decompositions are referred
to as “u + v” models and lead to minimization algorithms which are currently used;
they were initiated by L. Rudin and S. Osher, and recent mathematical developments
were performed by Y. Meyer (see [15] and references therein).

Once this splitting has been performed, one can consider the elementary compo-
nents of the image (i.e. shapes that enclose homogenous textures) and try to under-
stand their geometric properties in order to obtain classification tools ; at this point, no
a priori assumption on the function is required; one tries to characterize the properties
of the textures and of the boundaries by a collection of relevant mathematical param-
eters; these parameters should be effectively computable on real images in order to be
used as classification parameters and hence for model selection. Multifractal analysis is
used in this context: It proposes different pointwise regularity criteria as classification
tools and it relates them to ”global” quantities that are actually computable.

The different pointwise quantities (regularity exponents) which are used in multi-
fractal analysis are exposed in Section 2, where we also recall their relationships.

In Section 3, we deal with ”global” aspects : The tools (fractional dimensions) used
in order to measure the sizes of sets with a given pointwise regularity exponent are
defined (they are referred to as spectra of singularities). We also draw a bridge between
these local analysis tools and the global segmentation approach described above :The
implications the BV assumption on the multifractal analysis of a function are derived.
The results of this section supply new tools in order to determine if particular images
(or homogenous parts of images) belong to BV .

In Sections 4 and 5, we concentrate on the analysis of domains with fractal bound-
aries: Section 4 deals with general results concerning the pointwise exponents associ-
ated with these domains and Section 5 deals with their multifractal analysis. Apart
from image processing, there are other motivations for the multifractal analysis of
fractal boundaries, e.g. in physics and chemistry: Turbulent mixtures, aggregation
processes, rough surfaces, see [12] and references therein.

2 Pointwise smoothness

Each variant of multifractal analysis is based on a definition of pointwise smoothness.
In this section, we introduce the different definitions used, explain their motivations
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and their relationships.

2.1 Pointwise exponents for functions and measures

The most simple notion of smothness of a function is supplied by Ck differentiabil-
ity. Recall that a bounded function f belongs to C1(Rd) if it has everywhere partial
derivatives ∂f

∂xi
which are continuous and bounded; Ck differentiability for k ≥ 2 is

defined by recursion: f belongs to Ck(Rd) if it belongs to C1(Rd) and each of its
partial derivatives ∂f

∂xi
belongs to Ck−1(Rd). Thus a definition is supplied for uniform

smoothness when the regularity exponent k is an integer. Taylor’s formula follows
from the definition of Ck differentiability and states that, for any x0 ∈ Rd, there exists
C > 0, δ > 0 and a polynomial Px0 of degree less than k such that

if |x− x0| ≤ δ, then |f(x)− Px0(x)| ≤ C|x− x0|k.

This consequence of Ck differentiability is just in the right form to yield a definition
of pointwise smoothness which also makes sense for fractional orders of smoothness;
following a usual process in mathematics, this result was turned into a definition.

Definition 2.1. Let α ≥ 0, and x0 ∈ Rd; a function f : Rd → R is Cα(x0) if there
exists C > 0, δ > 0 and a polynomial Px0 of degree less than α such that

if |x− x0| ≤ δ, then |f(x)− Px0(x)| ≤ C|x− x0|α. (1)

The Hölder exponent of f at x0 is hf (x0) = sup {α : f is Cα(x0)}.

Remarks: The polynomial Px0 in (1) is unique and, if α > 0, the constant term of
Px0 is f(x0); P is called the Taylor expansion of f at x0 of order α; (1) implies that
f is bounded in a neighbourhood of x0; therefore, the Hölder exponent is defined only
for locally bounded functions; it describes the local regularity variations of f . Some
functions have a constant Hölder exponent: They display a “very regular irregularity”.
A typical example is the Brownian motion B(t) which satisfies almost surely: ∀x,
hB(x) = 1/2.

Hölder regularity is the most widely used notion of pointwise regularity for func-
tions. However, it suffers several drawbacks; one of them was patent at the very
beginning of the introduction of multifractal analysis, in the mid-eighties; indeed, it
was introduced as a tool to study the velocity of turbulent fluids, which is not nec-
essarily a locally bounded function; and, as mentioned above, Hölder regularity can
only be applied to locally bounded functions. Several mathematical drawbacks were
already discovered at the beginning of the sixties by Calderón and Zygmund, see [4].
Another one which appeared recently is that the Hölder exponent of a function which
has discontinuities cannot be deduced from the size of its wavelet coefficients. This is
a very serious drawback for image analysis since images always contain objects partly
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hidden behind each other (this is referred to as the “occlusion phenomenon”), and
therefore necessarily display discontinuities.

If B is a ball, let

‖ f ‖B,∞= sup
x∈B

|f(x)|, and, if 1 ≤ p < ∞, ‖ f ‖B,p=
(

1
V ol(B)

∫
B
|f(x)|pdx

)1/p

;

finally let Br = {x : |x−x0| ≤ r} (not mentioning x0 in the notations won’t introduce
ambiguities afterwards). A clue to understand how the definition of pointwise Hölder
regularity can be weakened (and therefore extended to a wider setting) is to notice
that (1) can be rewritten ‖ f − Px0 ‖Br,∞≤ Crα. Therefore, one obtains a weaker
criterium by substituting in this definition the local L∞ norm by a local Lp norm. The
following definition was introduced by Calderón and Zygmund in 1961, see [4].

Definition 2.2. Let p ∈ [1,+∞); a function f : Rd −→ R in Lp
loc belongs to T p

α(x0) if
∃R,C > 0 and a polynomial Px0 of degree less than α such that

∀r ≤ R ‖ f − Px0 ‖Br,p≤ Crα. (2)

The p-exponent of f at x0 is hp
f (x0) = sup{α : f ∈ T p

α(x0)}.

It follows from the previous remarks that the Hölder exponent hf (x0) coincides
with h∞f (x0). Note that (2) can be rewritten

∀r ≤ R,

∫
Br

|f(x)− Px0(x)|pdx ≤ Crαp+d. (3)

These p-smoothness conditions have several advantages when compared with the
usual Hölder regularity conditions: They are defined as soon as f belongs locally to
Lp and the p-exponent can be characterized by conditions bearing on the moduli of
the wavelet coefficients of f , see [11]. Note that the T p

α(x0) condition gets weaker as p
goes down, and therefore, for a given x0, p 7→ hp

f (x0) is a decreasing function.
Let us now focus on the weakest possible case, i.e. when p = 1. First, recall that,

if f is a locally integrable function, then x0 is a Lebesgue point of f if

1
V ol(Br)

∫
Br

(f(x)− f(x0))dx −→ 0 when r −→ 0. (4)

Therefore, one can see the T 1
α(x0) smoothness criterium as a way to quantify how fast

convergence takes place in (4) when x0 is a Lebesgue point of f .
Considering the L1 norm of f − Px0 expresses an average smoothness: How close

(in the mean) are f and a polynomial. Sometimes one rather wants to determine how
large f is in the neighbourhood of x0; then the relevant quantity is the rate of decay of
the local L1 norms

∫
B(x0,r) |f(x)|dx when r → 0. This quantity can also be considered

for a nonnegative measure µ instead of an L1 function: In that case, one considers∫
B(x0,r) dµ = µ(B(x0, r)). This leads us to the following pointwise size exponent.
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Definition 2.3. Let p ∈ [1,+∞); a nonnegative measure µ belongs to Sα(x0) if there
exist positive constants R and C such that

∀r ≤ R,

∫
Br

dµ ≤ Crα. (5)

The size-exponent of µ at x0 is

sµ(x0) = sup{α : µ ∈ Sα(x0)} = lim inf
r→0

log µ(B(x0, r))
log r

.

If f ∈ L1, then sf (x0) is the size exponent of the measure dµ = |f(x)|dx.

If f ∈ L1 and if Px0 in (3) vanishes, then the definitions of the 1-exponent and
the size exponent of f coincide except for the normalization factor rd in (3) which has
been dropped in (5); thus, in this case, sf (x0) = h1

f (x0)+d. This discrepancy is due to
historical reasons: Pointwise exponents for measures and for functions were introduced
independently. It is however justified by the following remark which is a consequence
of two facts: µ((x, y]) = |F (y)− F (x)|, and the constant term of Px0 is F (x0).

Remark: Let µ be a non-negative measure on R such that µ(R) < +∞ and let F be
its repartition function defined by F (x) = µ((−∞, x]); if the polynomial Px0 in (3) is
constant, then sµ(x0) = h1

F (x0).

One does not substract a polynomial in the definition of the pointwise exponent of
a measure because one is usually interested in the size of a measure near a point, not
its smoothness: Consider the very important case where µ is the invariant measure of
a dynamical system; then the size exponent expresses how often the dynamical system
comes back close to x0, whereas a smoothness index has no direct interpretation in
terms of the underlying dynamical system.

We will need to use T p
α(x0) smoothness expressed in a slightly different form:

Proposition 2.4. Let f ∈ Lp
loc, and α ∈ (0, 1]; let f r = 1

V ol(Br)

∫
Br

f(x)dx. Then

f ∈ T p
α(x0) ⇐⇒

(
1

V ol(Br)

∫
Br

∣∣f(x)− f r

∣∣p dx

)1/p

≤ Crα. (6)

Proof. Suppose that f ∈ T p
α(x0) and let A be the constant polynomial which appears

in the definition of T p
α; then

f r −A =
1

V ol(Br)

∫
Br

(f(x)−A)dx ;

Hölder’s inequality yields that |f r −A| is bounded by

1
V ol(Br)

[∫
Br

|f(x)−A|pdx

]1/p

(V ol(Br))1/q ≤ C(V ol(Br))1/q−1+1/prα = Crα .
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Thus, f r = A + O(rα). As a consequence, if we replace A by f r in the quantity to be
estimated in the definition of T p

α, the error is O(rα).
Conversly, suppose that (6) is true. Let r, r′ such that 0 < r ≤ r′. We have

‖f − f r‖Lp(Br) ≤ Crα+d/p and ‖f − f r′‖Lp(Br′ )
≤ C(r′)α+d/p .

Since r ≤ r′, ‖f − f r′‖Lp(Br) ≤ C(r′)α+d/p; therefore

‖f r′ − f r‖Lp(Br) ≤ C(r′)α+d/p ,

so that |f r′ − f r| ≤ C(r′)α . It follows that f r converges to a limit f0 when r goes to
0. Moreover f r = f0 + O(rα) and therefore one can take A = f0.

2.2 Pointwise exponents for boundary points of domains

We will show how to draw distinctions between points of the boundary of a domain
Ω, by associating to each of them an exponent, which may change from point to point
along the boundary. This will allow us afterwards to perform a multifractal analysis
of the boundary, i.e. to use as a discriminating parameter between different types
of boundaries the whole collection of dimensions of the corresponding sets where this
exponent takes a given value. Let us check if the exponents previously introduced
can be used; the function naturally associated with a domain Ω is its characteristic
function 11Ω(x) which takes the value 1 on Ω and 0 outside Ω. The Hölder exponent
of 11Ω cannot play the role we expect, since it only takes two values: +∞ outside ∂Ω
and 0 on ∂Ω. Let us now consider the p-exponents and the size exponent. We start
by a toy-example: The domain Ωα ⊂ R2 defined by

(x, y) ∈ Ωα if and only if |y| ≤ |x|α.

At the point (0, 0) one immediately checks that, if α ≥ 1, the p-exponent takes the
value (α − 1)/p, and the size exponent takes the value α + 1. On the other hand,
if 0 < α < 1, the p exponent takes the value (1 − α)/(αp) but the size exponent
is always equal to 2. This elementary computation shows the following facts: The p-
exponent of a characteristic function can take any nonnegative value, the size exponent
can take any value larger than 2; the 1-exponent and the size exponent give different
types of information. The following proposition, whose proof is straightforward, gives
a geometric interpretation for the size exponent of 11Ω.

Proposition 2.5. Let Ω be a domain of Rd and let x0 ∈ ∂Ω; 11Ω ∈ Sα(x0) if and only
if ∃R > 0 and C > 0 such that ∀r ≤ R V ol(Ω ∩B(x0, r)) ≤ Crα.

The following definition encapsulates this geometric notion.

7



Definition 2.6. A point x0 of the boundary of Ω is weak α-accessible if there exist
C > 0 and r0 > 0 such that ∀r ≤ r0,

V ol (Ω ∩B(x0, r)) ≤ Crα+d. (7)

The supremum of all values of α such that (7) holds is called the weak accessibility
exponent at x0. We denote it by αw(x0).

Thus αw(x0) is a non negative number and is nothing but the size exponent of
the measure 11Ω(x)dx shifted by d. The following proposition of [12] shows that, for
characteristic functions, all the p-exponents yield the same information and therefore
one can keep only the 1-exponent.

Proposition 2.7. Let Ω be a domain of Rd and let x0 ∈ ∂Ω; then 11Ω ∈ T p
α(x0) if and

only if either 11Ω ∈ Sα/p(x0) or 11Ωc ∈ Sα/p(x0), where Ωc denote the complement of
Ω.

Following the same idea as above, one can also define a bilateral accessibility
exponent of a domain which is the geometric formulation of the 1-exponent of the
function 11Ω, see [12].

Definition 2.8. A point x0 of the boundary of Ω is bilaterally weak α-accessible if
there exist C > 0 and r0 > 0 such that ∀r ≤ r0,

min
[
V ol (Ω ∩B(x0, r)) , V ol (Ωc ∩B(x0, r))

]
≤ Crα+d. (8)

The supremum of all values of α such that (8) holds is called the bilateral weak
accessibility exponent at x0. We denote it by βw(x0).

Remark 1: It follows immediately from the above definitions that the bilateral expo-
nent βw(x0) is the supremum of the unilateral exponents αw(x0) associated with Ω and
Ωc. In practice, using unilateral or bilateral exponents as classification tools in multi-
fracal analysis will be irrelevant when Ω and Ωc have the same statistical properties.
It is the case when they are obtained by a procedure which makes them play the same
role (for instance if ∂Ω is the edge of the fracture of a metallic plate). On the other
hand, unilateral exponents should yield different types of information when the roles
played by Ω and its complement are very dissymetric (electrodeposition aggregates for
instance).

Remark 2: If Ω ∈ BV , then, by definition grad(11Ω) is a measure, and therefore one
could also consider an additional exponent, which is the size exponent of |grad(11Ω)|.
We won’t follow this idea because, in applications, one has no direct access to the mea-
sure grad(11Ω), and we want to base our analysis only on information directly available
from Ω.

We will also use the following alternative accessibility exponents.
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Definition 2.9. A point x0 of the boundary of Ω is strong α-accessible if there exist
C > 0 and r0 > 0 such that ∀r ≤ r0,

V ol (Ω ∩B(x0, r)) ≥ Crα+d. (9)

The infimum of all values of α such that (9) holds is called the strong accessibility
exponent at x0. We denote it by αs(x0).

A point x0 of the boundary of Ω is bilaterally strong α-accessible if there exist C > 0
and r0 > 0 such that ∀r ≤ r0,

min
[
V ol (Ω ∩B(x0, r)) , V ol (Ωc ∩B(x0, r))

]
≥ Crα+d. (10)

The infimum of all values of α such that (10) holds is called the bilateral strong
accessibility exponent at x0. We denote it by βs(x0).

The following result yields alternative definitions of these exponents.

Proposition 2.10. Let x ∈ ∂Ωess; then

αw(x) + d = lim inf
r→0

log V ol (Ω ∩B(x, r))
log r

, αs(x) + d = lim sup
r→0

log V ol (Ω ∩B(x, r))
log r

.

Similar relations hold for the indices βw(x) and βs(x).

Other exponents associated with boundaries have been introduced; they were based
on the notion of density, which we now recall.

Definition 2.11. Let x0 ∈ Ω; the density of Ω at x0 is

D(Ω, x0) = lim
r→0

V ol(B(x0, r) ∩ Ω)
V ol(B(x0, r))

(11)

This limit does not necessarily exist everywhere; thus, if one wants to obtain an
exponent which allows a classification of all points of ∂Ω, the upper density exponent
D(Ω, x0) or the lower density exponent D(Ω, x0) should rather be used; they are
obtained by taking in (11) respectively a lim sup or a lim inf. The set of points where
D(Ω, x0) differs from 0 and 1 is called the measure theoretic boundary, see Chap. 5
of [22]. This allows to introduce topological notions which have a measure-theoretic
content: The measure theoretic interior of Ω is the set of points satisfying D(Ω, x0) =
1; the measure theoretic exterior is the set of points satisfying D(Ω, x0) = 0, see Chap.
5 of [22] for more on these notions which bear some similarities with the ones we will
develop in Section 4.1. Note that points with a positive weak-accessibility exponent
all have a vanishing density, so that density exponents are a way to draw a distinction
between different points of weak-accessibility 0. This refinement has been pushed even
further when Ω has a finite perimeter (i.e. when 11Ω ∈ BV ): Points of density 1/2 can
be classified by considering points where the boundary is “close” to an hyperplane (see
[22] for precise definitions); such points constitute the “reduced boundary” introduced
by de Giorgi. We will come back to these classifications in Section 4.2.
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3 Fractional dimensions, spectra and multifractal analy-
sis

3.1 Fractional dimensions

In order to introduce global parameters which allow to describe the ”fractality” of the
boundary of a domain, we need to recall the notions of dimensions that will be used.
Their purpose is to supply a classification among sets of vanishing Lebesgue measure
in Rd.

The simplest notion of dimension of a set E (and the only one that is computable
in practice) is the upper box-dimension. It can be obtained by estimating the number
of dyadic cubes that intersect E. Recall that a dyadic cube of scale j is of the form

λ =
[
k1

2j
,
k1 + 1

2j

)
× · · · ×

[
kd

2j
,
kd + 1

2j

)
, where k = (k1, . . . kd) ∈ Zd;

Fj denotes the set of dyadic cubes of scale j.

Definition 3.1. (Upper box-dimension) Let E be a bounded set in Rd and Nj(E) be
the number of cube λ ∈ Fj that intersect E. The upper box-dimension of the set E is
defined by

∆(E) = lim sup
j→+∞

log(Nj(E))
log(2j)

.

This notion of dimension presents two important drawbacks. The first one is that
it takes the same value for a set and its closure. For example, the upper box-dimension
of the set Q of rational numbers is equal to 1, but we would expect the dimension of
a countable set to vanish. The second one is that it is not a σ-stable index, i.e. the
dimension of a countable union of sets usually differs from the supremum of the dimen-
sions of the sets. In order to correct these drawbacks, a very clever idea, introduced
by C. Tricot in [21], consists in “forcing” the σ-stability as follows:

Definition 3.2. (Packing dimension) Let E ⊂ Rd; the packing dimension of E is

dimP (E) = inf

(
sup
i∈N

[∆(Ei)] ; E ⊂
⋃
i∈N

Ei

)
,

where the infimum is taken on all possible “splittings” of E into a countable union.

The Hausdorff dimension is the most widely used by mathematicians.

Definition 3.3. (Hausdorff dimension) Let E ⊂ Rd and α > 0. Let us introduce the
following quantities : Let n ∈ N; if Λ = {λi} i∈N is a countable collection of dyadic
cubes of scales at least n which forms a covering of E, then let

Hα
n(E,Λ) =

∑
i∈N

diam (λi)α, and Hα
n(E) = inf (Hα

n(E,Λ)) ,
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where the infimum is taken on all possible coverings of E by dyadic cubes of scales at
least n. The α-dimensional Hausdorff measure of E is

Hα(E) = lim
n→+∞

Hα
n(E).

The Hausdorff dimension of E is

dimH (E) = sup (α > 0 ; Hα(E) = +∞) = inf (α > 0 ; Hα(E) = 0) .

Remark 1. Hausdorff measures extend to fractional values of d the notion of d-
dimensional Lebesgue measure, indeed, Hd is the Lebesgue measure in Rd. The Haus-
dorff dimension is an increasing σ-stable index.

Remark 2. The following inequalities are always true, see [6].

0 ≤ dimH (E) ≤ dimP (E) ≤ ∆(E) ≤ d .

3.2 Spectra of singularities

In all situations described in Section 2, a “pointwise smoothness function” is associated
to a given signal (this may be for example the Hölder exponent, the p-exponent or the
size exponent). In the case where the signal is irregular, it is of course impossible to
describe this function point by point. That is why one tries to obtain a statistical
description, by determining only the dimensions of the sets of points with a given
exponent. This collection of dimensions, indexed by the smoothness parameter is
called the spectrum of singularities. Actually, two kinds of spectra are used, depending
whether one picks the Hausdorff or the packing dimension, see Theorems 5.3 and 5.4
for estimates on such spectra. In the next section, we will estimate the p-spectrum of
BV functions. This p-spectrum dp

f (H) is the Hausdorff dimension of the set of points
whose p-exponent is H. If p = ∞, d∞f (H) is simply denoted by df (H): It denotes
the Hausdorff dimensions of the sets of points where the Hölder exponent is H, and is
called the spectrum of singularities of f .

3.3 Multifractal analysis of BV functions

We saw that the space BV is currently used in order to provide a simple functional
setting for ”sketchy” images, i.e. images which consist of piecewise smooth pieces
separated by lines of discontinuities which are piecewise smooth. This approach is
orthogonal to the multifractal point of view; indeed, multifractal analysis makes no
a priori assumption on the function considered and, therefore, is relevant also in the
analysis of non smooth textures and irregular edges. In order to go beyond this remark,
it is important to understand the implications of the BV assumption on the multifractal
analysis of a function. They strongly depend on the number of variables of f ; therefore,
though our main concern deals with functions defined on R2, considering the general
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case of functions defined on Rd will explain some phenomena which, if dealt with only
for d = 1 or 2, might appear as strange numerical coincidences.

We start by recalling the alternative definitions of the space BV (Rd). Let Ω be an
open subset of Rd and f ∈ L1(Rd). By definition,∫

Ω
|Df | = sup

{∫
Ω

f div g, g = (g1, · · · , gd) ∈ C1
0 (Ω, Rd) and ‖g‖∞ ≤ 1

}
,

where div g =
∑d

i=1
∂gi

∂xi
. This notation is justified as follows : An integration by parts

shows that if f ∈ C1(Rd),
∫
Ω |Df | =

∫
Ω |gradf |dx where gradf = ( ∂f

∂x1
, · · · , ∂f

∂xd
) .

Definition 3.4. Let Ω ⊂ Rd, and f ∈ L1(Rd); f belongs to BV (Ω) if
∫
Ω |Df | < +∞.

Recall that the alternative definition is: f ∈ BV (Ω) if f ∈ L1(Ω) and grad f
(defined in the sense of distributions) is a Radon vector-measure of finite mass.

What is the correct setting in order to perform the multifractal analysis of a BV
function ? In dimension 1, the alternative definition in terms of Radon measures
immediately shows that a BV function is bounded (indeed a Radon measure is the
difference of two positive measures and the primitive of a positive measure of finite
mass is necessarily bounded). Therefore, one can expect that the BV assumption has
a consequence on the ”usual” spectrum df (H) based on the Hölder exponent. On
the other hand, if d > 1, then a BV function needs not be locally bounded (consider
for instance the function 1

‖x‖α in a neighborhood of 0, for α small enough). A simple
superposition argument shows that it may even be nowhere locally bounded ; therefore,
we cannot expect the BV assumption to yield any information concerning the ”usual”
spectrum of singularities in dimension 2 or more. The following Sobolev embeddings
precisely determine for which values of p a BV function locally belongs to Lp (see [7]).

Proposition 3.5. ([7]) Let d? = d
d−1 (d? is the conjugate exponent of d). If f ∈

BV (Rd) then

‖f‖d? ≤ C(d)
∫
|Df | . (12)

Moreover, if B = B(x0, r) and fB = 1
V ol(B)

∫
B f(x)dx,

‖f − fB‖Ld? (B) ≤ C(d)
∫

B
|Df | . (13)

Since (12) states that BV (Rd) is embedded in Ld?
(Rd), we can infer from this

proposition that the ”right” value of p in order to study the pointwise smooothness
of functions in BV (Rd) is p = d?. The following result actually gives estimates of the
d?-spectrum of BV functions.

12



Theorem 3.6. Let f ∈ BV (Rd). The d?-spectrum of f satisfies

dd?

f (H) ≤ H + (d− 1) .

Proof of Theorem 3.6. If d = 1, f is the difference of two increasing functions. The
theorem is a consequence of the classical bound d(H) ≤ H for probability measures,
see [3] and the remark that, if H ≤ 1, the size exponent of a positive measure and the
Hölder exponent of its primitive coincide. We can therefore assume that d ≥ 2.

We can clearly suppose that H ≤ 1. Let us consider f on the unit cube [0, 1]d and
let j ≥ 0. We split this cube into 2dj dyadic cubes of width 2−j . If λ is a dyadic cube
in Fj , let TV (λ) denote the total variation of f on the ball Bλ = B(µλ,

√
d2−j) where

µλ is the center of λ, i.e. TV (λ) =
∫
Bλ
|Df | . Let δ > 0 and denote by A(δ, j) the set

of λ’s such that TV (λ) ≥ 2−δj and by N(δ, j) its cardinal. Since only a finite number
C̃(d) of balls Bλ overlap,

N(δ, j)2−δj ≤
∑

λ∈A(δ,j)

TV (λ) ≤ C(d)
∫
|Df | .

Therefore

N(δ, j) ≤ C2δj . (14)

Let x0 be such that it only belongs to a finite number of A(δ, j). Let λj(x0) denote the
dyadic cube of width 2−j which contains x0. For j large enough, TV (λj(x0)) ≤ 2−δj .
If B = B(x0,

√
d2−(j+1)), (13) implies that

‖f − fB‖Ld? (B) ≤ C

∫
B
|Df | ≤ C

∫
Bλ

|Df | ≤ C2−δj ;

thus, using Proposition 2.4, f ∈ T d?

δ−d/d?(x0) (= T d?

δ−d+1(x0)). Denote

Aδ = lim sup
j→+∞

A(δ, j) .

The set Aδ consists of point that belong to an infinite number of sets A(δ, j). Then,
(14) implies that dimH (Aδ) ≤ δ. If x0 6∈ Aδ, we just showed that f ∈ T d?

δ−d+1(x0). It
follows that the set of points of d?-exponent δ − d + 1 is of Hausdorff dimension at
most δ. In other words, dd?

f (δ − d + 1) ≤ δ, hence Theorem 3.6 holds.

Remark: Let us pick δ > d − 1 but arbitrarily close to d − 1. We saw that Aδ has
dimension less than δ and if x0 /∈ Aδ, then x0 belongs to T d?

α for an α > 0 so that x0

is a Lebesgue point of f . It follows that, if f is a BV function, then the set of points
which are not Lebesgue points of f has Hausdorff dimension at most d − 1. Related
results are proved in Section 5.9 of [5] (see in particular Theorem 3).
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Theorem 3.6 only gives an information on the d?-exponent and cannot give addi-
tional information on q-regularity for q > d? since a function of BV (Rd) may nowhere
be locally in Lq for such values of q. However, images are just grey-levels at each pixel
and therefore ae encoded by functions that take values between 0 and 1. Therefore, a
more realistic modelling is supplied by the assumption f ∈ BV ∩ L∞. Let us now see
if this additional assumption allows us to derive an estimate on the q-spectrum.

Lemma 3.7. Let f ∈ T p
α(x0)∩L∞(Rd) for some p ≥ 1 and let q satisfy p < q < +∞.

Then f ∈ T q
αp/q(x0).

Proof. By assumption, ‖f−fBr
‖Lp(Br) ≤ Crα+d/p, where Br denotes the ball B(x0, r).

Let ω = p
q , so that 0 < ω < 1; since f is bounded, by interpolation,

‖f − fBr
‖Lq(Br) ≤ (2‖f‖∞)(1−ω)‖f − fBr

‖ω
Lp(Br).

Therefore, if β = αp/q, then ‖f − fBr
‖Lq(Br) ≤ Cr(α+d/p)ω = Crβ+d/q.

Corollary 3.8. Let f ∈ BV (Rd)∩L∞(Rd), and q ≥ d?. The q-spectrum of f satisfies

dq
f (H) ≤ q

d?
H + (d− 1) .

Remark: Of course this inequality is relevant only when H ≤ d?

q .

Proof. We come back to the proof of Theorem 3.6. We proved that outside the set Aδ,
f belongs to T d?

δ−d+1(x0). It follows from the previous lemma that f also belongs to
T q

γ (x0) for γ =
(
δ − d

d?

)
d?

q = δd?

q − d
q . Since Aδ is of dimension at most δ, the corollary

follows just as the end of Theorem 3.6.

4 Topological and geometric properties of the essential
boundary

4.1 Essential boundary and modified domain

The geometric quantities introduced in Section 2 do not change if Ω is replaced by
another set Ω̃, as long as they differ by a set of measure 0. This is clear when we
consider the function 11Ω (viewed as a Lp

loc-function), the measure 11Ω(x)dx or the
indices αw, αs, βw and βs. Therefore, the only points of the boundary that are pertinent
to analyse from a “measure” point of view are those for which V ol(B(x0, r) ∩ Ω) > 0
and V ol(B(x0, r) ∩ Ωc) > 0. This motivates the following definition.

Definition 4.1. (Essential boundary) Let Ω be a Borel subset of Rd. Denote by ∂Ωess

the set of points x0 ∈ Rd such that for every r > 0,

V ol(B(x0, r) ∩ Ω) > 0 and V ol(B(x0, r) ∩ Ωc) > 0 .

The set ∂Ωess is called the essential boundary of Ω.
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It is clear that ∂Ωess ⊂ ∂Ω. More precisely, we have the following characterization
of ∂Ωess; recall that, if A and B are subsets of Rd, then A∆B = (A ∪B) \ (A ∩B).

Proposition 4.2. Let x ∈ Rd. Then, x ∈ ∂Ωess if and only if x is a boundary point
of every Borel set Ω′ such that V ol(Ω∆Ω′) = 0.

Remark: In particular, ∂Ωess is a closed subset of Rd.

Proof of Proposition 4.2. Let

A =
⋂

V ol(Ω∆Ω′)=0

∂Ω′ .

It is clear that ∂Ωess ⊂ A. Conversly, suppose for example that there exists r > 0 such
that V ol(Ω ∩ B(x, r)) = 0. Define Ω′ by Ω′ = Ω \ B(x, r). Then V ol(Ω∆Ω′) = 0 and
x 6∈ ∂Ω′. •

The essential boundary can also be defined as the support of the distribution
grad(11Ω). According to Proposition 4.2, it is natural to ask if there exists a modi-
fied Borel set Ω̃ which is minimal in the sense that V ol(Ω∆Ω̃) = 0 and ∂Ωess = ∂Ω̃.

Proposition 4.3. (Modified domain) Let Ω be a Borel set in Rd. There exists a Borel
set Ω̃ such that

V ol(Ω∆Ω̃) = 0 and ∂Ωess = ∂Ω̃ .

In particular ∂Ω̃ ⊂ ∂Ω′ for every Ω′ such that V ol(Ω∆Ω′) = 0. The Borel set Ω̃ is
called the modified domain of Ω.

Remarks: This notion is implicit in many books of geometric measure theory, see for
instance [7] page 42. We can suppose in the following that Ω = Ω̃ and ∂Ωess = ∂Ω.

Proof of Proposition 4.3. Let (Bn)n∈N be a sequence of of open balls which is a base
for the usual topology in Rd. Let

I− = {n ∈ N ; V ol(Bn ∩ Ω) = 0} and I+ = {n ∈ N ; V ol(Bn ∩ Ωc) = 0} .

Observe that if p ∈ I− and q ∈ I+, then, Bp ∩Bq = ∅. Define

Ω̃ =

Ω \
⋃

n∈I−

Bn

⋃ ⋃
n∈I+

Bn

 .

It is clear that V ol(Ω∆Ω̃) = 0. There remains to prove that ∂Ω̃ ⊂ ∂Ωess.
Let x ∈ ∂Ω̃ and r > 0. Let n be such that x ∈ Bn ⊂ B(x, r). Since x is in the

closure of Ω̃, Bn ∩ Ω̃ 6= ∅. So, n 6∈ I− and V ol(Bn ∩ Ω) > 0. In the same way, x is
in the closure of Ω̃c and Bn ∩ Ω̃c 6= ∅; thus n 6∈ I+ and V ol(Bn ∩ Ωc) > 0. Finally
V ol(B(x, r) ∩ Ω) > 0 and V ol(B(x, r) ∩ Ωc) > 0 so that x ∈ ∂Ωess.
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We can also define the essential interior and essential closure of Ω by

◦
Ω

ess

=
{

x ∈ Rd ; ∃r > 0 ; V ol(B(x, r) ∩ Ωc) = 0
}

and
Ωess =

{
x ∈ Rd ; ∀r > 0, V ol(B(x, r) ∩ Ω) > 0

}
.

They are respectively open and closed subsets of Rd and satisfy ∂Ωess = Ωess\
◦
Ω

ess

.

4.2 Balanced points

We now explore the topological properties of the sets of points of the essential boundary
∂Ωess for which either βw or βs vanishes. We begin with a definition which identifies
natural subsets of the sets of points with accessibility 0.

Definition 4.4. Let Ω ⊂ Rd be a Borel set and x0 ∈ ∂Ωess.

1. A point x0 is strongly balanced if there exists 0 < η < 1/2 and r0 > 0 such that

∀r ≤ r0, η ≤ V ol(B(x0, r) ∩ Ω)
V ol(B(x0, r))

≤ 1− η .

2. A point x0 is weakly balanced if there exists 0 < η < 1/2 such that

∀r0 > 0, ∃r ≤ r0; η ≤ V ol(B(x0, r) ∩ Ω)
V ol(B(x0, r))

≤ 1− η .

We denote by SB(Ω) (resp. WB(Ω)) the set of strongly (resp. weakly) balanced
points in ∂Ωess. It is clear that

SB(Ω) ⊂ {x0 ∈ ∂Ωess ; βs(x0) = 0} and WB(Ω) ⊂ {x0 ∈ ∂Ωess ; βw(x0) = 0} .

Recall that Baire’s theorem asserts that, if E is a complete metric set, a countable
intersection of open dense sets is dense. A set which contains such an intersection is
called generic.

Proposition 4.5. Let Ω be a Borel subset of Rd and ∂Ωess its essential boundary. The
set WB(Ω) of weakly balanced points is generic in ∂Ωess (for the induced topology). As
a consequence, the set of points x0 ∈ ∂Ωess such that βw(x0) = 0 is generic in ∂Ωess.

Proposition 4.6. Let Ω be a Borel subset of Rd and ∂Ωess its essential boundary. The
set SB(Ω) of strongly balanced points is dense in ∂Ωess. As a consequence, the set of
points x0 ∈ ∂Ωess such that βs(x0) = 0 is dense in ∂Ωess.
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Remark: It would be interesting to determine if SB(Ω) is generic in ∂Ωess.

Proof of Proposition 4.5. We first remark that Baire’s theorem can be applied in
∂Ωess (because it is a closed subset of Rd). Let x0 ∈ ∂Ωess and ε > 0. Lebesgue’s
differentiability theorem, applied to the Borel function f = 11Ω asserts that, for almost
every x ∈ Rd,

V ol(B(x, r) ∩ Ω)
V ol(B(x, r))

−→ f(x) when r −→ 0 .

Recall that

V ol({x ∈ B(x0, ε/2) ; f(x) = 1}) > 0 and V ol({x ∈ B(x0, ε/2) ; f(x) = 0}) > 0 .

We can then find y0, y1 ∈ B(x0, ε/2) such that

V ol(B(y0, r) ∩ Ω)
V ol(B(y0, r))

≥ 3
4

and
V ol(B(y1, r) ∩ Ω)

V ol(B(y1, r))
≤ 1

4

when r is small enough.
Let yt = ty1 +(1− t)y0. The intermediate value theorem applied to the continuous

function
t 7−→ V ol(B(yt, r) ∩ Ω)

V ol(B(yt, r))

allows us to construct a point x1 ∈ B(x0, ε/2) (which is equal to yt for some value of
t) such that

V ol(B(x1, r) ∩ Ω)
V ol(B(x1, r))

=
1
2

.

Such an open ball B(x1, r) will be called a ”perfectly balanced” ball. The connexity of
the ball B(x1, r) implies that it intersects ∂Ωess (remember that ∂Ωess is the topological
boundary of the modified domain Ω̃, see Proposition 4.3).

Let On be the union of all the open balls of radius r ≤ 1/n that are ”perfectly
balanced”. We just have seen that On ∩ ∂Ωess is an open dense subset of ∂Ωess. So⋂

n≥1 On ∩ ∂Ωess is a countable intersection of open dense subsets of the essential
boundary ∂Ωess.

Moreover, if x ∈
⋂

n≥1 On ∩ ∂Ωess, we can find a sequence of points xn ∈ Rd and a
sequence of positive real numbers rn ≤ 1/n such that for every n ≥ 1

x ∈ B(xn, rn) and V ol(B(xn, rn) ∩ Ω) =
1
2
V ol(B(xn, rn)) .

We then have

2−(d+1)V ol(B(x, 2rn)) ≤ V ol(B(x, 2rn) ∩ Ω) ≤ (1− 2−(d+1))V ol(B(x, 2rn)),

which proves that x ∈ WB(Ω). •
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Proof of Proposition 4.6. We develop the same idea as in Proposition 4.5. For
commodity, we use the norm ‖ ‖∞ instead of the euclidian norm in Rd and we will
denote by B∞(x, r) the “balls” related to this norm (which are cubes!). Let x0 ∈
∂Ωess and ε > 0. Using the same argument as in Proposition 4.5, we can find x1 ∈
B∞(x0, ε/2) and r ≤ ε/2 such that

V ol(B∞(x1, r) ∩ Ω)
V ol(B∞(x1, r))

=
1
2

.

The closed cube B∞(x1, r) can be divided into 2d closed cubes of radius r/2 whose
interiors do not overlap. Suppose that none of them is “perfectly balanced”. We can
then find two points z0, z1 such that

B∞(z0, r/2) ⊂ B∞(x1, r), V ol(B∞(z0, r/2) ∩ Ω) >
1
2
V ol(B∞(z0, r/2))

B∞(z1, r/2) ⊂ B∞(x1, r), V ol(B∞(z1, r/2) ∩ Ω) <
1
2
V ol(B∞(z1, r/2)) .

Using once again the intermediate value theorem, we can construct a point x2 (which
is a barycenter of z0 and z1) such that B∞(x2, r/2) ⊂ B∞(x1, r) and such that the ball
B∞(x2, r/2) is “perfectly balanced”. Iterating this construction we obtain a sequence
of “perfectly balanced” cubes B∞(xn, r2−(n−1)) such that

B∞(xn+1, r2−n) ⊂ B∞(xn, r2−(n−1)) .

Let x∞ = limn→∞ xn and 0 < ρ ≤ r. Let us denote by n the integer such that

r2−n <
ρ√
d
≤ r2−(n−1) .

We observe that

B (x∞, ρ) ⊃ B∞

(
x∞, ρ/

√
d
)
⊃ B∞

(
x∞, r2−n

)
⊃ B∞

(
xn+2, r2−(n+1)

)
.

In other words, the ball B (x∞, ρ) contains a ”perfectly balanced” cube with size length
at least ρ/2

√
d. We deduce that

V ol(B(x∞, ρ) ∩ Ω) ≥ 1
2

(
ρ

2
√

d

)d

V ol(B(x∞, ρ) ∩ Ωc) ≥ 1
2

(
ρ

2
√

d

)d ; (15)

(15) asserts that x∞ ∈ SB(Ω). Moreover, ‖x0−x∞‖∞ ≤ ε and the proof is finished. •
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4.3 The fractal dimension of the set of balanced points

We first consider the dimension of the set of points of accessibility 0.

Theorem 4.7. Let Ω be a Borel subset of Rd such that ∂Ωess 6= ∅. Then

dimP (WB(Ω)) ≥ d− 1 .

Remark: In particular, dimP (∂Ωess) ≥ d− 1.

Proof of Theorem 4.7. Let us begin with a lemma which is a slight modification of a
well known result (see [6] or [9]).

Lemma 4.8. Let G be a nonempty subset of Rd which satisfies Baire’s property (for
the induced topology) and δ > 0. Suppose that for every x ∈ G, and every r > 0,
∆(G ∩B(x, r)) ≥ δ. Then dimP (G) ≥ δ .

Proof. Suppose that G ⊂
⋃

n∈N En. Denote by En the closure (in Rd) of En. Baire’s
property implies that one of the related closed sets En ∩G has an interior point in G.
Thus there exist x ∈ G, r > 0 and n0 ∈ N such that G ∩B(x, r) ⊂ En0 ∩G , so that

∆(En0) = ∆(En0) ≥ ∆(En0 ∩G) ≥ ∆(G ∩B(x, r)) ≥ δ

and Lemma 4.8 follows.
Proof of Theorem 4.7: As in Section 4.2, let On be the union of all ”perfectly

balanced” open cubes of radius r ≤ 1/n and let G =
⋂

n≥1 On ∩ ∂Ωess; G is a dense Gδ

of the Baire space ∂Ωess, so that it satisfies Baire’s property. Moreover, G ⊂ WB(Ω).
According to Lemma 4.8, it is sufficient to prove that for every x ∈ G and every r > 0,
∆(G ∩ B(x, r)) ≥ d − 1. Let x ∈ G and r > 0. We can find y ∈ Rd and ρ > 0
such that the cube B∞(y, ρ) is ”perfectly balanced” and x ∈ B∞(y, ρ) ⊂ B(x, r). Let
us split the cube B∞(y, ρ) into 2dj cubes of length 2−j+1ρ which are called Ci. We
want to estimate the number Nj of cubes Ci that intersect G. For each cube Ci, let
ω(Ci) = V ol(Ci ∩ Ω)/V ol(Ci). The mean of ω(Ci) is 1/2. So, at least 1/3th of the
ω(Ci) is greater than 1/4 and 1/3th of the ω(Ci) is lower than 3/4. Now, there are two
possibilities: Either 1/6th of the cubes Ci are such that 1/4 ≤ ω(Ci) ≤ 3/4; all those
cubes intersect G (see the proof of Proposition 4.5 and 4.6) and Nj ≥ 2dj/6. Else,
there are at least 1/6th of the cubes such that ω(Ci) ≤ 1/4 and 1/6th of the cubes such
that ω(Ci) ≥ 3/4. Let A be the union of all the closed cubes Ci such that ω(Ci) ≤ 1/2.
Then

1
6
V ol(B∞(y, ρ)) ≤ V ol(A) ≤ 5

6
V ol(B∞(y, ρ)) .

Isoperimetric inequalities (see for example [19]) ensure that the ”surface” of the bound-
ary of A is at least Cρd−1. In particular, there exist at least C(ρ)2j(d−1) couples of
cubes (C,C ′) such that C ∩ C ′ 6= ∅, ω(C) ≤ 1/2 and ω(C ′) ≥ 1/2. It follows that
C ∩ G 6= ∅ or C ′ ∩ G 6= ∅ (an intermediate cube is ”perfectly balanced”). It follows
that Nj ≥ C2j(d−1).

In either case, Nj ≥ C2j(d−1). So, ∆(G ∩B(x, r)) ≥ d− 1. •
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5 Multifractal properties of the essential boundary

5.1 Construction of the scaling function

We will construct a multifractal formalism based on the dyadic grid whose purpose is
to derive the Hausdorff (or packing) dimensions of the level sets of the functions αw

and αs. Recall that Fn is the set of dyadic (semi-open) cubes of scale n; denote by
λn(x) the unique cube in Fn that contains x. The following proposition is a simple
consequence of the inclusions B(x, 2−n) ⊂ 3λn(x) ⊂ B(x, 3

√
d2−n).

Proposition 5.1. Let Ω be a Borel subset of Rd and x ∈ ∂Ωess. Then

αw(x) + d = lim inf
n→+∞

log V ol (3λn(x) ∩ Ω)
−n log 2

, αs(x) + d = lim sup
n→+∞

log V ol (3λn(x) ∩ Ω)
−n log 2

.

Proposition 5.1 suggests to introduce a scaling function as follows. Let Ω be a
Borel set such that ∂Ωess is bounded and not empty; let

S(q, n) =
∑

λ∈Fn
∗

(V ol(3λ ∩ Ω))q where Fn
∗ = {λ ∈ Fn : λ ∩ ∂Ωess 6= ∅},

and

τ(q) = lim sup
n→+∞

1
n log 2

log (S(q, n)) . (16)

The function τ is decreasing and convex. The standard justification of the multi-
fractal formalism runs as follows: First, the contribution to S(q, n) of the set of points
where the (weak or strong) accessibility exponent takes a given value α is estimated:
If the dimension of this set is d(α), then there are about 2d(α)n dyadic cubes in Fn

∗

which cover this set; and such a cube satisfies V ol(3λ ∩ Ω) ∼ 2−αn. Therefore the
order of magnitude of the contribution we look for is 2−(αq−d(α))n. When n → +∞,
the preponderent contribution is clearly obtained for the value of α that minimizes the
exponent αq − d(α); thus τ(q) = infα(αq − d(α)). If d(α) is a concave function, then
this formula can be inverted and d(α) is recovered from τ(q) by an inverse Legendre
transform:

d(α) = inf
q

(αq + τ(q)).

The multifractal formalism holds if, indeed, this relationship between the scaling func-
tion and the spectrum of singularties holds. We give in Section 5.3 some results in this
direction.

Remark 1: The factor 3 in the definition of S(q, n) is not always used in the derivation
of the multifractal formalism for measures; however, it improves its range of validity,
as shown by R. Riedi, see [18]. The novelty in our derivation is the restriction of the
sum to the cubes λ such that λ ∩ ∂Ωess 6= ∅; this allows to eliminate all the points in

20



◦
Ω

ess

and in Rd \ Ωess.

Remark 2: In [20], Testud already introduced such a “restricted” scaling function. In
the context of his paper, a strange Cantor set K perturbs the multifractal analysis of
the measure. Multifractal formalism breaks down at different levels. Testud introduces
the scaling function τK in which the sum is restricted to the dyadic intervals that meet
the Cantor set K and proves that for all the ”bad exponents”, the dimension of the
level set is given by the Legendre transform τ∗K .

5.2 Properties of the scaling function

Theorem 5.2. Let Ω be a Borel subset of Rd such that ∂Ωess is nonempty and bounded.
Define τ(q) as in (16). The following properties hold.

1. τ(0) = ∆(∂Ωess) and ∀q ≥ 0, τ(q) ≤ ∆(∂Ωess)− dq.

2. ∀q ≥ 0, τ(q) ≥ d− 1− dq.

3. ∀q ∈ R, dimP (SB(Ω)) ≤ τ(q) + dq.

4. ∀q ∈ R, dimH (WB(Ω)) ≤ τ(q) + dq.

Proof of Theorem 5.2.
1. If λ ∩ ∂Ωess 6= ∅, then, V ol(3λ ∩ Ω) > 0 and (V ol(3λ ∩ Ω))0 = 1, thus τ(0) =
∆(∂Ωess). More precisely, if q > 0, then∑

λ∈Fn
∗

(V ol(3λ ∩ Ω))q ≤ Card (Fn
∗)(3.2−n)dq;

it follows that τ(q) ≤ ∆(∂Ωess)− dq.

2. If n is large enough, using a similar argument as in Theorem 4.7, we can find at least
c2(d−1)n cubes in Fn

∗ which are ”quite balanced”. These cubes satisfy V ol(3λ ∩ Ω) ∼
2−dn and the inequality follows.

3. It is easy to see that x0 ∈ SB(Ω) if and only if there exists 0 < η < 1/2 and n0

such that

∀n ≥ n0, η ≤ V ol(3λn(x0) ∩ Ω)
(3.2−n)d

≤ 1− η . (17)

Let Un0, η denote the set of points that satisfy (17). Let α < dimP (SB(Ω)). We can
find p, n0 ∈ N∗ such that

∆(Un0, 1/p) ≥ dimP (Un0, 1/p) > α .
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If Nk is the number of cubes λ ∈ Fk we need to cover Un0, 1/p, then, Nk ≥ 2kα infinitely
often. Suppose q > 0 (the proof is similar if q < 0). We get∑

λ∈Fk
∗

(V ol(3λ ∩ Ω))q ≥ Nk

(
1
p
(3.2−k)d

)q

≥ 3dq

pq
2k(α−dq)

infinitely often. We conclude that τ(q) ≥ α− dq.

4. Note that x0 ∈ WB(Ω) if and only if there exists 0 < η < 1/2 such that

∀n0, ∃n ≥ n0 ; η ≤ V ol(3λn(x0) ∩ Ω)
(3.2−n)d

≤ 1− η . (18)

Let Vη denote the set of points that satisfy (18). Let p ∈ {2, 3, · · · }, n0 ∈ N∗ and
suppose that q > 0 (the proof is similar if q < 0). We can cover V1/p with cubes
of scale n ≥ n0 such that V ol(3λ ∩ Ω) ≥ 1

p(3.2−n)d. Let R be such a covering and
τ ′ > τ(q). We have∑

λ∈R
diam (λ)τ ′+dq ≤ C

∑
λ∈R

(V ol(3λ ∩ Ω))q diam (λ)τ ′

≤ C
∑
n≥n0

 ∑
λ∈Fn

∗

(V ol(3λ ∩ Ω))q

 2−nτ ′ .

Moreover, if τ ′ > τ ′′ > τ(q) and n0 sufficiently large, then
∑

λ∈Fn
∗ (V ol(3λ ∩ Ω))q ≤

2nτ ′′ . It follows that∑
λ∈R

diam (λ)τ ′+dq ≤ C
∑
n≥n0

2n(τ ′′−τ ′) ≤ C

1− 2τ ′′−τ ′
.

We conclude that dimH (V1/p) ≤ τ ′ + dq and dimH (WB(Ω)) ≤ τ ′ + dq.

5.3 The multifractal formalism associated with ∂Ωess

The proofs of points 3 and 4 in Theorem 5.2 allow to obtain estimates of the level sets
of accessibility index.

Theorem 5.3. Let Ω be a Borel subset of Rd such that ∂Ωess is nonempty and bounded.
Define τ(q) as in (16). If α ≥ 0, let

Ew
α = {x ∈ ∂Ωess ; αw(x) ≤ α} and Es

α = {x ∈ ∂Ωess ; αs(x) ≤ α} .

For every q > 0,

dimH (Ew
α ) ≤ (d + α)q + τ(q) and dimP (Es

α) ≤ (d + α)q + τ(q) .

In particular, if α + d ≤ −τ ′−(0), then

dimH (Ew
α ) ≤ τ∗(α + d) and dimP (Es

α) ≤ τ∗(α + d) .

22



The proof uses the same ideas as in Theorem 5.2 and requires to introduce the set
of points x ∈ ∂Ωess such that V ol (3λn(x) ∩ Ω) ≥ 2−n(α+d+ε) infinitely often (resp. for
n large enough). In the same way, we can also prove the following twin result.

Theorem 5.4. Let Ω be a Borel subset of Rd such that ∂Ωess is nonempty and bounded.
Define τ(q) as in (16). If α ≥ 0, let

Fw
α = {x ∈ ∂Ωess ; αw(x) ≥ α} and F s

α = {x ∈ ∂Ωess ; αs(x) ≥ α} .

For every q < 0,

dimP (Fw
α ) ≤ (d + α)q + τ(q) and dimH (F s

α) ≤ (d + α)q + τ(q) .

In particular, if α + d ≥ −τ ′+(0),

dimP (Fw
α ) ≤ τ∗(α + d) and dimH (F s

α) ≤ τ∗(α + d) .

Remark 1: The set Es
α (resp. Fw

α ) is quite similar to the set of strong α-accessible
points (resp. weak α-accessible points).

Remark 2: The results in Theorem 5.3 and 5.4 are standard multifractal inequalities
adapted to the context of boundaries (see [3]).
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