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Abstract

During the development of a convergence theory for Nicolaides’ extension [21, 24] of the classical
MAC scheme [25, 22, 26] for the incompressible Navier-Stokes equations to unstructured triangle
meshes, it became clear that a convergence theory for a new kind of finite volume discretizations for
the biharmonic problem would be a very useful tool in the convergence analysis of the generalized
MAC scheme. Therefore, we present and analyze new finite volume schemes for the approximation
of a biharmonic problem with Dirichlet boundary conditions on grids which satisfy an orthogonality
condition. We prove that a piece-wise constant approximate solution of the biharmonic problem
converges in L2(Ω) to the exact solution. Similar results are shown for the discrete approximate of
the gradient and the discrete approximate of the Laplacian of the exact solution. Error estimates
are also derived. This part of the paper is a first, significant step towards a convergence theory of
Nicolaides’ extension of the classical MAC scheme. Further, we show that finite volume discretizations
for the biharmonic problem can also be defined on very general, nonconforming meshes, such that the
same convergence results hold. The possibility to construct a converging lowest order finite volume
method for the H2-regular biharmonic problem on general meshes seems to be an interesting result for
itself and clarifies the necessary ingredients for converging discretizations of the biharmonic problem.
All these results are confirmed by numerical results.

Keywords: biharmonic problem, finite volume scheme, convergence analysis, error estimate.

1 Introduction

More than a hundred years ago, W. Ritz [27] computed the solutions of the bi-harmonic equation, in
view of the study of the thin plate equilibrium. His pioneering idea was to introduce an approximate
energy functional, replacing the exact solution by an expansion of smooth functions in the functional to
be minimized, and leading to the resolution of a finite dimensional linear system. As mentioned in the
very interesting historical article [18], this was probably the first brick to the foundation of the finite
element method. Since then, a large number of discretization methods for the biharmonic operator have
been proposed. The most classical is probably the conforming finite element method. For fourth order
problems, the conforming finite element space must be a finite dimensional subspace of the Sobolev
space H2(Ω). Hence elementary basis functions are sought such that the reconstructed global basis
functions on Ω belong to C1(Ω). On Cartesian meshes, such basis functions are found by generalizing
the one-dimensional P 3 Hermite finite element to the multi-dimensional framework. This task becomes
much more difficult on more general meshes and involves rather sophisticated finite elements such as the
Argyris finite element on triangles in 2D, which unfortunately requires 21 degrees of freedom [8]. Hence
non-conforming FEMs have also been widely studied: see e.g. [8, Section 49], [9], and references therein,
and [4, 5] for more recent works. Discontinuous Galerkin methods have also been recently developed and
analysed [20, 23, 28, 19]; error estimates have been derived for polynomials of degree greater or equal
to two or three. Other methods which have been developed for fourth order problems include mixed
methods [6] (see also references therein), [29], and compact finite difference methods [7, 3, 2].
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Let us remark that the discretization of the biharmonic operator also becomes useful when considering
the two dimensional Navier–Stokes equations. Indeed, for any divergence-free function v ∈ [H1

0 (Ω)]2,
we can find a unique streamfunction ψ ∈ H2

0 (Ω) which fulfills v = curlψ and rot v = rot curlψ =
−∆ψ. Therefore, we can find for any smooth, divergence-free function v with compact support its vector
potential by solving

∆∆ψ = −∆ rotv.

In a recent paper [10], a discrete analogue of this relation is used to present a convergence analysis for
Nicolaides’ extension [21, 24] of the classical MAC scheme for the incompressible Navier-Stokes equations.
This scheme is interesting because it is easy to implement, computationally cheap and robust, like the
classical MAC scheme. In fact, using discrete stream functions it can be shown that the corresponding
discretely divergence-free functions of the scheme possess an approximation property with respect to all
divergence-free functions in [H1

0 (Ω)]2, see [10].
In Nicolaides’ extension of the MAC scheme, unstructured triangular grids satisfying some orthogonality
properties (Delaunay) [12] are applied. Therefore, biharmonic problems for this kind of meshes are
investigated in the following. However, the discrete finite volume Laplace operator involved in the weak
formulation for the biharmonic problem (on both solution and test function) is known to be non-consistent
in the finite difference sense on general unstructured meshes, i.e. when applied to the interpolation of a
regular function [12, Section 5]; hence the usual finite difference convergence analysis technique fails. In
the usual second order diffusion framework, this difficulty is circumvented by using the consistency of the
normal diffusion flux [17]; in the weak formulation, this can be viewed as using the strong convergence
of a discrete gradient of the interpolate of the test function [16].
In the case of the biharmonic operator, it is no longer a discrete gradient that we have to handle for a
test function, but a discrete Laplacian. This is rather annoying, since, as we pointed out, the discrete
Laplacian of a smooth test function will not, in general, converge strongly to the Laplacian of the test
function. Therefore, the convergence technique used in the Laplace equation setting does not work; we
deal with this new difficulty by a new interpolation procedure based on the solution of an auxiliary
discrete problem (lemmata 4.4 and 5.3).
The scheme which we propose consists of an approximation by piecewise constant functions of a weak
formulation of the biharmonic problem. We address two types of meshes:

• we first deal with meshes which respect an adequate orthogonality property; these meshes allow for
the simplest approximation of normal fluxes.

• we then generalize the analysis to general polygonal meshes.

In the latter case, although the diffusion fluxes may not be approximated by a two point formula, a
cell centered scheme may still be defined and proved to be convergent, thanks to the reconstruction
of a discrete gradient. This “SUCCES” scheme (Scheme Using Conservativity and Consistency Error
Stabilization) was proved to be convergent for the approximation of the Laplace equation [15] and the p-
Laplace equation [14]. This is, to our knowledge, the first scheme for the discretization of the biharmonic
problem on general polygonal meshes for which a convergence proof is proposed. Let us mention that it
also applies on more general biharmonic problems, as stated in some remarks below.
The paper is organized as follows. The continuous problem is presented in Section 2. The finite volume
discretizations which are under consideration in this paper are presented in Section 3, which allow to
introduce the scheme on admissible meshes in Section 4. The mathematical analysis of this scheme is
detailed in Section 4.2. The extension of the scheme to general polygonal meshes is presented in Section
5 as well as the main lines of its mathematical analysis. Numerical results using various types of meshes
for one, two or three-dimensional problems are provided in Section 6. Some perspectives concerning the
derivation of schemes for the biharmonic problem by standard conforming finite element schemes are
finally drawn in Section 7.
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2 The continuous problem

Throughout this paper,

d ∈ N \ {0} denotes the space dimension ,
Ω is an open polygonal bounded and connected subset of Rd,
with Lipschitz-continuous boundary ∂Ω,

(1)

and
f ∈ L2(Ω), ` ∈ L2(Ω) and g ∈ (L2(Ω))d. (2)

Under these assumptions, we consider the following problem

u ∈ H2
0 (Ω), ∀v ∈ H2

0 (Ω),∫
Ω

∆u(x)∆v(x)dx =
∫

Ω

(f(x)v(x) + g(x) · ∇v(x) + `(x)∆v(x))dx, (3)

where H2
0 (Ω) is the closure of the set C∞c (Ω) of infinitely continuously differentiable functions with

compact support. We recall that under assumptions (1)- (2), Problem (3) has one and only one solution,
thanks to the Riesz theorem and to the fact that ‖∆u‖L2(Ω) is an equivalent norm to ‖u‖H2(Ω) in H2

0 (Ω).
Indeed, the Poincaré inequality

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) ≤ diam(Ω)‖∇u‖L2(Ω)d

and
∀u ∈ H2

0 (Ω), −
∫

Ω

u∆u dx =
∫

Ω

∇u · ∇u dx

imply
∀u ∈ H2

0 (Ω), ‖∇u‖L2(Ω)d ≤ diam(Ω)‖∆u‖L2(Ω).

Besides, the following equality which is an immediate consequence of two integrations by parts

∀ϕ ∈ C∞c (Ω),
∫

Ω

(∆ϕ(x))2dx =
d∑

i=1

d∑
j=1

∫
Ω

∂2
iiϕ(x)∂2

jjϕ(x)dx =
d∑

i=1

d∑
j=1

∫
Ω

(∂2
ijϕ(x))2dx, (4)

completes the proof of the equivalence of the norms.

3 Finite volume meshes

Roughly speaking, a finite volume mesh is a partition of Ω into polygonal or polyhedral subsets. In
Section 4 below, we first consider the ∆−adapted (admissible meshes of [12, Definition 9.1]), for which
the diffusion flux ∇u · n may be approximated by a consistent two point formula. In Section 5 we treat
the case of the general meshes of [15, Definition 2.1], thanks to the machinery of this latter reference.
For the sake of clarity and concision, we introduce in the present section the common features of both
meshes. Since we are addressing higher order differential operators, the fluxes to be discretized involve
higher order derivatives, so that the definition of the flux consistency is based on some points in the
discretization cells. Let us first describe the general finite volume (FV) Meshes, which are depicted in
Figure 1.

Definition 3.1 (General FV discretization) Under hypothesis (1), a general FV discretization of
Ω, is given by the triplet D = (M, E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the “control volumes”) such
that Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \K be the boundary of K, |K| > 0 denote the
measure of K and hK denote the diameter of K, that is the maximum distance between two points
of K.
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2. E = Eint ∪Eext is a finite family of disjoint subsets of Ω (the “interfaces” of the mesh, i.e. the edges
in 2D and faces in 3D), such that, for all σ ∈ Eint, σ is a non empty open subset of a hyperplane of
Rd included in Ω and for all σ ∈ Eext, σ is a non empty open subset of ∂Ω; furthermore, the (d−1)-
dimensional measure |σ| of any σ ∈ E is strictly positive. We assume that, for all K ∈ M, there
exists a subset EK of E such that ∂K = ∪σ∈EK

σ. We then denote by Mσ = {K ∈ M, σ ∈ EK}.
We then assume that, for all σ ∈ E, either Mσ has exactly one element and then σ ∈ Eext or Mσ

has exactly two elements and then σ ∈ Eint. For all K ∈ M and for any hyperplanar σ ∈ EK , we
denote for a.e. x ∈ σ by nK,σ the (constant) unit vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M and E, denoted by P = ((xK)K∈M, (xσ)σ∈E), such that
for all K ∈M, xK ∈ K and for all σ ∈ E, xσ is the center of gravity of σ. We then denote by dK,σ

the orthogonal distance between xK and σ. The family P is chosen so that all the cells K ∈M are
strictly xK-star-shaped, that is, for all x ∈ K, the line segment [xK , x] is strictly included in K, or
equivalently, dK,σ ≥ 0 for all σ ∈ EK . In particular, this star shaped condition ensures that∑

σ∈EK

|σ|dK,σ = d |K|, ∀K ∈M. (5)

The size of the discretization is defined by:

hD = sup{hK ,K ∈M}. (6)

For all K ∈M and σ ∈ EK , we denote by DK,σ the cone with vertex xK and basis σ

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}, (7)

We denote, for all σ ∈ E, Dσ =
⋃

K∈Mσ
DK,σ (this set is also called the “diamond cell” associated to the

interface σ).

������
������
������
������
������

������
������
������
������
������

xK

DK,σ

K

L

Mσ = {K,L}

dK,σ
xσ

xL

hK

Figure 1: Notations for a control volume K in the case d = 2

Remark 3.1 The above definition applies to a large variety of meshes. In particular, control volumes
are not assumed to be convex. Hence generalized “hexahedra” with non planar faces can be used (in fact,
such sets have then 12 faces if each non planar face is shared in two triangles, but only 6 neighbouring
control volumes). Note also that the common boundary of two neighbouring control volumes can include
more than one interface.
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Let us now introduce the notion of ∆−adapted discretization, which are particular cases of general FV
discretization, as depicted in Figure 2 for the two dimensional case (recall that the schemes and their
analysis are valid in both 2 and 3 dimensions).

xL

nσ = nL,σ

L = K−
σ

xσ

σ = K|L

xK

K = K+
σ

dσ

Figure 2: Notations for ∆−adapted discretization

Definition 3.2 (∆−adapted FV discretization) Under hypothesis (1), a general FV discretization
D = (M, E ,P) in the sense of Definition 3.1 is ∆−adapted if, for all σ ∈ Eint, denoting by K,L ∈M the
two control volumes such that Mσ = {K,L}, then the straight line (xK , xL) is orthogonal to σ. Then,
for K,L ∈ M, such that there exists σ ∈ Eint with Mσ = {K,L}, we assume that σ is unique and one
denotes σ = K|L. For all σ ∈ Eint, an orientation is chosen by defining one of the two unit normal
vectors nσ, for each σ ∈ Eint, and we denote by K−

σ and K+
σ the two adjacent control volumes such that

nσ is oriented from K−
σ to K+

σ . We then set

dσ = d(xK−σ
, xK+

σ
) = d(xK−σ

, σ) + d(xK+
σ
, σ). (8)

For all σ ∈ Eext, we denote the control volume K ∈M such that σ ∈ EK by Kσ; we define

dσ = d(xKσ
, σ), (9)

and we define nσ by nσ = nKσ,σ. We define, for all K ∈M, EK,int = EK ∩ Eint and EK,ext = EK ∩ Eext.

Definition 3.3 (Approximation space) Under hypothesis (1), let D = (M, E ,P) be a a general FV
discretization or a ∆−adapted FV discretization mesh of Ω. The set HD is defined as the set of functions
from Ω to R, constant on each element of M.

4 Approximation of the Dirichlet problem on ∆−adapted dis-
cretizations

4.1 Definition of the scheme

In this section, we consider the ∆−adapted meshes of Definition 3.2 which allow a consistent discretization
of the diffusion fluxes by a two point formula.
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Remark 4.1 (Constraint on the point xK) Definition 3.2 requires that xK ∈ K. However, this con-
dition is not always satisfied when using the well-known Delaunay triangulations. In fact, this condition
is useless in the definition of the scheme itself. Furthermore, it also seems possible to relax it in the
convergence analysis; however, it must then be replaced by some supplementary technical geometrical con-
ditions, since, in particular, the property (5) is no longer satisfied. Additional complex developments are
then required in the proofs, especially for the interpolation lemma 4.4. Hence, for the sake of simplicity,
we shall assume, as stated in Definition 3.2 that xK ∈ K holds for any K ∈M.

Definition 4.1 (Approximation space, interpolation operator, inner product and norm)
Under assumptions (1), let D be an admissible FV discretization in the sense of Definition 3.2. To
account for the homogeneous Dirichlet boundary conditions, we introduce the space

HD,0 = {u ∈ HD, uK = 0 for all K ∈M such that EK,ext 6= ∅} (10)

The interpolation operator PD : C(Ω) → HD, ϕ 7→ PDϕ is defined by:

PDϕ(x) = ϕ(xK) for a.e. x ∈ K, ∀K ∈M. (11)

For any u ∈ HD, we introduce the jump of the function u across an interface σ with respect to the global
orientation of the interfaces, and its local counterpart with respect to a cell K ∈M:

δσu =

{
uK+

σ
− uK−σ

,∀σ ∈ Eint

0− uKσ ,∀σ ∈ Eext

and δK,σu =

{
uL − uK(= δσu nK,σ · nσ), ∀σ = K|L ∈ EK,int,

−uK(= δσu), ∀σ ∈ EK,ext

(12)

The following symmetric bilinear form may be seen as a discrete equivalent of the inner product in H1
0 (Ω):

[u, v]D =
∑
σ∈E

|σ|
dσ
δσu δσv, ∀u, v ∈ (HD)2, (13)

and defines an inner product on HD. Moreover, the mapping u ∈ HD 7→ ‖u‖D = ([u, u]D)1/2 defines a
norm on HD,0.

Recall that we have the property

‖PDϕ− ϕ‖L∞(Ω) ≤ hD‖∇ϕ‖L∞(Ω), ∀ϕ ∈ C1(Ω). (14)

The estimates and convergence analysis require a measure of the regularity of the mesh; we therefore
define θD by

θD = inf
{

dK,σ

diam(K)
,
dK,σ

dσ
, K ∈M, σ ∈ EK

}
. (15)

We may now define the discrete operators which will be used in the discrete weak formulation.

Definition 4.2 (Discrete gradient and Laplace operators) Under Assumption (1), let D be a ∆
adapted discretization of Ω in the sense of Definition 3.2, and let u ∈ HD. Then the discrete gradient
∇Du ∈ (HD)d is defined by its constant values on the cells:

∇Ku =
1
|K|

∑
σ∈EK

|σ|
dσ

δK,σu (xσ − xK). (16)

We also define a discrete Laplace operator ∆D : HD → HD by its constant values on the primal cells:

∆Ku =
1
|K|

∑
σ∈EK

|σ|
dσ
δK,σu, ∀K ∈M. (17)

Note that
−
∫

Ω

u(x)∆Dv(x)dx = [u, v]D, ∀u, v ∈ (HD)2. (18)
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The discrete gradient ∇D, defined by (16), is mimicking the consequence of the Stokes formula

|K|ξ =
∑

σ∈EK

|σ|ξ · nK,σ (xσ − xK), ∀ξ ∈ Rd,

which provides, in the case where u(x) = ξ · x and therefore ∇u = ξ, then ξ · nK,σ = δK,σu
dσ

. It was first
defined and shown to be consistent in [13, Definition 2.3, Lemma 2.5], in the sense that

‖∇DPDϕ−∇ϕ‖L2(Ω)d ≤ C(ϕ, θD,Ω)hD, ∀ϕ ∈ C2(Ω),

where C(ϕ, θD,Ω) only depends on ϕ, θD and Ω.
The discrete Laplace operator ∆D, defined by (17), mimicks the finite volume formula

∆Ku =
1
|K|

∫
K

∆u(x)dx =
1
|K|

∑
σ∈EK

∫
σ

∇u(x) · nK,σds(x),

and then we approximate ∇u(x) ·nK,σ by δK,σu
dσ

, thanks to the property that the straight line (xK , xL) is
orthogonal to σ.

We now approximate Problem (3) by

u ∈ HD,0, ∀v ∈ HD,0,

∫
Ω

∆Du(x)∆Dv(x)dx =
∫

Ω

(f(x)v(x) + g(x) · ∇Dv(x) + `(x)∆Dv(x))dx. (19)

Remark 4.2 The term
∫
Ω

g(x) ·∇v(x)dx is approximated by
∫
Ω

g(x) ·∇Dv(x)dx in (19). It could also be
approximated by

∫
Ω

g(x) · ∇̃Dv(x)dx, where the gradient ∇̃D is piecewise constant on the diamond cells:

∇̃Du(x) = d
δσu

dσ
nσ, for a.e. x ∈ Dσ, ∀σ ∈ E ,∀u ∈ HD. (20)

It was first defined and proven to be weakly convergent in [11, Definition 2, Lemma 2]. We emphasize that
it is not consistent, even in the case of rectangular meshes. Both options lead to a convergent scheme.
The main difference is in the averaging formula for g (on the primal cells or on the diamond cells), and
the choice is mainly decided by the data structure in the implementation of the scheme.

Remark 4.3 Considering the particular case g = 0 and ` = 0, we notice that (19) also reads

u ∈ HD,0, ∀v ∈ HD,0,
∑

K∈M
|K|∆Ku∆Kv =

∑
K∈M

vK

∫
K

f(x)dx,

and may therefore be interpreted as a finite volume scheme. Indeed, taking in (19), v = 1K for K ∈ M
with EK,ext = ∅, we obtain: ∑

L∈M
|L|∆Lu∆Lv =

∑
σ∈EK

|σ|
dσ
δK,σ(∆Du),

which is a discrete equivalent of∫
K

∆(∆u)(x)dx =
∑

σ∈EK

∫
σ

∇(∆u)(x) · nK,σdγ(x).

The scheme can then also be written as

|K|∆K(∆Du) =
∫

K

f(x)dx, ∀K ∈M such that EK,ext = ∅,

and
uK = 0, ∀K ∈M such that EK,ext 6= ∅.

We can now derive the mathematical properties of the scheme, thanks to that of the discrete operator
∆D, which has been the object of numerous studies (see e.g. [12]).

7



4.2 Study of the convergence of the scheme

We begin with some estimates on the approximate solutions. Because of the term
∫
Ω

g(x) · ∇v(x)dx, we
need the following stability result on the approximate gradient (see also [13]):

Lemma 4.1 (Stability of the discrete gradient) Let Ω be an open bounded connected polygonal
subset of Rd, d ∈ N?, and let D be an admissible finite volume discretization of Ω in the sense of
Definition 3.2 and let 0 < θ < θD. Then

‖∇Du‖L2(Ω)d ≤
√
d

θD
‖u‖D, ∀u ∈ HD. (21)

Proof. By definition of the gradient (16), we have thanks to the Cauchy-Schwarz inequality and
Definition (15):

∫
Ω

|∇Du|2dx =
∑

K∈M
|K|

∣∣∣∣∣ 1
|K|

∑
σ∈EK

|σ|
dσ

δK,σu (xσ − xK)

∣∣∣∣∣
2

≤
∑

K∈M

1
|K|

∑
σ∈EK

|σ|dK,σ

θ

∑
σ∈EK

|σ|dK,σ

θ

(
δσu

dσ

)2

.

The result follows from relation (5) and from the fact that ‖u‖2D =
∑

K∈M
∑

σ∈EK
|σ|dK,σ

(
δσu
dσ

)2

.�

Lemma 4.2 (Existence, uniqueness and estimate on the solution of (19))
Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?, let f ∈ L2(Ω), g ∈ L2(Ω)d,
` ∈ L2(Ω) and let D be an admissible finite volume discretization of Ω in the sense of Definition 3.2
and let 0 < θ < θD. Then there exists C > 0, only depending on Ω and θ, such that for any u ∈ HD,0

satisfying (19), then
‖u‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)), (22)

‖u‖D ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)), (23)

‖∇Du‖L2(Ω)d ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)). (24)

and
‖∆Du‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)). (25)

As a consequence, there exists one and only one u ∈ HD,0 such that (19) holds.

Proof. We first recall the discrete Poincaré inequality [12]:

‖v‖L2(Ω) ≤ diam(Ω)‖v‖D, ∀v ∈ HD. (26)

therefore, thanks to (18) and (26), we get:

‖u‖D ≤ diam(Ω)‖∆Du‖L2(Ω), (27)

Hence, setting v = u in (19), and using the Cauchy-Schwarz inequality, we get

‖∆Du‖L2(Ω) ≤ diam(Ω)2‖f‖L2(Ω) +

√
d

θ
diam(Ω)‖g‖L2(Ω)d + ‖`‖L2(Ω),

which proves

‖u‖D ≤ diam(Ω)(diam(Ω)2‖f‖L2(Ω) +

√
d

θ
diam(Ω)‖g‖L2(Ω)d + ‖`‖L2(Ω))

8



and

‖u‖L2(Ω) ≤ diam(Ω)2
(

diam(Ω)2‖f‖L2(Ω) +

√
d

θ
diam(Ω)‖g‖L2(Ω)d + ‖`‖L2(Ω)

)
.

The three above inequalities provide (25), (23) and (22) (note that the example provided in Section 6.1
indicates that the above inequalities lead to the optimal orders with respect to diam(Ω)). We then get
(24) using (21). Finally, we conclude the existence and uniqueness of the solution to (19), which leads to
a square linear system, from the estimate (22), setting f = 0, g = 0 and ` = 0. �

Lemma 4.3 (Compactness of a sequence of approximate solutions) Under assumption 1, let
(Dm)m∈N be a sequence of ∆-adapted discretizations (Definition 3.2) such that hDm tends to 0 as m→∞.
Assume that there exists θ > 0 with θ < θDm for all m ∈ N. Let (um)m∈N be a sequence of functions
of L2(Ω) satisfying um ∈ HDm,0 for all m ∈ N. For simplicity, we shall denote the discrete operators
∇Dm and ∆Dm by ∇m and ∆m respectively. Assume that the sequence (∆mum)m∈N is bounded in L2(Ω);
then there exists a subsequence of (Dm)m∈N, again denoted (Dm)m∈N, and u ∈ H2

0 (Ω), such that the
corresponding subsequence (um)m∈N satisfies:

1. um → u in L2(Ω),

2. ∇mum → ∇u in L2(Ω)d,

3. ∆mum → ∆u weakly in L2(Ω),

as m→∞.

Proof. Since the sequence (∆mum)m∈N is bounded in L2(Ω), we may extract a subsequence of
(Dm)m∈N, such that (∆mum)m∈N converges weakly in L2(Ω) to some w ∈ L2(Ω). Since ∆mum is bounded
in L2(Ω), we get that the same property holds for ‖um‖D. Up to the extraction of a subsequence, we
get from Lemma 5.7 of [15] that that um converges in L2(Ω) to some function u ∈ H1

0 (Ω). First taking
v ∈ C∞c (Ω), we get

[um, PDmv]Dm = −
∫

Ω

∆mum(x) v(x)dx.

Passing to the limit m → ∞ in the above relation and using Lemma 2.1 of [13], we get by density of
C∞c (Ω) in H1

0 (Ω) that

∀v ∈ H1
0 (Ω),

∫
Ω

∇u(x) · ∇v(x)dx = −
∫

Ω

w(x)v(x)dx. (28)

It shows, by uniqueness of the limit u, that all the sequence um corresponding to the extracted subsequence
of (Dm)m∈N converges in L2(Ω) to u. Let us denote by ũm the solution of the finite volume scheme

ũm ∈ HDm
, −∆K ũm =

1
|K|

∫
K

w(x)dx, ∀K ∈Mm.

Then, from Theorem 3.1 of [13], we get that (ũm)m∈N converges in L2(Ω) to u and (∇m ũm)m∈N converges
in L2(Ω)d to ∇u. Let us observe that, using

−∆K(ũm − um) =
1
|K|

∫
K

(w(x)−∆mum(x))dx,

we have
‖ũm − um‖2Dm

= −
∫

Ω

(w(x)−∆mum(x))(ũm(x)− um(x))dx.

We then get, using the strong convergence of ũm − um to 0 in L2(Ω), that the right hand of the above
equation tends to 0. Hence ‖ũm − um‖Dm tends to 0 as m → ∞. Using (21) and the convergence of

9



(∇m ũm)m∈N in L2(Ω)d to∇u, we conclude that (∇mum)m∈N converges to∇u in L2(Ω)d. Since (28) holds,
we have ∆u(x) = w(x) for a.e. x ∈ Ω, which proves that ∆u ∈ L2(Ω). Let us prove that u ∈ H2

0 (Ω).
Let u denote the prolongment of u by 0 outside Ω. Using the gradient defined by (20), we prolong it
by ∇̃Dm

um by 0 in Rd \ Ω. Using the results of [11], we get that the sequence (∇̃Dm
um)m∈N weakly

converges to ∇u in L2(Rd)d.
Let ϕ ∈ C∞c (Rd); note that ϕ does not necessarily vanish at the boundary of Ω. Hence we need to define:

δ̂σϕ = ϕ(xK+
σ
)− ϕ(xK−σ

),∀σ ∈ Eint and δ̂σϕ = ϕ(zσ)− ϕ(xKσ
),∀σ ∈ Eext, (29)

where zσ is the orthogonal projection of xK on the hyperplane which contains σ. We then define a first
order approximation Gmϕ of ∇ϕ on Rd by

Gmϕ(x) =


δ̂σϕ

dσ
nσ +∇ϕ(x)− (∇ϕ(x) · nσ)nσ, for a.e. x ∈ Dσ, for all σ ∈ E ,

∇ϕ(x), for a.e. x ∈ Rd \ Ω.

Let Tm =
∫

Rd

∇̃mum(x) ·Gmϕ(x)dx. Since ∇̃mum tends to ∇u weakly in L2(Ω) and Gmϕ tends to ∇ϕ

strongly in L2(Ω), we get

lim
m→∞

Tm =
∫

Rd

∇u(x) · ∇ϕ(x)dx.

Using the fact that uK is equal to 0 for any K neighbouring the boundary, so that δσum = 0 for any
σ ∈ Eext, we may write

Tm =
∑
σ∈E

|σ|
dσ

(σum)δ̂σϕ =
∑

σ∈Eint

|σ|
dσ
δσum (ϕ(xL)− ϕ(xK))

= −
∑

K∈M
|K|ϕ(xK)

∑
σ∈EK

|σ|
dσ
δσum = −

∑
K∈M

|K|ϕ(xK)∆Kum.

Hence
Tm = −

∫
Ω

PDmϕ(x)∆Dmum(x)dx.

Passing to the limit and using (14), we get∫
Rd

∇u(x) · ∇ϕ(x)dx = −
∫

Ω

ϕ(x)w(x)dx.

This proves that ∇u ∈ Hdiv(Rd) and that ∆u = w a.e. in Ω and ∆u = 0 outside Ω. Since u ∈ H1(Rd),
this implies that u ∈ H2(Rd) (this also is a consequence of (4), which holds with Ω = Rd). Since ∇u = 0
in Rd \ Ω, we get that the trace of ∇u on ∂Ω is equal to 0. Hence u ∈ H2

0 (Ω). �

As we mentioned in the introduction, the finite volume convergence analysis of the bi-harmonic operator
relies on the fact that the discrete Laplace operator of some interpolate of a regular test function ϕ tends
strongly to ∆ϕ. In previous studies, we used the interpolation operator PD defined in (11), since we
only used it for ϕ itself or with the discrete gradient ∇D, which is consistent. Here however, we need
to deal with the Laplace operator, and unfortunately, ∆D(PDϕ) does not, in general, tend strongly to
∆ϕ. Let us consider the simple example of a 1D discretization of Ω = (0, 1) by the control volumes
K = ((k − 1)/(2n), k/(2n)) for a non zero integer n and k = 1, . . . , 2n, with xK = (k − 0.25)/(2n) for
k = 1, 3 . . . , 2n−1 and xK = (k−0.5)/(2n) for k = 2, 4, . . . , 2n. For ϕ(x) = x(1−x), we have ∆ϕ(x) = −2
for all x ∈ Ω, whereas ∆K(PDϕ) = −3/2 for K defined by k = 2, 4, . . . , 2n− 2 and ∆K(PDϕ) = −5/2 for
K defined by k = 3, 5, . . . , 2n− 1.
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Lemma 4.4 (Interpolation of regular functions with compact support) Let Ω be an open bounded
connected polygonal subset of Rd, d ∈ N?, let D be an admissible finite volume discretization of Ω in the
sense of Definition 3.2 and let θ > 0 with θ < θD. Let ϕ ∈ C2

c (Ω) and let a = d(support(ϕ), ∂Ω). Then
there exists P̃Dϕ ∈ HD,0 and C > 0 only depending on θ such that

1.

‖P̃Dϕ− ϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (30)

2.

‖P̃Dϕ− PDϕ‖D ≤ ChD
|ϕ|2
a2

, (31)

3.

‖∆DP̃Dϕ−∆Dϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (32)

where |ϕ|2 = maxi,j=1,d ‖∂2
ijϕ‖L∞(Ω) and ∆Dϕ is the piecewise constant function equal to ∆Kϕ :=

1
|K|
∫

K
∆ϕ(x)dx in each K ∈M.

Proof. Let ρ ∈ C∞c (Rd,R+) be the function defined by

ρ(x) =
exp(−1/(1− |x|2))∫

B(0,1)
exp(−1/(1− |y|2))dy

, ∀x ∈ B(0, 1),

and ρ(x) = 0 for x /∈ B(0, 1). Let ψ (see Figure 3) be the function defined by

ψ(y) =
∫

x∈Ω,d(x,∂Ω)> a
2

(
4
a

)d

ρ

(
4
a
(y − x)

)
dx, ∀y ∈ Ω. (33)

Then ψ ∈ C∞c (Ω), ψ(x) ∈ [0, 1] for all x ∈ Ω, ψ(x) = 0 for all x ∈ Ω such that d(x, ∂Ω) < a
4 and

1

Ω
aa

ψ

ϕ

Figure 3: Functions ϕ and ψ

ψ(x) = 1 for all x ∈ Ω such that d(x, ∂Ω) > 3a
4 . The idea of construction of P̃Dϕ is to consider the

discrete solution of the Laplace problem with the right hand side −∆ϕ; since P̃Dϕ must be equal to
0 on the boundary cells, we multiply this discrete solution by ψ. Then the proof mimics the identity
∆(ψv) = v∆ψ + 2∇ψ · ∇v + ψ∆v.

We first suppose that D is such that hD < a
4 . We denote in the following ψK = ψ(xK), ϕK = ϕ(xK) for

all K ∈M and ψD = PDψ, ϕD = PDϕ. Let us define ṽ ∈ HD such that

−|K|∆K ṽ = −
∫

K

∆ϕ(x)dx, ∀K ∈M, (34)

11



which is equivalent to

∀w ∈ HD, [ṽ, w]D = −
∫

Ω

∆ϕ(x)w(x)dx. (35)

Let us remark that, thanks to (34), ṽ satisfies

|K|ψK∆K ṽ =
∫

K

∆ϕ(x)dx, ∀K ∈M. (36)

Indeed, if
∫

K
∆ϕ(x)dx 6= 0, then K ∩ support(ϕ) 6= ∅, which implies d(xK , ∂Ω) > 3a

4 , and therefore
ψK = 1. Otherwise, ∆K ṽ =

∫
K

∆ϕ(x)dx = 0.
Using the results of [12], since the solution of the continuous Laplace problem is ϕ ∈ C2(Ω), the following
error estimates hold: ∑

K∈M
|K|(ṽK − ϕK)2 ≤ CΩh

2
D |ϕ|22, (37)

and ∑
σ∈E

|σ|
dσ

(δσ(ṽ − ϕD))2 ≤ CΩh
2
D |ϕ|22, (38)

where CΩ only depends on Ω. We define P̃Dϕ ∈ HD,0 by its values in all K ∈M, given by P̃DϕK = ψK ṽK

(recall that, for all K ∈ M such that EK,ext 6= ∅, then d(xK , ∂Ω) < a
4 , hence ψK = 0). We first remark

that
|(P̃Dϕ)K − ϕK | = |ψK ṽK − ψKϕK | ≤ |ṽK − ϕK |,

which proves (30) thanks to (37) since a ≤ diam(Ω). Let us notice that the identity ab− cd = c(b− d) +
d(a− c) + (a− c)(b− d) yields

δK,σ(P̃Dϕ) = ψKδK,σ ṽ + ṽKδK,σψD + δK,σ ṽ δK,σψD.

Hence we get

|K|∆K(P̃Dϕ) = |K|ψK∆K ṽ + |K|ṽK∆KψD +
∑

σ∈EK

|σ|
dσ
δK,σψDδK,σ ṽ.

We remark that, for all K ∈M such that ∆KψD 6= 0, then ϕK = 0, and for all σ ∈ E such that δσψD 6= 0,
then ϕK+

σ
= ϕK−σ

= 0. This leads, using (36), to

|K|∆K(P̃Dϕ) =
∫

K

∆ϕ(x)dx+ |K|(ṽK − ϕK)∆KψD +
∑

σ∈EK

|σ|
dσ
δK,σψDδK,σ(ṽ − ϕD).

Moreover, a Taylor expansion provides

|δK,σψD − dσ∇ψK · nK,σ| ≤ d2
σ

C22

a2
,

with C22 is a constant. Since
∑

σ∈EK
|σ|nK,σ = 0,

∑
σ∈EK

|σ|dK,σ = d |K| and dσ ≤ dK,σ/θ, we get

|K||∆KψD| ≤
∑

σ∈EK

|σ|dσ
C22

a2
≤ C2

a2
|K|,

where C2 only depends on θ. Hence we get, using the notation ∆Kϕ = 1
|K|
∫

K
∆ϕ(x)dx,

∑
K∈M

|K|
(
∆K(P̃Dϕ)−∆Kϕ

)2

≤ 2
C2

2

a4

∑
K∈M

|K|(ṽK − ϕK)2

+2
∑

K∈M

1
|K|

(∑
σ∈EK

|σ|
dσ
δK,σψDδK,σ(ṽ − ϕD)

)2

.
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Thanks to the Cauchy-Schwarz inequality, we have(∑
σ∈EK

|σ|
dσ
δK,σψDδK,σ(ṽ − ϕD)

)2

≤
∑

σ∈EK

|σ|
dσ

(δK,σψD)2
∑

σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2

≤ C2
1

a2
|K|

∑
σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2,

where C1 only depends on θ. Hence∑
K∈M

|K|
(
∆K(P̃Dϕ)−∆Kϕ

)2

≤ 2
C2

2

a4

∑
K∈M

|K|(ṽK − ϕK)2

+2
C2

1

a2

∑
K∈M

∑
σ∈EK

|σ|
dσ

(δK,σ(ṽ − ϕD))2.

This leads, thanks to (37) and (38), to∑
K∈M

|K|
(
∆K(P̃Dϕ)−∆Kϕ

)2

≤ 2C2
2 + 4C2

1a
2

a4
CΩh

2
D |ϕ|22. (39)

Using the definition of ∆Dϕ, we get (32) thanks to a ≤ diam(Ω). Finally, since (39) can also be written

‖∆D(P̃Dϕ)−∆Dṽ‖2L2(Ω) ≤
C

a4
h2
D |ϕ|22,

we get, thanks to (18) and (26),

‖(P̃Dϕ)− ṽ‖2D ≤ diam(Ω)2
C

a4
h2
D |ϕ|22.

Hence we deduce (31) from (38) using the triangle inequality and a ≤ diam(Ω).

In the case where hD ≥ a
4 , we set P̃Dϕ = 0. Since ‖ϕ‖L2(Ω) and ‖ϕD‖D are bounded, up to some

constants only depending on Ω, by ‖∆ϕ‖L2(Ω), and using 1
4 ≤

hD
a , we conclude that the lemma holds for

all hD > 0. �

Remark 4.4 Lemma 4.4 is the main tool for a similar interpolation result which is needed in the con-
vergence proof [10] for a finite volume discretization of the incompressible Navier-Stokes equations. In
that case, we have to construct discrete test functions with homogeneous Dirichlet boundary values, which
are discretely divergence-free and converge to regular divergence-free test functions with compact support.

Theorem 4.1 (Convergence of the scheme) Under assumptions (1)-(2), let u ∈ H2
0 (Ω) be the

solution of Problem (3); let D be an ∆-adapted FV discretization of Ω in the sense of Definition 3.2 and
uD ∈ HD,0 be the solution of (19). Then, as hD tends to 0 with 0 < θ ≤ θD:

1. uD converges in L2(Ω) to u,

2. ∇DuD converges in L2(Ω)d to ∇u,

3. ∆DuD converges in L2(Ω) to ∆u.

Proof. Let (Dm)m∈N be a sequence of ∆-adapted FV discretization of Ω in the sense of Definition
3.2 such that hDm tends to 0 as m → ∞ and θ < θDm for all m ∈ N. Let um ∈ HDm,0, for all
m ∈ N, be the solution of (19). Thanks to Lemmas 4.2 and 4.3, we get the existence of a subsequence
of (Dm)m∈N, again denoted (Dm)m∈N, and of u ∈ H2

0 (Ω) such that the conclusion of Lemma 4.3 holds.
Let ϕ ∈ C∞c (Ω) be given. We take, in (19), v = P̃m(ϕ) where P̃m is defined by Lemma 4.4 for D = Dm.
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Passing to the limit in the scheme (thanks to weak/strong convergence) and by density of C∞c (Ω) in
H2

0 (Ω), we get that u is the solution of Problem (3). By a classical uniqueness argument, we get that
the whole sequence converges. Setting v = um in (19), we get the convergence of ‖∆Dm

um‖2L2(Ω) to∫
Ω
(f(x)u(x) + g(x) · ∇u(x) + `(x)∆u(x))dx =

∫
Ω
(∆u(x))2dx. Together with the weak convergence of

∆Dmum to ∆u, this provides the convergence in L2(Ω) of ∆Dmum to ∆u. �
Let us now state some error estimate results; for the sake of simplicity, we only prove them in the case
g = 0 and ` = 0.

Theorem 4.2 (Error estimate in the case where u ∈ C4
c (Ω))

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?. Let us assume that u ∈ C4
c (Ω)

is given and that f = ∆(∆u). Let D be an admissible finite volume discretization of Ω in the sense of
Definition 3.2 and let θ > 0 with θ < θD. Let uD ∈ HD,0 be the solution of (19). Then there exists C > 0,
only depending on Ω, θ and u such that

1.
‖uD − u‖L2(Ω) ≤ ChD, (40)

2.
‖∇DuD −∇u‖L2(Ω)d ≤ ChD, (41)

3.
‖∆DuD −∆u‖L2(Ω) ≤ ChD. (42)

Remark 4.5 The above result is not optimal on regular grids, as shown in the numerical tests below,
however, they seem to be optimal on some families of irregular grids.

Proof. In this proof, we denote by Ci various positive quantities only depending on Ω, u and θ. Let
us first take any w ∈ HD,0. We have∫

Ω

w(x)∆(∆u)(x)dx =
∫

Ω

w(x)f(x)dx,

which leads, thanks to wK = 0 if K has a common boundary with ∂Ω, to

−
∑

σ∈Eint

δσw

∫
σ

∇(∆u)(x) · nσdγ(x) =
∑

K∈M
wK

∫
K

f(x)dx.

We set, for σ ∈ Eint,

Rσ =
1
|σ|

∫
σ

∇(∆u)(x) · nσdγ(x)− δσ(PD∆u)
dσ

.

Thanks to the orthogonality property of the mesh, we have the existence of C4, only depending on u,
such that

|Rσ| ≤ C4dσ. (43)

Using w ∈ HD,0, we have ∑
σ∈Eint

|σ|
dσ
δσw δσ(PD∆u) = [w,PD∆u]D.

Therefore, using (18), we have∑
K∈M

|K|∆u(xK)∆Kw =
∑

K∈M
wK

∫
K

f(x)dx+
∑

σ∈Eint

|σ|Rσδσw.
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Let us now introduce some v ∈ HD,0, which will be chosen later as some discrete interpolation of u. We
have ∑

K∈M
|K|∆Kv∆Kw =

∑
K∈M

wK

∫
K

f(x)dx+
∑

σ∈Eint

|σ|Rσδσw +
∑

K∈M
|K|(∆Kv −∆u(xK))∆Kw.

We now subtract the above equation with (19), in which we replace v by w and we get∑
K∈M

|K|∆D(v − uD)∆Kw =
∑

σ∈Eint

|σ|Rσδσw +
∑

K∈M
|K|(∆Kv −∆u(xK))∆Kw.

Thanks to the Cauchy-Schwarz inequality, we have the existence of C5 such that∣∣∣∣∣ ∑
σ∈Eint

|σ|Rσδσw

∣∣∣∣∣ ≤ C5hD‖w‖D,

which provides, thanks to (18), (26) and (27)∣∣∣∣∣ ∑
σ∈Eint

|σ|Rσδσw

∣∣∣∣∣ ≤ C6hD‖∆Dw‖L2(Ω).

Replacing w by (v − uD) we obtain

‖∆D(v − uD)‖L2(Ω) ≤ C6hD +

( ∑
K∈M

|K|(∆Kv −∆u(xK))2
) 1

2

Finally, we use the triangle inequality and obtain

‖∆u−∆DuD‖L2(Ω) ≤

( ∑
K∈M

∫
K

(∆u−∆u(xK))2 dx

) 1
2

+ C6hD + 2

( ∑
K∈M

|K|(∆Kv −∆u(xK))2
) 1

2

Now we choose v ∈ HD,0 according to Lemma 4.4 using ϕ = u. Thanks to (32) and ∆u ∈ C2(Ω), we get
the existence of C7 such that ( ∑

K∈M
|K|(∆Kv −∆u(xK))2

) 1
2

≤ C7hD.

Gathering the above results, we get

‖∆u−∆DuD‖L2(Ω) ≤ C8hD,

and, thanks to (18) and (26),
‖PDu− uD‖D ≤ C9hD,

and
‖PDu− uD‖L2(Ω) ≤ C10hD.

Using (21), we conclude the proof of the theorem. �

Theorem 4.3 (Error estimate in the case where u ∈ C4(Ω) ∩H2
0 (Ω))

Let Ω be an open bounded connected polygonal subset of Rd, d ∈ N?. Let us assume that u ∈ C4(Ω)∩H2
0 (Ω)

is given and that f = ∆(∆u). Let D be an admissible finite volume discretization of Ω in the sense of
Definition 3.2 and let θ > 0 with θ < θD. Let uD ∈ HD,0 be the solution of (19). Then there exists C > 0,
only depending on Ω, θ and u such that
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1.
‖uD − u‖L2(Ω) ≤ Ch

1/5
D , (44)

2.
‖∇DuD −∇u‖L2(Ω)d ≤ Ch

1/5
D , (45)

3.
‖∆DuD −∆u‖L2(Ω) ≤ Ch

1/5
D . (46)

Remark 4.6 The above result is far from being optimal in the general case, this is due to the interpolation
at the boundary.

Proof. For a given a > 0 (which will be chosen later), we define the function ψa by (33). We remark
that the function ua defined by ua(x) = u(x)ψa(x) for all x ∈ Ω is such that

‖∆u−∆ua‖L2(Ω) ≤ C
√
a, (47)

where C only depends on u. Indeed, we have

∆ua(x) = ψa(x)∆u(x) + 2∇ψa(x) · ∇u(x) + u(x)∆ψa(x),

which gives
∆ua(x)−∆u(x) = (ψa(x)− 1)∆u(x) + 2∇ψa(x) · ∇u(x) + u(x)∆ψa(x).

Since there exists Cu > 0, only depending on u, such that for all x ∈ Ω, |∇u(x)| ≤ Cud(x, ∂Ω) and
|u(x)| ≤ Cud(x, ∂Ω)2, we get the existence of C ′u, only depending on u, such that

|∆ua(x)−∆u(x)| ≤ C ′u, ∀x ∈ Ω such that d(x, ∂Ω) ≤ a,

remarking that |∇ψa(x)| ≤ C0/a and |∆ψa(x)| ≤ C0/a
2, with C0 being a constant. Using ∆ua(x) =

∆u(x) if d(x, ∂Ω) > a, we get

‖∆u−∆ua‖2L2(Ω) ≤ meas(∂Ω) a (C ′u)2.

We now reproduce the proof of Theorem 4.2 until the choice of v ∈ HD,0, which is now given by Lemma
4.4 for ϕ = ua. We then get that∑

K∈M
|K|(∆Kv −

1
|K|

∫
K

∆ua(x)dx)2 ≤ C
h2
D

(a/4)4
.

Using the triangle inequality we thus get the existence of C11, only depending on u, such that∑
K∈M

|K|(∆Kv −∆u(xK))2 ≤ C11

(
h2
D + a+

h2
D
a4

)
.

It now suffices to choose a = h
2/5
D (note that, for small values of hD, then the case hD ≤ a/4 holds, which

allows the function v given by Lemma 4.4 to be different from 0), which leads to the conclusion of the
proof. �

5 The case of general polygonal discretizations

The scheme presented in Section 4 applies on admissible discretizations in the sense of Definition 3.2,
which satisfy an orthogonality property restricting the type of meshes. In the present section, this scheme
is generalized to general polygonal meshes in the sense of Definition 3.1, based on the SUCCES scheme
presented in [1, 15, 14].
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5.1 Definition of the scheme

Since we are now dealing with general meshes, we need more than two points to properly approximate
the diffusion fluxes. The idea of [15] is to reconstruct a gradient from interface unknowns, stabilize it
through the addition of a consistency error term (which vanishes as the mesh size tends to 0) and use it
in a weak discrete form. When defined in this way, the scheme has a hybrid structure (SUSHI: Scheme
Using Stabilization and Hybrid Interfaces), since it involves interface unknowns, whose related equations
are the conservativity of the numerical fluxes. However, this scheme may be modified into a cell centred
scheme by choosing the interface unknowns as combinations of the cell unknowns (and therefore relaxing
the local conservativity of the numerical fluxes). The resulting scheme is compared to other cell centred
schemes in [1] and applied to non linear problems in [14].

Definition 5.1 (Interface values) Let D = (M, E ,P) be a FV mesh of Ω in the sense of Definition
3.1. For all σ ∈ Eint (where Eint denotes the set of interior faces and Eext that of exterior faces), we choose
a family of real numbers (βK

σ )K∈M (this family contains in general at most d+1 nonzero elements) such
that:

xσ =
∑

K∈M
βK

σ xK , with
∑

K∈M
βK

σ = 1. (48)

Then, for any u ∈ HD, and for any σ ∈ Eint, we set

uσ =
∑

K∈M
βK

σ uK

and for any σ ∈ Eext, we set
uσ = 0.

Definition 5.2 (Discrete gradient) Under assumption (1), let D be a general FV discretization in the
sense of Definition 3.1. For all K ∈M and σ ∈ EK , we first define the following linear mappings:

GK : REK → Rd, a = (as)s∈EK
7→ GK(a) =

1
|K|

∑
s∈EK

|s|asnK,s, (49)

RK,σ : REK → R, a = (as)s∈EK
7→ RK,σ(a) =

√
d

dK,σ
(aσ −GK(a) · (xσ − xK)) , (50)

GK,σ : REK → Rd, a = (as)s∈EK
7→ GK,σ(a) = GK(a) +RK,σ(a) nK,σ. (51)

Note that if a = (as)s∈EK
is such that as = A · (xs − xK) for all s ∈ EK , with A ∈ Rd, then GK(a) =

GK,σ(a) = A and RK,σ(a) = 0. Using these linear mappings, we define

∇K,σu = GK,σ(dK(u)), ∀K ∈M, ∀σ ∈ EK , ∀u ∈ HD, (52)

where dK(u) = (us − uK)s∈EK
∈ REK , and the values (us)s∈E are defined in Definition 5.1.

The discrete gradient ∇Du of u ∈ HD is then defined as the piecewise constant function in each cone
DK,σ, for K ∈M and σ ∈ EK :

∇Du(x) = ∇K,σu, ∀x ∈ DK,σ,∀K ∈M and σ ∈ EK .

Definition 5.3 (Discrete Laplace operator) Under assumption (1), let D be a general FV discretiza-
tion in the sense of Definition 3.1. Let u ∈ HD, then ∆Du ∈ HD is defined by its constant value ∆Ku
on each cell K of the mesh, given by:

−
∑

K∈M
|K|vK∆Ku =

∫
Ω

∇Du(x) · ∇Dv(x)dx, ∀u, v ∈ HD. (53)
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Note that (53) can be easily extended to more general second-order elliptic operators, as shown in [15].
In order to account for the homogeneous Dirichlet boundary conditions, we introduce, for all K ∈ M
and σ ∈ EK , the unique linear form FK,σ : REK → R such that∑

σ∈EK

|DK,σ|GK,σ(a) ·GK,σ(b) =
∑

σ∈EK

aσFK,σ(b), ∀a = (as)s∈EK
, b = (bs)s∈EK

∈ REK . (54)

Definition 5.4 (Discretization space) Under assumption (1), let D be a general FV discretization of
Ω in the sense of Definition 3.1. For u ∈ HD and K ∈M, let dK(u) = (us − uK)s∈EK

∈ REK , where the
values (us)s∈E are defined in Definition 5.1. The space H̃D,0 is defined by

H̃D,0 = {u ∈ HD, for all σ ∈ Eext, FKσ,σ(dKσ (u)) = 0}. (55)

where Kσ denotes the unique control volume to which σ is an interface.

Under assumption (2), we consider the following scheme for the discretization of (3) on a general dis-
cretization in the sense of Definition 3.1:

Find u ∈ H̃D,0, ∀v ∈ H̃D,0,∫
Ω

∆Du(x)∆Dv(x)dx =
∫

Ω

(f(x)PDv(x) + g(x) · ∇Dv(x) + `(x)∆Dv(x))dx, (56)

Remark 5.1 We notice that, as in [15], the scheme (56) turns out to be identical to the scheme (19) on
meshes such that xσ − xK = dK,σnK,σ, since, for all exterior face σ, the following relation holds:

FKσ,σ(dK(u)) =
|σ|
dKσ,σ

(0− uKσ ).

5.2 Convergence analysis

As in Section 4, we need to measure some regularity of the mesh. We define:

θD = min

{
hK

hM
,
hM

hK
,
dK,σ

hK
,

1
|βM

σ |
,

hK

|xM − xσ|
,
|σ|
hd−1

K

,K ∈M, σ ∈ EK ,M ∈M such that βM
σ 6= 0

}
. (57)

Note that Definition (57) implies a stronger regularity than that requested in [15] for the convergence of
the scheme for 2nd order elliptic operators.

Lemma 5.1 (Existence, uniqueness and estimate on the solution of (56)) Under assumptions
(1)(2), let D be a general FV discretization of Ω in the sense of definition 3.1 and let 0 < θ < θD. Then
there exists C > 0, only depending on Ω and θ, such that for any u ∈ H̃D,0 satisfying (56), then

‖u‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)), (58)

‖∇Du‖L2(Ω)d ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)). (59)

and
‖∆Du‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)d + ‖`‖L2(Ω)). (60)

As a consequence, there exists one and only one u ∈ H̃D,0 such that (56) holds.

Proof. The proof is a straightforward consequence of the discrete definition (53) and of the discrete
Poincaré inequality

‖u‖L2(Ω) ≤ C‖∇Du‖L2(Ω)d ,

provided in [15]. �
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Lemma 5.2 (Compactness of a sequence of approximate solutions) Under assumptions (1),(2),
let θ > 0 and let (Dm)m∈N be a sequence of general FV discretizations Ω in the sense of definition 3.1
such that hDm tends to 0 as m → ∞ with θ < θDm for all m ∈ N. We assume that there exists C > 0
and um ∈ H̃Dm,0, for all m ∈ N, such that (replacing the index Dm by m for all discrete operators)
‖∆mum‖L2(Ω) ≤ C for all m ∈ N. Then there exists a subsequence of (Dm)m∈N, again denoted (Dm)m∈N,
and u ∈ H2

0 (Ω), such that the corresponding subsequence (um)m∈N satisfies

1. the sequence (um)m∈N converges in L2(Ω) to u,

2. the sequence (∇mum)m∈N converges in L2(Ω)d to ∇u,

3. the sequence (∆mum)m∈N weakly converges in L2(Ω) to ∆u.

Proof. The proof of Lemma 5.2 first uses the compactness arguments provided in [15]. In order
to prove the H2

0 (Ω) regularity of the limit, one follows the same ideas as that of Lemma 4.3. Indeed,
for a given ϕ ∈ C∞c (Rd), we define ϕσ =

∑
K∈M βK

σ ϕ(xK) for all σ ∈ Eint and ϕσ = ϕ(xσ) for all
σ ∈ Eext. We finally define the function ∇̂Dϕ by the constant value GK,σ(d̂K(ϕ)) in DK,σ, denoting
d̂K(ϕ) = (ϕσ − ϕ(xK))σ∈EK

. We then have

−
∑

K∈M
|K|ϕ(xK)∆Ku =

∫
Ω

∇Du(x) · ∇̂Dϕ(x)dx,

since (54) and (55) imply that the values (ϕ(xσ))σ∈Eext at the boundary are multiplied by zero in the
preceding relation, which then turns to be identical to (53). Thus, we again get the H2

0 (Ω) regularity of
the limit in L2(Ω) of um. �

Lemma 5.3 (Interpolation of regular functions with compact support) Under assumptions (1),(2),
let D be a general FV discretization of Ω in the sense of definition 3.1 and let 0 < θ < θD. Let ϕ ∈ C2

c (Ω)
and let a = d(support(ϕ), ∂Ω). Then there exists C > 0, only depending on θ, and P̂Dϕ ∈ H̃D,0 such that

1.

‖P̂Dϕ− ϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (61)

2.

‖∇D(P̂Dϕ)−∇ϕ‖L2(Ω)d ≤ ChD
|ϕ|2
a2

, (62)

3.

‖∆D(P̂Dϕ)−∆ϕ‖L2(Ω) ≤ ChD
|ϕ|2
a2

, (63)

where |ϕ|2 = maxi,j=1,d ‖∂2
ijϕ‖L∞(Ω).

Proof. Remarking that the conditions FK,σ(dK(u)) = 0 are local, the proof of this lemma again follows
that of Lemma 4.4. For a given function ϕ ∈ C∞c (Ω), we again define the function ψ by (33), as in the
proof of Lemma 4.4. We then consider a discretization D such that hD ≤ a/(4θ2). Thanks to Definition
(53), we get that

∆Ku =
∑

L∈M
τK,L(uL − uK)−

∑
σ∈EL∩Eext

τσ
K,LuL, ∀K ∈M, ∀u ∈ HD,

where τK,L 6= 0 or τσ
K,L 6= 0 imply d(xK , xL) ≤ hK/θ

2, and there exists C0, only depending on θ, such
that |τK,L| ≤ C0h

d−2
K and |τσ

K,L| ≤ C0h
d−2
K . Indeed, there exist Ci, i ∈ N, only depending on θ, such that

|Aστ
L | ≤ C1h

d−2
K for any L ∈M with βL

σ 6= 0 for some σ ∈ EK , the number of L ∈M such that τK,L 6= 0
is lower that C2. We then define v̂ ∈ HD such that

|K|∆K v̂ =
∫

K

∆ϕ(x)dx, ∀K ∈M.
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We have, thanks to the results of [15] (we again let in the following ψK = ψ(xK), ϕK = ϕ(xK) for all
K ∈M): ∑

K∈M
|K|(v̂K − ϕK)2 ≤ CΩ,θh

2
D |ϕ|22, (64)

and
‖∇Dv̂ −∇DPDϕ‖2L2(Ω)d ≤ CΩ,θh

2
D |ϕ|22, (65)

where CΩ,θ only depends on Ω and θ. We then define P̂Dϕ ∈ H̃D,0 by (P̂Dϕ)K = v̂KψK . We have

|K|∆K(P̂Dϕ) = |K|ψK∆K v̂ + |K|v̂K∆KψD +
∑

L∈M
τK,L(v̂L − v̂K)(ψL − ψK).

This leads, using (36), to

|K|∆K(P̂Dϕ) =
∫

K

∆ϕ(x)dx+ |K|(v̂K − ϕK)∆KψD +
∑

L∈M
τK,L(ṽL − ϕL − (v̂K − ϕK))(ψL − ψK).

Moreover, a Taylor expansion and Definition (57) provide

|K||∆KψD| ≤
∑

L∈M
τK,Lh

2
K

C22

a2
≤ C2

a2
|K|,

where C22 and C2 only depends on θ Hence we get

∑
K∈M

|K|
(

∆K(P̂Dϕ)− 1
|K|

∫
K

∆ϕ(x)dx
)2

≤ 2
C2

2

a4

∑
K∈M

|K|(v̂K − ϕK)2 + 2
∑

K∈M

1
|K|

(∑
L∈M

τK,L(v̂L − ϕL − (v̂K − ϕK))(ψL − ψK)

)2

.

Then we use the fact that there exists C3 only depending on θ such that∑
K,L∈M

τK,L(v̂L − ϕL − (v̂K − ϕK))2 ≤ C3‖∇Dv̂ −∇DPDϕ‖2L2(Ω)d

to conclude the proof in the same way as in the proof of Lemma 4.4. �
Finally, the following convergence theorem holds (its proof is similar to that of Theorem 4.1).

Theorem 5.1 (Convergence of the scheme) Under assumptions (1),(2), let u ∈ H2
0 (Ω) be the

solution of Problem (3). Let D be a general FV discretization of Ω in the sense of definition 3.1 and let
uD ∈ H̃D,0 be the solution of (56). Then, as hD tends to 0 with 0 < θ ≤ θD:

1. uD converges in L2(Ω) to u,

2. ∇DuD converges in L2(Ω)d to ∇u,

3. ∆DuD converges in L2(Ω) to ∆u.

Error estimates can then also be derived.

Remark 5.2 (Writing the BiLaplacian SUCCES code from the Laplace SUCCES code) The
implementation of this scheme is relatively easy starting from the SUCCES implementation of the Laplace
equation. In fact the matrix obtained for the SUCCES discretization of the biharmonic operator is, up
to the boundary conditions, equal to A diag(1/|K|)At, where A is the Laplace matrix (recall that At = A
when using the SUCCES scheme) and diag(1/|K|) denotes the diagonal matrix with coefficients 1/|K|.
However, the treatment of the boundary condition FKσ,σ(dKσ (u)) = 0 is not easy to perform directly in
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the matrix, in particular because the stencil required by this condition is difficult to obtain. We chose to
associate some Lagrange multipliers to these conditions (so we have card(Eext) multipliers) . Indeed, the
solution to (56) may also be found by the minimization of 1

2

∫
Ω
(∆Du(x))2dx −

∫
Ω
(f(x)PDu(x) + g(x) ·

∇Du(x) + `(x)∆Du(x))dx for all u ∈ HD under the constraints FKσ,σ(dKσ (u)) = 0 for all σ ∈ Eext. This
is then solved in practice, using a Lagrangian formulation for this minimization problem. The resulting
matrix is then of the form (

A diag(1/|K|)At B
Bt 0

)
where B denotes the matrix associated to the Lagrange multipliers of the condition FKσ,σ(dKσ (u)) = 0
for all σ ∈ Eext.

6 Numerical results

We apply the scheme (19) for the approximation of one, two, and three dimensional examples. We also
consider 2D examples of application for Scheme (56). We recall that the discrete Laplace operator is not
consistent in the case of triangular meshes or nonuniform rectangular meshes with nonconstant space
steps. Nevertheless, the discrete Laplacian of the approximate solution of the scheme converges to the
Laplacian of the exact solution, as we show below. In the tables below we use for the difference of the
approximate solution uD ∈ HD,0 and the exact solution u ∈ H2

0 (Ω) the following discrete norms defined
by

E0 =

( ∑
K∈M

|K|(uK − u(xK))2/
∑

K∈M
|K|u(xK)2

)1/2

,

E1 =

( ∑
K∈M

|K| |∇KuD −∇u(xK)|2 /
∑

K∈M
|K||∇u(xK)|2

)1/2

,

and

E2 =

( ∑
K∈M

|K|(∆KuD −∆u(xK))2/
∑

K∈M
|K|(∆u(xK))2

)1/2

.

and similar notations in the case of the scheme (56). We also present, in the columns “Stencil”, the ratio
between the number of non zero terms in the matrix and the number of unknowns, which provides an
evaluation of the size of the stencil of the scheme.

6.1 A one dimensional example

We approximate the problem
u(4)(x) = −1, x ∈ [0, L],

u(0) = u(L) = u′(0) = u′(L) = 0,

which is the classical problem of the completely fixed beam, under uniform load, using the scheme (19).
The analytical solution is given by

u(x) = − (x(L− x))2

24
.

The exact minimum value of u is −L4/(24 24) ' −0.002604167 L4.
In this standard example, we get convergence with order 2 for u, ∇u and ∆u. This convergence order is
lower than that obtained using a conformal H2 finite element method, but may be sufficient in practice.
Since f ≡ 1, we have ‖f‖L2(Ω) =

√
L; furthermore, ‖∆u‖L2(Ω), ‖∇u‖L2(Ω) and ‖u‖L2(Ω) are of the order

Ln‖f‖L2(Ω) with respectively n = 2, 3, 4. This shows that the constants found in the proof of Lemma
4.2 have the optimal order. The stencil size naturally tends to the 5-point stencil resulting from the
“neighbours of the neighbours”.
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n Stencil E0 order E1 order E2 order umin umax

100 4.84 4.29E-4 - 6.27E-4 - 1.12E-4 - -0.0026031 0
200 4.92 1.07E-4 ' 2 1.57E-4 ' 2 2.80E-5 ' 2 -0.0026039 0
400 4.96 2.68E-5 ' 2 3.92E-5 ' 2 6.99E-6 ' 2 -0.0026041 0

Table 1: Convergence orders, in the case L = 1

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0 0.2 0.4 0.6 0.8 1

Figure 4: Exact and approximate solutions with n = 200.

6.2 Two dimensional examples

Here we compare the schemes (19) and (56) for the approximation of the 2D problem on ∆-adapted grids,
for which both schemes are defined. We choose the following function:

u(x1, x2) = (1− cos(2πx1))(1− cos(2πx2)), ∀(x1, x2) ∈ [0, 1]2,

which satisfies (3) for the ad hoc data f = ∆(∆u), g = 0, ` = 0, Ω =]0, 1[2; hence we choose f as the
function defined by:

f(x1, x2) = ∆(∆u)(x1, x2) = (2π)4
(
4 cos(2πx1) cos(2πx2)− (cos(2πx1) + cos(2πx2))

)
Table 2 summarizes the results obtained for the scheme (19).

Mesh Stencil E0 order E1 order E2 order umin umax

S 20x20 9.64 1.04E-2 - 6.03E-3 - 1.03E-2 - 0 3.991
S 40x40 11.26 2.58E-3 ' 2 1.49E-3 ' 2 2.56E-3 ' 2 0 3.998
T 1400 9.10 3.99E-3 - 5.27E-2 - 5.97E-3 - 0 3.998
T 5600 9.55 9.89E-4 ' 2 2.63E-2 ' 1 2.53E-3 ≥ 1 0 3.9995
T 22400 9.77 2.47E-4 ' 2 1.31E-2 ' 1 1.20E-3 ≥ 1 0 3.9999

Table 2: Convergence orders for the scheme (19) S: Squares meshes, T: Triangular meshes

We see that we again get order 2 convergence for u, ∇u and ∆u for square meshes, but only order 1
convergence for triangular meshes. Again, this convergence order is lower than that obtained using a
conformal H2 finite element method; however, in 2D the conformal finite element methods are quite
complex. For example, the Argyris triangular finite element is used to get a conformal approximation in
H2(Ω) requires 21 degrees of freedom [8] and the computation of the elementary rigidity matrix is much
more complex than the present finite volume matrix.
It is worth noticing that in the case of a triangular mesh, for any function ϕ ∈ C∞c (Ω), the function
∆DPDϕ never converges to ∆ϕ in L2(Ω) when using triangular meshes, while the discrete Laplacian of
the approximate solution tends to the Laplacian of the exact solution.
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Note that the stencil tends to a 13-point stencil on structured square meshes, and to a 10-point stencil
on triangular meshes (which are the number of “neighbours of neighbours”).
Let us now compare the schemes (56) and (19). We first recall that if the points xK are chosen at the
circumcenter point in (56) both schemes are identical on squares and triangles (see [15]), in which case
the comparison is simple. . . . However if, in the case of the scheme (56), we let xK be the center of gravity
of the triangles, the schemes are now different. We consider in Table 3 the same triangular meshes with
such a discretization. We then remark that the order of convergence is reduced to 1 for ∇u, a little more
than 1 for u but less than 1 for ∆u. Moreover, the size of the matrices is very large (with a stencil size
around 31). Hence, on ∆− adapted meshes, the scheme (19) should be preferred to the scheme (56),
since the results are more accurate for a much reduced computing price.

Mesh Stencil E0 order E1 order E2 order umin umax

T 1400 31.4 1.38E-3 - 4.62E-2 - 1.01E-2 - -3.E-4 3.987
T 5600 31.2 3.88E-4 ≥ 1 2.31E-2 ' 1 5.51E-3 ≤ 1 -8.E-5 3.9967
T 22400 31.1 1.42E-4 ≥ 1 1.16E-2 ' 1 3.22E-3 ≤ 1 -2.E-5 3.9991
G1 1680 42.1 7.70E-3 - 2.17E-2 - 3.39E-2 - -0.002 3.959
G2 6720 41.6 1.87E-3 ' 2 6.44E-3 > 1 1.69E-2 ' 1 -0.0006 3.990

Table 3: Convergence orders for the scheme (19) T: Triangular meshes. The meshes G1 and G2 are
nonconforming quadrangular meshes depicted in Figure 6

Figure 5: Grid T 1400 (left), solution with this grid (right)

Let us now turn to the analysis of the results of the scheme (56) obtained on the same test case, but
using meshes G1 and G2 depicted in Figure 6; note that on these meshes, the scheme (19) is no longer
applicable. These meshes gather at least two difficulties: irregular control volumes and hanging nodes. We
see that, even on these distorted meshes, the convergence rate remains quite good, but the computational
cost, derived from the matrix size, increases (with a stencil size of around 42 terms).

Figure 6: From left to right: grids G1, G2, solution with grid G2.
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6.3 A three-dimensional example

We now use the scheme (19) for the approximation of the 3D problem, where the solution is given by (3)
with f = ∆(∆u), g = 0, l = 0, Ω =]0, 1[3 and

u(x1, x2, x3) = (1− cos(2πx1))(1− cos(2πx2))(1− cos(2πx3)), ∀(x1, x2, x3) ∈ [0, 1]3.

We then have

∆(∆u)(x1, x2, x3) = (2π)4( 4(cos(2πx1) cos(2πx2) + cos(2πx2) cos(2πx3) + cos(2πx3) cos(2πx1))
−(cos(2πx1) + cos(2πx2) + cos(2πx3))
−9 cos(2πx1) cos(2πx2) cos(2πx3))

We then have the following numerical results, for cubic meshes with n3 control volumes.

Mesh Stencil E0 order E1 order E2 order umin umax

8x8x8 7.7 0.721E-01 - 0.564E-01 - 7.49E-2 - 0 7.57
16x16x16 14.8 0.175E-01 ' 2 0.134E-01 ' 2 1.82E-2 ' 2 0 7.90
32x32x32 19.4 0.435E-02 ' 2 0.329E-02 ' 2 4.52E-3 ' 2 0 7.98
2000 Vor. 39.3 0.958E-01 - 0.238 - 0.281 - -0.015 7.83
16000 Vor. 59.8 0.475E-01 ' 1 0.114 ' 1 0.172 ≤ 1 -0.002 7.85

Table 4: Convergence orders

Figure 7: From left to right: solution obtained with mesh 32x32x32, at x1 = .2, at x1 = .5, solution
obtained with Voronöı mesh with 16000 control volumes, at x1 = .2 and at x1 = .5

In this 3D example, we again get convergence with order 2 for u, ∇u and ∆u with cubic meshes (the
stencil tends to 25, which is the number of “neighbours of neighbours”). We recall that it is not possible
to consider tetrahedral admissible meshes in 3D in the sense of Definition 3.2. The more general meshes
that we can consider here are the Voronöı meshes (recall that the control volumes are defined, for any
point xK , as the set of the points of Ω closer to xK than to any point xL for L 6= K). Note that for
such meshes there is no standard finite element technique available. In Table 4, we present the results
obtained using two Voronöı meshes, with respectively 2000 and 16000 control volumes. The centers of
the control volumes are randomly generated. The convergence orders remain significant, although in this
case again, for any function ϕ ∈ C∞c (Ω), the function ∆DPDϕ will not converge to ∆ϕ in L2(Ω). We
observe that the maximum and minimum values are not as precise as those obtained using cubic meshes.
It is also interesting to notice that the resulting matrix is much sparser in comparison with cubic meshes,
for comparable mesh sizes.

7 Conclusion and perspectives

The finite volume schemes which are constructed in this paper for the discretization of the biharmonic
problem were shown to be convergent and numerically efficient. Their convergence analysis relies on a
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discrete equivalent of the equality
∫
Ω
∇u · ∇v = −

∫
Ω
u∆v, together with a discrete Poincaré inequality,

which allows the control of ‖∇u‖L2(Ω)d by ‖∆u‖L2(Ω). A natural question is to recover such properties,
starting from a Lagrange finite element interpolation. This demands that the discrete Laplacian be
reconstructed thanks to the relation

∫
Ω
∇u · ∇v = −

∫
Ω
uD∆Dv, for all pairs u, v of elements of the finite

element approximation space. This can easily be achieved, by associating a control volume with each
interior degree of freedom, and by defining uD as the piecewise constant function equal in this control
volume to the corresponding degree of freedom. The difficulty is then to check that ‖uD − u‖L2(Ω) can
be controlled by ‖∇u‖L2(Ω)d . This is easy to show in the case of triangles which are sufficiently acute,
considering the “dual control volumes”. To our knowledge, this property is open in the general case and
could be the object of future works.
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[17] T. Gallouët, R. Herbin, and M.-H. Vignal. Error estimates on the approximate finite volume solu-
tion of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal.,
37(6):1935–1972 (electronic), 2000.

[18] M. Gander and G. Wanner. From Euler, Ritz and Galerkin to modern computing. Book chapter,
Cahier de Vallaisia, to be published, 2010.

[19] E. H. Georgoulis and P. Houston. Discontinuous Galerkin methods for the biharmonic problem.
IMA J. Numer. Anal., 29(3):573–594, 2009.

[20] T. Gudi, N. Nataraj, and A. K. Pani. Mixed discontinuous Galerkin finite element method for the
biharmonic equation. J. Sci. Comput., 37(2):139–161, 2008.

[21] C. A. Hall, J. C. Cavendish, and W. H. Frey. The dual variable method for solving fluid flow
difference equations on Delaunay triangulations. Comput. & Fluids, 20(2):145–164, 1991.

[22] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow
of fluid with free surface. Physics of fluids, 8(12):2182–2189, 1965.
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[28] E. Süli and I. Mozolevski. hp-version interior penalty DGFEMs for the biharmonic equation. Comput.
Methods Appl. Mech. Engrg., 196(13-16):1851–1863, 2007.

[29] T. Wang. A mixed finite volume element method based on rectangular mesh for biharmonic equa-
tions. J. Comput. Appl. Math., 172(1):117–130, 2004.

26


