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Xlim-SIC laboratory, University of Poitiers, France
e-mail: {soulard,carre}@sic.univ-poitiers.fr

ABSTRACT

This paper proposes a new texture classifier based on the Quater-
nionic Wavelet Transform (QWT). This recent transform separates
the informations contained in the image better than a classical
wavelet transform (DWT), and provides a multiscale image analysis
which coefficients are 2D analytic, with one near-shift invariant
magnitude and a phase, that is made of three angles. The interpre-
tation and use of the QWT coefficients, especially the phase, are
discussed, and we present a texture classifier using both the QWT
magnitude and the QWT phase of images. Our classifier performs a
better recognition rate than a standard wavelet based classifier.

Index Terms— Wavelet transforms, 2D Phase, Quaternionic
Wavelet Transform, Image texture analysis, Image classification

1. INTRODUCTION

1.1. Texture Classification

Texture classification is the process which, given any textural image,
find the class this image most probably belongs to. Texture has still
no universal definition, but may be presented by classical cases like
‘tar’, ‘water’, ‘sand’, as macroscopic examples, or ‘town’,‘ocean’,
‘forest’, as satellite view examples, and caracterized by a sort of
uniformity and periodicity. Then a class is a kind of texture, accord-
ing to an arbitrary classification we humans make instinctively. In
the wide field of Image Processing, texture recognition have been
largely studied [1], we present here an approach based on the recent
Quaternionic Wavelet Transform (QWT).

We do not aim at carrying out an efficient classifier, our work
is rather an innovating first step in applying a new transform. The
QWT, which we focus on, has promising theoretical properties, and
texture analysis is a famous application of wavelets. Hence we pro-
pose to study QWT in comparison with standard wavelets, in a tex-
ture analysis context, without emphasis on state of the art techniques.
With a new texture classifier, this work gives an QWT application
not did yet to our knowledge, and furthers the practical use of QWT
coefficients.

1.2. Quaternionic Wavelet Transform (QWT)

A standard wavelet transform (DWT) provides a scale-space analysis
of an image, yielding a matrix in which each coefficient is related to
a ‘subband’ (localisation in the 2D Fourier domain) and to a position
in the image. A ‘subband’ means both an oscillation scale (i.e. a
1D frequency band) and a spatial orientation (i.e. rather vertical,
horizontal or diagonal). These are coded by an atomic 2-D function
called a ‘wavelet’, that is a sort of oscillating, elongated, oriented and
well localized ‘fat point’. Each coefficient is calculated by a scalar
product between a shifted wavelet and the image, and so represents

the ‘presence’ of a feature in the image, at one position, for one
subband.

The QWT [2] is an improvement of the DWT, providing a richer
scale-space analysis for 2-D signals. Contrary to DWT, it is near-
shift invariant and provides a magnitude-phase local analysis of im-
ages. It is based on the ‘Quaternionic Fourier Transform’ (QFT) and
the ‘Quaternionic Analytic Signal’ [3], which extend the well known
signal theory concepts to 2D, by an embedding into the quaternion
algebra H, more adapted than C to describe 2D signals.

A quaternion is a generalization of a complex number, related
to 3 imaginary units i, j, k, written q = a + bi + cj + dk, or q =
|q|eiφejθekψ in its polar form. It is thus defined by one modulus,
and three angles that we call phase.

The (quaternionic) analytic signal associated with a 2D function
is defined by means of its partial (H1, H2) and total (HT ) Hilbert
transforms (HT) :

fA(x, y) = f(x, y) + iH1f(x, y) + jH2f(x, y) + kHT f(x, y)

The mother wavelet is a quaternionic 2D analytic filter, and
yields coefficients that are ‘analytic’. Thus, it inherits the ‘local
magnitude’ and ‘local phase’ concepts from the 1D analytic signal,
very useful in signal analysis.

Note that the usual interpretation of the magnitude remains
analogous to 1D, as it indicates the relative ‘presence’ of a feature,
whereas the local phase is now represented by 3 angles that make a
complete description of this 2D feature.

From a practical point of view, if the mother wavelet is separable
i.e. ψ(x, y) = ψh(x)ψh(y), the 2D HT’s are equivalent to 1D HT’s
along rows and/or columns. Then considering the 1D Hilbert pair of
wavelets (ψh, ψg = Hψh) and scaling functions (φh, φg = Hφh),
the analytic 2D wavelets are written in terms of separable products.

ψD=ψh(x)ψh(y)+iψg(x)ψh(y)+jψh(x)ψg(y)+kψg(x)ψg(y)
ψV =φh(x)ψh(y)+iφg(x)ψh(y)+jφh(x)ψg(y)+kφg(x)ψg(y)
ψH=ψh(x)φh(y)+iψg(x)φh(y)+jψh(x)φg(y)+kψg(x)φg(y)
φ=φh(x)φh(y)+iφg(x)φh(y)+jφh(x)φg(y)+kφg(x)φg(y)

This means the decomposition is heavily dependent on the position
of the image with respect to x and y axis (rotation-variance), and the
wavelet is not isotropic, but the advantage is an easy computation
with separable filter banks.

Each subband of the QWT can be seen as the analytic signal as-
sociated with a narrowband1 part of the image. The QWT magnitude
|q|, shift-invariant, represents features at any spacial position in each
frequency subband, and the 3 phases (φ, θ, ψ) describe the ‘struc-
ture’ of these features. We discuss below the interpretation of these
phases.

1The 1D analytic signal provides a time analysis considering the entire
frequency spectrum. So in practice, the extracted local (instantaneous) char-
acteristics are only meaningful when the signal itself is narrowband.



The QWT uses the Dual-Tree algorithm [4], a filter bank imple-
mentation that uses a Hilbert pair as a complex 1D wavelet, allowing
shift invariance and analytic coefficients, while circumventing the
undecimated filter bank2. Two complementary 1D filter sets, odd
and even, lead to four 2D filter banks, slightly shifted each other,
providing a sub-pixel accuracy and then the near-shift invariance,
for a redundancy of only 4:1. Originally combined by Kingsbury
to compute two directional complex analytic wavelets, the 4 outputs
of the Dual-Tree here constitute one 4-valued quaternionic wavelet
decomposition, embedding the structural informations into a local
phase concept, rather than an oriented separation. As the Dual-Tree
makes an approximation, the QWT coefficients are approximately
analytic, so the extraction of 2-D local amplitude and phase, as well
as their interpretation, are actually approximative.

1.3. Wavelet-based texture classification

Feature extraction via the standard wavelet representation of images
(DWT) has been widely used as a signal processing approach to
texture analysis [1]. Accordingly, the multiscale analysis provided
by the DWT is well adapted to textural images. From each subband,
one may calculate a mean, a standard deviation, an energy or a mean
power. Those features, well combined, can yield a powerful texture
descriptor.

Recently, Celik and Tjahjadi [5] used the Dual-Tree Complex
Wavelet Transform (CWT), a complex extension of the DWT, moti-
vated by the (near) shift invariance of its magnitude, and the oriented
aspect of these wavelets, and obtained better results with CWT than
with DWT. The invariance of the magnitude to shifts makes the ex-
tracted feature independant of the precise location of the textural
patterns, and so allows a better characterization.

We here propose to extend the analysis using the QWT phase.
We use the QWT algorithm from [2], and for comparison, a DWT
with the well known CDF 9/7 wavelets3. The 3-level decomposi-
tions provide 9 subbands for analysis, and an unused low-frequency
subband.

1.4. The proposed classifier

We propose a simple k nearest neighbors classifier. From each im-
age of a training base a feature vector describing the texture is ex-
tracted, and labelled with its class number. When a test image is
given, its feature vector is calculated and compared with those in the
training base, by using simple Euclidean distances. According to a
parameter k, the k nearest vectors are kept to find the most repre-
sented class.

By testing several unknown images for each class, we can calcu-
late a general recognition rate, to evaluate the quality of the feature
vector.

This paper first presents a classical magnitude based feature ex-
traction and exposes some results in terms of recognition rate with
both the DWT and the QWT. Then a phase based approach is de-
veloped, and the combination of the magnitude with the phase is
discussed, so the final classifier is carried out.

2The undecimated DWT is shift invariant but is not a tight frame, and
have too high redundancy.

3It’s usual to consider that a good separation of the frequency components
is well adapted to texture analysis, and the CDF 9/7 wavelets are known to
offer that property. Note that the analysis filters are the same size (9-tap) for
both the DWT and the QWT

Energy Standard Deviation
DWT magnitude 59% 68%
QWT magnitude 66% 68%

Table 1. Magnitude based classification recognition rates.

2. MAGNITUDE BASED ANALYSIS

2.1. Feature extraction

First we calculate the magnitude Mij = |qij | of the Wavelet Trans-
form of the given image (i and j are the discrete coordinate of a
pixel). Then from each subband, we consider this two different mea-
sures (i and j span a subband) :

• Energy : m = 1
E

∑
i,jM

2
ij where E is the energy of the

whole image minus the energy of the low-frequency subband.
This normalisation makes m the relative amount of energy
with respect to the other relevant subbands.

• Standard deviation : m =
√

1
N

∑
i,j (Mij − µ)2 where N

is the number of pixels in the subband, and µ is the mean
value.

Note that we don’t use the low-frequency subband that is not
relevant for a texture analysis, especially the low-frequency energy
that could trivially discriminate images with their intensity, rather
than with their textural content.

2.2. Test procedure

Classes of textures are created from the Brodatz album [6]. Each
of the 111 Brodatz textures4 are cut into 25 square little images
(128×128 pixels), and separated in a chessboard way to create a test
ensemble (13 examples the program doesn’t know) and a training
ensemble (12 examples the program knows). So we have a training
ensemble of 12 × 111 = 1332 little images from which we extract
the training feature vectors ensemble prior to classification. Then
we give each image of the test ensemble to the program, and count
times the classifier decides the right class, that provides the recogni-
tion rate.

2.3. Results

We obtained many results depending on the considered decomposi-
tion levels (1, 2 and/or 3), the used feature extraction, and the value
k. Better recognition rates are performed by using the 3 levels of
decomposition, and k = 3. Since our training base is quite small,
we cannot use a high k value. On the other hand a too small k value
makes a poor density estimation, so k = 3 is a good compromise,
and gives the best global results experimentally. Note that globally
for any measure, the recognition rate decreases near monotonically
with k > 3. We present here (Table 1), and in the sequel, the results
with 3 levels and k = 3. Note that our results are quite good, consid-
ering the heterogeneity of the album (some images are irrelevant in
our context of ‘rather uniform’ texture). In the following, we always
use the standard deviation measure for the magnitude.

Let us observe particular textures Fig. 1. The D67 texture is
composed of randomly placed identical elements, that must be quite

4Contains 111 texture images 512×512 B&W, available on the internet
at http://www.ux.uis.no/˜tranden/brodatz.html.



DWT is better for :
D111 : 85% vs 31% D103 : 69% vs 32% D102 : 85% vs 38%

QWT is better for :
D52 : 92% vs 46% D107 : 77% vs 38% D67 : 85% vs 46%

Fig. 1. Particular textures (The first 128 × 128 part) better recog-
nized by either the QWT-based or the DWT-based method (highest
difference of recognition rate examples)

differently encoded in the DWT, according to the various shifts. In
this case the invariance of the QWT magnitude gives us a more ro-
bust description of this texture, that explains the better result. To
go further, we may note that the D102 and D52 textures are the
most periodic examples (sampled Fourier spectrum), and the main
difference between them is that the D102 contains much more low
frequency energy. So maybe the QWT is less efficient for low sub-
bands, this problem is open.

As a first conclusion, the QWT magnitude offers a quite similar
performance than the DWT, little better for some measures (energy),
certainly due to the near shift-invariance. But the work of Bülow [3]
and Chan et al. [2] shows that the QWT phase should provide power-
ful image analysis, so the QWT is obviously not fully exploited here.
We present below a review of the interpretation of those phases, and
propose a new QWT-based feature extraction.

3. PHASE BASED ANALYSIS

3.1. The QWT phase

In his thesis [3], Bülow demonstrates the importance of the phase in
image analysis, defines a Quaternionic Fourier Transform (QFT), a
Quaternionic analytic 2D signal, and analytic quaternionic 2D Gabor
filters. In a Gabor based texture segmentation, the filtered images are
analytic, and form a scale-space analysis of the image, from which
Bülow extracts local magnitudes and phases at each point, to char-
acterize the texture.

First, due to the QFT shift theorem [3], it comes that the two
first phases φ and θ indicate a small shift of the encoded feature,
around the position of the quaternionic coefficient. This information
is analogous to the classical 1D local phase, encoding the shift of a
impulse.

Note that in the 1D case, this shift is enough to fully character-
ize the structure of the feature. Actually, it is the same information
(See [3]), since a phase around 0 or π simply means an ‘impulse’
(positive or negative), and a phase around±π

2
means a ‘step’ (rising

or falling), being actually an edge of a shifted impulse. In 2D, this
shift is not sufficient to characterize all structures, in particular ‘in-
trinsically 2D’ structures (e.g. corners, T-junctions), that are more

complex than edges and ridges.
The third phase ψ completes the structure analysis, and is con-

sidered to be a texture feature. Bülow found that ψ is seemingly near
proportional to a certain λ in a mixture of two plane waves defined
as : fλ(x, y) = (1 − λ) cos(ω1x + ω2y) + λ cos(ω1x − ω2y). In
his application of texture segmentation, he obtains very good results
using only |q| and ψ.

With the QWT, Chan et al. [2] use φ and θ in a disparity es-
timation algorithm. They consider that since the QWT performs a
local QFT analysis, the QFT shift theorem holds approximately for
the QWT.

In an other application (‘wedgelet’ representation estimation), φ
and θ are used to calculate the position of edges and ψ is to calculate
their orientation.

3.2. Feature extraction

Now, how can we use the QWT phase to describe textures? Actually
φ and θ are irrelevant because they inform about the position of the
features, whereas we are interested in their structure, so we focus on
ψ.

However we must assume that what is described by a ψ-
coefficient is a local feature, in that sense it’s a ‘complicated point’,
thus not as complex as a whole texture pattern. A pattern would
be represented by a set of ψ-coefficients, so a simple mean of them
within a subband would be irrelevant.

We do not aim to carry out high level process such as spatial
measures (extrema search, connexity . . . ) and this work is centered
on the local phase interpretation, so we would rather extract a single
value for a whole subband, as a global feature, but we found nothing
in the literature about the extraction of a simple global phase5.

It seems that the simple calculus of the standard deviation (st.
dev.) within a subband would be adapted, because it describes a part
of the behavior of ψ. Moreover, since ψ ∈ [−π

4
, π

4
], we avoid the

usual problems about circular data (±π discontinuity), and there is
no ambiguity to calculate angle differences or means.

An other idea is to weight the ψ-deviation by the QWT magni-
tude. A high magnitude means an important presence of the feature
while a low value means ‘no feature’. So it should be interesting
not to consider the structure of low magnitude features, and would
make the measure more representative. The weight function W is
the magnitude of the QWT coefficients normalized so the sum within
the subband is 1, and is integrated in the standard deviation formula
as defined below. Here are the two phase measures we use for the
feature extraction :

• St. dev. : m =
√

1
N

∑
i,j (ψij − µ)2 where µ = 1

N

∑
i,j ψij

and N is the number of pixels in the subband, and (i, j) span
a subband.

• Weighted st. dev. : m =
√∑

i,jWij(ψij − µ)2

3.3. Results

We used the same procedure as for the magnitude, the simple st. dev.
measure performs 62% recognition and the weighted st. dev. 66%
(See table 2). Those results are quite good, and we can see that the
weight provides a real improvement.

5The Global Phase Coherence from Blanchet et al.(2008) gives a measure
of image sharpness, using the local phase congruency, but seems to us not
relevant enough in this paper.



St. dev. Weighted st. dev.
QWT phase 62% 66%

Table 2. Phase based classification recognition rates.

Magnitude measure is better for :
D71 : 100% vs 38% D12 : 100% vs 46% D107 : 77% vs 31%

Phase measure is better for :
D111 : 92% vs 31% D98 : 62% vs 8% D41 : 100% vs 46%

Fig. 2. Particular textures (The first 128×128 part) better recognized
by either the QWT-magnitude or the QWT-phase

By observing the recognition rates within classes, it comes that
many textures are substantially better recognized by one of the mea-
sures, see Fig. 2 the most significative ones.

It is clear that the images D111, D98 and D41, containing sharp
singularities, have many features well described by the ψ-phase,
while noise in D71 and blur in D12 may make the phase less sig-
nificant.

In that way, the extracted phase information seems complemen-
tary to the magnitude information, adding a good sharp feature char-
acterization. Therefore, it may be interesting to combine both to
carry out an improved feature vector.

4. COMBINING MAGNITUDE AND PHASE

We now consider the best measures we found for both QWT magni-
tude and phase. So the standard deviation is used for the magnitude,
and the weighted standard deviation is used for the phase, using the
3 levels so we have 18 measures. We here present some improve-
ment ideas, and the recognition results we obtained for the whole
Brodatz album.

First, we simply put the two feature vectors together and ob-
tained 79% recognition, a quite good result. Note that in this case,
the recognition rate for k = 1 is better, 80%, so we may use this
value which allows a fast calculation of the k nearest neighbors, that
reduces to a minimum distance search algorithm.

Note that the two measures are not of the same type, as the first
is homogeneous to a magnitude (∈ R+) and the other to an angle
(∈ [0, π

2
]). This causes a lack of coherence because every measure

is viewed the same way by the Euclidean distance. A metric often
allows to avoid this inequality, but it is irrelevant here, beause the
difference is qualitative. Moreover, the metrics we tried did not im-
prove our process.

5. CONCLUSION

We proposed a new wavelet based texture classifier using the QWT
which offers a magnitude and phase analysis.

To summarize the results, we have a good magnitude measure,
the standard deviation, giving the same performance with a DWT,
and a good ψ-phase measure, the weighted standard deviation, com-
pleting the QWT magnitude based analysis, which makes the QWT
a better tool for texture classification. By simply concatenating the
two measures, yielding 18 features, we obtain 69% recognition rate
with the DWT and 79% with the QWT, over the whole Brodatz al-
bum.

According to us, the cases where the DWT is little superior just
correspond to textures for which the shift invariance is not very nec-
essary, and which contain no sharp contours. These cases may rather
be interpreted as a similar performance to QWT, as well as those
where the QWT is little superior.

In contrast, there are some textures substantially better recog-
nized by the QWT, in particular with circular patterns, that demon-
strates the importance of its properties.

Actually, a common visual interpretation is hard to find. But
there is not any texture in the Brodatz album that makes the DWT
really superior to QWT, so not only the QWT performs better results,
but this new wavelet transform also keeps the good analysis proper-
ties of DWT, making it a real improvement for a texture analysis
purpose.

Our results are quite good considering the heterogeneity of the
Brodatz album, although we didn’t take in account the rotation vari-
ance of the QWT, as every texture of a same class has the same orien-
tation, but the QWT phase interpretation is still in its early stages. . .

The monogenic phase of Felsberg and Sommer seems to provide
a better local description of 2D signals (rotation invariant). However
for now, to our knowledge there exists no monogenic filterbank.
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