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This paper deals with the problem of estimating the tail of a bivariate distribution function. To this end we develop a general extension of the POT (Peaks-Over-Threshold) method, mainly based on a two-dimensional version of the Pickands-Balkema-de Haan Theorem. We introduce a new parameter that describes the nature of the tail dependence, and we provide a way to estimate it. We construct a two-dimensional tail estimator and study its asymptotic properties. We also present real data examples which illustrate our theoretical results.

Introduction

The univariate POT (Peaks-Over-Threshold) method is common for estimating extreme quantiles or tail distributions (see e.g. [START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF][START_REF] Mcneil | Extreme value theory for risk managers[END_REF] and references therein). A key idea of this method is that a distribution is in the domain of attraction of an extreme value distribution if and only if the distribution of excesses over high thresholds is asymptotically generalized Pareto (GPD) (e.g. [START_REF] Balkema | Residual life time at great age[END_REF][START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]:

V ξ,σ (x) := 1 -1 -ξx σ 1 ξ , if ξ = 0, σ > 0, 1 -e -x σ , if ξ = 0, σ > 0, (1) 
and x ≥ 0 for ξ ≤ 0 or 0 ≤ x < σ ξ for ξ > 0. This univariate modeling is well understood, and has been discussed by [START_REF] Davison | A statistical model for contamination due to long-range atmospheric transport of radionuclides[END_REF], [START_REF] Davison | Models for exceedances over high thresholds[END_REF] and other papers of these authors. In this paper, we are interested in the problem of fitting the joint distribution of bivariate observations exceeding high thresholds. To this end we develop a bivariate estimation procedure, mainly based on a version of the Pickands-Balkema-de Haan Theorem in dimension 2 (Theorem 2.1). This extension allows us to consider a two-dimensional structure of dependence between both continuous random components X and Y . This dependence is modeled via a copula C, which is supposed to be unknown. We recall here some classical bivariate threshold models, based on a characterization of the joint tail by [START_REF] Resnick | Extreme values, regular variation, and point processes, volume 4 of Applied Probability[END_REF]. Letting F denote the joint distribution of (Y 1 , Y 2 ) with marginals F j , j = 1, 2. Define Z j = -1/ log(F j (Y j )), j = 1, 2, i.e. each Y j is transformed to a unit Fréchet variable and P(Z j ≤ z) = exp -1/z , for 0 < z < ∞. Let F * denote the joint distribution of (Z 1 , Z 2 ), we have F (y 1 , y 2 ) = F * (z 1 , z 2 ). The assumption that F is in the maximum domain of attraction (MDA) of a bivariate extreme value distribution G is equivalent assuming F * to be in the domain of attraction of a bivariate extreme value distribution G * , where the marginals of G * are unit Fréchet. The characterization of [START_REF] Resnick | Extreme values, regular variation, and point processes, volume 4 of Applied Probability[END_REF] 

Equating the left and the right-hand terms for large t leads to the following model for the joint tail of F (see [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF]:

F 1 (y 1 , y 2 ) = exp{-l (-log(F Y1 (y 1 )), -log(F Y2 (y 2 )))}, (3) 
for y j > u j , where u j are high thresholds for the marginal distributions and l is the stable tail dependence function of the limiting extreme value distribution G * . Then approximation (3) can be estimated by F * 1 (y 1 , y 2 ) = exp{-l(-log( F * Y1 (y 1 )), -log( F * Y2 (y 2 )))}, [START_REF] Benth | Dynamic copula models for the spark spread[END_REF] for high values of y 1 and y 2 , where F * Y1 (y 1 ) (resp. F * Y2 (y 2 )) is an estimator for the marginal tail of Y 1 (resp. Y 2 ). For instance F * Y1 (y 1 ) (resp. F * Y2 (y 2 )) comes from the univariate POT method described in Section 4.1. In (4) l is an estimator of the stable tail dependence function (see [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF][START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF][START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF]. For another approach, based on the estimation of the so-called univariate dependence function of Pickands [START_REF] Pickands | Multivariate extreme value distributions[END_REF], see for instance [START_REF] Capéraà | Estimation of a bivariate extreme value distribution[END_REF]. Problems arise with both these bivariate techniques when (Y 1 , Y 2 ) are asymptotically independent i.e.,

λ := lim t→0 P[F -1 Y1 (Y 1 ) > 1 -t | F -1 Y2 (Y 2 ) > 1 -t] = 0. ( 5 
)
When the data exhibit positive or negative association that only gradually disappears at more and more extreme levels, these methods produce a significant bias. In order to overcome this problem, [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF][START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF], 1998) introduced a model in which the tail dependence is characterized by a coefficient η ∈ (0, 1]. In these works the joint survival distribution function of a bivariate random vector (Z 1 , Z 2 ) with unit Fréchet marginals is assumed to satisfy

P[Z 1 > z, Z 2 > z] ∼ L(z)P[Z 1 > z] 1 η
, where L is a slowly varying function at infinity. Various methods to estimate this coefficient η are proposed in [START_REF] Peng | Estimation of the coefficient of tail dependence in bivariate extremes[END_REF], [START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF], [START_REF] Beirlant | Reduced bias estimators for bivariate tail modelling[END_REF]. For some counter-examples of the Ledford and Tawn's model see [START_REF] Schlather | Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution[END_REF]. Contrarily to this approach, we propose a model based on regularity conditions of the copula and on the explicit description of the dependence structure in the joint tail (see condition in [START_REF] Coles | Statistical methods for multivariate extremes: an application to structural design[END_REF] in Proposition 2.1). The study of tail dependence from a distributional point of view by means of appropriate copulae has received attention in the past decade. The interested reader is referred to Juri andWüthrich (2002, 2004), [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF], [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF], Charpentier and Segers (2006), [START_REF] Javid | Limiting tail dependence copulas[END_REF]. The general idea of our model is to decompose the estimation of P(X ≤ x, Y ≤ y), for x, y above some marginal thresholds u X , u Y , in the estimation of different bivariate regions. For the joint upper tail in [u X , x] × [u Y , y] we use the non parametric estimators coming from Theorem 2.1 (see Section 2). For the lateral regions

[-∞, x] × [-∞, u Y ] and [-∞, u X ] × [-∞
, y] we approximate the distribution function F using (3). The stability of our estimation compared to the one of F * 1 is analyzed on some real cases (Section 7) which have been studied in other papers (e.g. [START_REF] Beirlant | Reduced bias estimators for bivariate tail modelling[END_REF][START_REF] Frees | Understanding relationships using copulas[END_REF][START_REF] Lescourret | Extreme dependence of multivariate catastrophic losses[END_REF]. Therefore our estimator, in a different way from the Ledford and Tawn's method, covers situations less restrictive than dependence or perfect independence above thresholds. Note also that our method is free from the pre-treatment of data because we can work directly with the original general samples without the transformation in Fréchet marginal distributions. Finally, we recall that, in the past decade, bivariate extensions of the POT method via generalized Pareto distribution have been developed in a series of papers by Falk and Reiss (2005 and references therein) or in [START_REF] Reiss | Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields[END_REF]Chapter 13). Recently a multivariate generalization is treated in Beirlant et al. (2004), [START_REF] Rootzén | Multivariate generalized Pareto distributions[END_REF] and [START_REF] Michel | Some notes on multivariate generalized pareto distributions[END_REF]. The role of multivariate generalized Pareto distributions in the framework of extreme value theory is still under scrutiny. In contrast to the univariate case it is not intuitively clear, how exceedances over high thresholds are to be defined. Our paper makes a contribution to this part of recent literature. To the best of our knowledge the POT procedure we propose in this paper can not be directly deduced from POT methods proposed in works cited above. Moreover we provide an estimation of bivariate tails such this type of estimation is not obtained in the papers cited above. However, some ingredients for a comparison are investigated in Theorem 4.2 in Juri and [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF]. The paper is organized as follows. In Section 2 we state an extension of the Pickands-Balkema-de Haan Theorem in the case of bivariate distributions with different marginals (Theorem 2.1). In Section 3 we provide a new non parametric estimator for the dependence structure of a bivariate random sample in the upper tail. In Section 4.2 we recall the POT procedure for univariate distributions and we use Theorem 2.1 in order to build a new estimator for the tail of the bivariate distribution. The study of the asymptotic properties of our estimator makes use of a convergence result in univariate case (Theorem 5.1) dealing with asymptotic behavior of the absolute error between the theoretical distribution function and its tail estimator. In Section 6 we present the consistency result of our estimator with its convergence rate both in the asymptotic dependent case (Theorem 6.1) and in the asymptotic independent one (Theorem 6.2). Examples with real data are presented in Section 7. Some auxiliary results and more technical proofs are postponed to the Appendix.

Remark 1 Assume we observe X 1 , . . . , X n i.i.d. with common distribution function F . If we fix some high threshold u, let N denote the number of excesses above u. In the following, two approaches will be considered. In the first one, we work conditionally on N . If n is the sample size and u n the associated threshold, the number of excesses is m n , with lim n→∞ m n = ∞ and lim n→∞ m n /n = 0. The second approach considers the number of excesses N n as a binomial random variable (which is the case in the simulations),

N n ∼ Bi (n, 1 -F (u n )) with lim n→∞ 1 -F (u n ) = 0 and lim n→∞ n(1 -F (u n )) = ∞.
Keeping in mind these considerations will be useful in the following (in particular in Section 5).

On the two-dimensional Pickands-Balkema-de Haan Theorem

A central one dimensional result in univariate tail estimation is the so-called Pickand-Balkema-de Haan Theorem. As our aim is the estimation of bivariate tails, we are interested in two-dimensional extensions of this theorem. Such a two dimensional generalization can be found in the literature (e.g. see [START_REF] Juri | Tail dependence from a distributional point of view[END_REF][START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF] with the assumption F X = F Y . Starting from Theorem 4.1 in Juri and [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF] and Theorem 3.1 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF], we provide here a precise formulation and proof of a general bivariate Pickands-Balkema-de Haan Theorem (Theorem 2.1 below). We first introduce some notation and recall results from [START_REF] Juri | Tail dependence from a distributional point of view[END_REF] and [START_REF] Nelsen | An introduction to copulas[END_REF], which we will need later. We consider a 2-dimensional copula C(u, v) and the associated survival copula C * (u, v). In a first time we assume that X and Y are uniformly distributed on [0, 1]. Let us fix a threshold u ∈ [0, 1) such that P[X > u, Y > u] > 0, i.e. such that C * (1 -u, 1 -u) > 0. We consider the distribution of X and Y conditioned on {X > u, Y > u}:

∀ x ∈ [0, 1], F X, u (x) := P[ X ≤ x | X > u, Y > u ] = 1 - C * (1 -x ∨ u, 1 -u) C * (1 -u, 1 -u) , (6) 
∀ y ∈ [0, 1], F Y, u (y) := P[ Y ≤ y | X > u, Y > u ] = 1 - C * (1 -u, 1 -y ∨ u) C * (1 -u, 1 -u) .
(7) Note that the continuity of the copula C implies that F X, u and F Y, u are also continuous. Definition 2.1 Let X and Y be uniformly distributed on [0, 1]. Assume that for a threshold u ∈ [0, 1), C * (1 -u, 1 -u) > 0. We define the Upper-tail dependence copula at level u ∈ [0, 1) relative to the copula C by

C up u (x, y) := P[ X ≤ F -1 X, u (x), Y ≤ F -1 Y, u (y) | X > u, Y > u ], ∀ (x, y) ∈ [0, 1] 2
, where F X, u , F Y, u are given by ( 6)- [START_REF] Charpentier | Lower tail dependence for Archimedean copulas: characterizations and pitfalls[END_REF].

Note that P[X ≤ x, Y ≤ y | X > u, Y > u]
obviously defines a two-dimensional distribution function whose marginals are given by F X, u and F Y, u . We remark that C up u (x, y) is a copula and from the continuity of F X, u and F Y, u we obtain the uniqueness of C up u . Moreover, the asymptotic behavior of C up u for u around 1 describes the dependence structure of X, Y in their upper tails. In order to provide an explicit form for lim u→1 C up u (x, y), we state Proposition 2.1 below, which is a modification of Theorem 3.1 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF]. More precisely we adapt Theorem 3.1 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF] in the case of Upper-tail dependence copula, assuming that C satisfies suitable regularity condition under the direction (1 -u, 1 -u) (see the limit in ( 8)). For comparisons we refer to Section 3 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF].

Proposition 2.1 Assume that ∂C * (1 -u, 1 -v)/∂u < 0 and ∂C * (1 -u, 1 - v)/∂v < 0 for all u, v ∈ [0, 1). Furthermore, assume that there is a positive function G such that lim u→1 C * (x (1 -u), y (1 -u)) C * (1 -u, 1 -u) = G(x, y), for all x, y > 0. ( 8 
)
Then for all (x, y)

∈ [0, 1] 2 lim u→1 C up u (x, y) = x + y -1 + G(g -1 X (1 -x), g -1 Y (1 -y)) := C * G (x, y), (9) 
where g X (x) := G(x, 1), g Y (y) := G(1, y). Moreover there is a constant θ > 0 such that, for x > 0

G(x, y) = x θ g Y ( y x ) for y x ∈ [0, 1], y θ g X ( x y ) for y x ∈ (1, ∞). (10) 
The proof of Proposition 2.1 is postponed to the Appendix. We adapt in our setting the proof of Theorem 3.1 by [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF]. Since ∂C * (1u, 1 -v)/∂u < 0 and ∂C * (1 -u, 1 -v)/∂v < 0 for all u, v ∈ [0, 1), we have C * (1 -u, 1 -u) > 0, for all u ≥ 0, i.e. C up u is well defined for all u ≥ 0. Then we ask that the joint survival distribution function of X and Y , uniformly distributed on [0, 1], is strictly decreasing in each coordinate. As in Remark 3.2 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF] one can prove that the convergence in [START_REF] Davison | A statistical model for contamination due to long-range atmospheric transport of radionuclides[END_REF] is uniform in [0, 1] 2 . From Proposition 2.1, functions G, g X , and g Y characterize the asymptotic behavior of the dependence structure for extremal events.

Remark 2

We note that C * G (x, y) defined in [START_REF] Davison | A statistical model for contamination due to long-range atmospheric transport of radionuclides[END_REF] is the survival copula of the copula C G (x, y) := G(g -1 X (x), g -1 Y (y)) and thus, in particular, is a copula (for more details see Section 3 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF].

In the case of symmetric copula, i.e. C(u, v) = C(v, u) for all u and v, the limit G in ( 8) is continuous, symmetric, with marginals G(x, 1) = G(1, x) = g(x), where g : [0, ∞) → [0, ∞) is a strictly increasing function and g(x) = x θ g(1/x) for all x ∈ (0, ∞) (for more details about properties of G in the symmetric case see Section 2 in Juri and [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF]).

In the univariate setting de Haan (1970) proves that F ∈ M DA(H ξ ) is equivalent to the existence of a positive measurable function a(•) such that, for 1 -ξ x > 0 and ξ ∈ R,

lim u→x F 1 -F (u + x a(u)) 1 -F (u) = (1 -ξ x) 1 ξ , if ξ = 0, e -x , if ξ = 0, (11) 
where

x F := sup{x ∈ R | F (x) < 1}.
It allows stating below a rigorous formulation of the two-dimensional Pickands-Balkema-de Haan Theorem in a general case.

Theorem 2.1 Let X and Y be two continuous real valued random variables, with different marginal distributions, respectively F X , F Y , and copula C. Suppose that F X ∈ M DA(H ξ1 ), F Y ∈ M DA(H ξ2 ) and that C satisfies assumptions of Proposition 2.1. Then

sup A P X -u ≤ x, Y -F -1 Y (F X (u)) ≤ y X > u, Y > F -1 Y (F X (u)) -C * G 1 -g X (1 -V ξ1,a1(u) (x)), 1 -g Y (1 -V ξ2,a2(F -1 Y (F X (u))) (y)) -----→ u→x F X 0, (12) 
where

V ξi,ai(•) is the GPD with parameters ξ i , a i (•) defined in (1), a i (•) is as in (11), for i = 1, 2, A := {(x, y) : 0 < x ≤ x F X -u, 0 < y ≤ x F Y -F -1 Y (F X (u))}, with x F X := sup{x ∈ R | F X (x) < 1}, x F Y := sup{y ∈ R | F Y (y) < 1}.
The proof of Theorem 2.1 is postponed to the Appendix.

Estimating dependence structure in the bivariate framework

It is well known that a bivariate distribution function F with continuous marginal distribution functions F X , F Y is said to have a stable tail dependence function l if for x ≥ 0 and y ≥ 0 the following limit exists:

lim t→0 1 t P[1 -F X (X) ≤ tx or 1 -F Y (Y ) ≤ ty] := l(x, y) (13) 
or similarly lim t→0

1 t P[1 -F X (X) ≤ tx, 1 -F Y (Y ) ≤ ty] := R(x, y) = x + y -l(x, y), (14) 
see e.g. [START_REF] Huang | Statistics of bivariate extreme values[END_REF]. If F X , F Y are in the maximum domain of attraction of two extreme value distributions H X , H Y and if (13) holds then F is in the domain of attraction of an extreme value distribution H with marginals H X , H Y and with copula determined by l. Furthermore ( 13) is equivalent to

lim t→0 1 t (1 -C(1 -tx, 1 -ty)) = l(x, y), for x ≥ 0, y ≥ 0. ( 15 
)
Note that the upper tail dependence coefficient defined in ( 5) is such that λ = R(1, 1). We introduce the non parametric estimators for l and R (see [START_REF] Einmahl | Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition[END_REF]:

l(x, y) = 1 k n n i=1 1 {R(Xi)>n-knx+1 or R(Yi)>n-kny+1} , (16) 
R(x, y) = 1 k n n i=1 1 {R(Xi)>n-knx+1, R(Yi)>n-kny+1} , (17) 
where

k n → ∞, k n /n → 0 and R(X i ) is the rank of X i among (X 1 , . . . , X n ), R(Y i ) is the rank of Y i among (Y 1 , . . . , Y n ), for i = 1, . . . , n.

Asymptotic dependent case

If X and Y are asymptotically dependent (λ > 0) we introduce an estimator for G, g X and g Y which will be used later to estimate the tail of the bivariate distribution function. Using ( 13)-( 15), we write

g X (x) = x + 1 -l(x, 1) 2 -l(1, 1) = R(x, 1) R(1, 1) , g Y (y) = y + 1 -l(1, y) 2 -l(1, 1) = R(1, y) R(1, 1) , G(x, y) = x + y -l(x, y) 2 -l(1, 1) = R(x, y) R(1, 1)
.

Using [START_REF] Davison | Models for exceedances over high thresholds[END_REF], as R is homogeneous of order one then θ = 1. As η ∈ (0, 1] in the Ledford and Tawn's model (see [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF][START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF], 1998), θ describes the nature of the tail dependence, it does not depend on the marginal distribution functions. In order to estimate g X , g Y and G, we use the non parametric estimator for R in [START_REF] Einmahl | Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition[END_REF] and we obtain

g X (x) = R(x, 1) R(1, 1) , g Y (x) = R(1, y) R(1, 1) , and G(x, y) = R(x, y) R(1, 1) . ( 18 
)
Using [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF] we get a non parametric estimator for θ, for x > 0

θ y x =    log( G(x,y))-log( g Y ( y x )) log(x) if y x ∈ [0, 1], log( G(x,y))-log( g X ( x y )) log(y) if y x ∈ (1, ∞). ( 19 
)
Following Remark 2, in the case of a symmetric copula, using g 

X (x) = g Y (x) = g(x) = x θ g(1/x) for x > 0, we get θ x = log( g(x)) -log( g( 1 x )) log(x) . ( 20 
v n sup 0<x,y≤1 G(x, y) -G(x, y) P ----→ n→∞ 0, v n sup 0<x≤1 g X (x) -g X (x) P ----→ n→∞ 0, v n sup 0<y≤1 g Y (y) -g Y (y) P ----→ n→∞ 0.
with g X (x), g Y (y) and G(x, y) as in [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF],

k n → ∞, k n /n → 0 and k n = o n 2α 1+2α
.

We now provide an illustration for two different copulae: survival Clayton and Logistic copulae. We remark that they are two symmetric copulae with λ > 0.

In particular we observe the sensitivity of θ x in [START_REF] Embrechts | Modelling extremal events[END_REF] to the sequence k n (Figure 1). We draw the mean curve on 100 samples of size n = 1000 (full line) and the empirical standard deviation (dashed lines). On simulations it seemed to us that for each value of x one could exhibit a range of values of k n under which our estimate well behaved. In the following we fixe x for each simulation and may vary k n . The choice of k n does not appear to be crucial for θ x . In Figure 2 the mean squared error for θ x is calculated on 100 samples of size n = 1000.

Asymptotic independent case

We say that X and Y are asymptotically independent if λ = R(1, 1) = 0. In terms of copula this means that

C(u, u) = 1-2(1-u)+o(1-u), for u → 1. The problem, with respect to Section 3.1, is that g X (x) = R(x,1) R(1,1) and g Y (y) = R(1,y) R(1,1)
have no sense as λ = 0 and R(x, y) = x + y -l(x, y) = 0, ∀ x, y.

We thus need to introduce a second-order refinement of condition in [START_REF] Coles | Statistical methods for multivariate extremes: an application to structural design[END_REF]. More precisely, as in Draisma et al. (2004), we shall assume that: for all x, y ≥ 0, x + y > 0, where q 1 is some positive function and Q is neither a constant nor a multiple of G. Moreover we assume that convergence in ( 21) is uniform on {x 2 + y 2 = 1}. Let q(t)

lim t→0 C * (tx, ty) C * (t, t) -G(x, y) q 1 (t) := Q(x, y), (21) 
:= P[1 -F X (X) < t, 1 -F Y (Y ) < t]
and q ← its inverse function. Then, using [START_REF] Falk | On the distribution of Pickands coordinates in bivariate EV and GP models[END_REF], we obtain the following consistency result for G, g X and g Y :

Proposition 3.1 Suppose (8) and (21) hold. We assume lim t→0 q(t)/t = λ = 0. Then, for a sequence k n such that a 

n := n q(k n /n) → ∞ (this implies k n → ∞), k n /n → 0, √ a n q 1 (q ← (a n /n)) → 0, it holds that ψ n sup 0<x,y≤1 G(x, y) -G(x, y) P ----→ n→∞ 0, ψ n sup 0<x≤1 g X (x) -g X (x) P ----→ n→∞ 0, ψ n sup 0<y≤1 g Y (y) -g Y (y) P ----→ n→∞ 0, with ψ n << √ a n , g X (x),
lim u→1 C * (x(1 -u), y(1 -u)) C * (1 -u, 1 -u) = x y, ∀ x, y > 0, g X (x) = g Y (x) = x and θ = 2.
Details of the proof will be omitted here. The main ingredient is the secondorder development of copula C. The assumptions of Proposition 3.2 are satisfied for a large class of asymptotic independent copulae: Ali Mikhail-Haq, Frank, Clayton with a ≥ 0, Independent and Fairlie-Gumbel-Morgenstern copulae. An example of a non symmetric copula that satisfies the assumptions of Proposition 3.

2 is C(u, v) = x y + 1 9 (1 -|2 x -1|) (1 -(2 y -1) 2
). This type of asymmetric copula is proposed in [START_REF] Benth | Dynamic copula models for the spark spread[END_REF] to model the evolution of price spread between electricity and gas prices.

We introduce some examples of asymptotic independent copulae that do not satisfy the assumptions of Proposition 3.2. We consider the Ledford and Tawn's model (e.g. see [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF]:

2 u -1 + C(1 -u, 1 -u) = (1 -u) 1 η L(1 -u), with L a slowly varying function at zero and η ∈ (0, 1]. Then, for η > 1/2, lim u→1 (C(1, 1) -C(1 -u, 1) -C(1, 1 -u) -C(1 -u, 1 -u)) /(1 -u) 2 = ∞. Thus ∂ 2 C
∂u∂v does not exist at the point (1, 1). In particular this is the case of the Gaussian Copula with correlation parameter ρ > 0. However, from Theorem 5.3 in Juri and [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF], for a Gaussian Copula with

| ρ | < 1 it holds that lim u→1 C up u (x, y) = x y, for (x, y) ∈ [0, 1] 2 . Let C(u, v) = x y -1 8 (1 -|2 x -1|) (1 -(2 y -1)
2 ), (for furthers details see [START_REF] Benth | Dynamic copula models for the spark spread[END_REF]. In this case ∂ 2 C ∂u∂v (1, 1) = 0. However we can calculate the limit in [START_REF] Coles | Statistical methods for multivariate extremes: an application to structural design[END_REF], and using [START_REF] Davison | Models for exceedances over high thresholds[END_REF] we obtain

G(x, y) = x y 2 , g X (x) = x, g Y (y) = y 2 , θ = 3.
We now provide an illustration for a Clayton copula. In particular we observe the sensitivity of θ x in [START_REF] Embrechts | Modelling extremal events[END_REF] to the sequence k n (Figure 3). We draw the mean curve on 100 samples of size n = 1000 (full line) and the empirical standard deviation (dashed lines). Furthermore the mean squared error for θ x is calculated on 100 samples of size n = 1000. 

F u (x) = P[X ≤ x | X > u]. Let X 1 , X 2 , .
. . be a sequence of i.i.d random variables with unknown distribution function F and F X (u) the empirical distribution function evaluated at the threshold u. Recall that the univariate tail may be estimated by

F * (x) = (1 -F X (u))V ξ, σ (x -u) + F X (u), for x > u, (22) 
where ξ, σ are the maximum likelihood estimators (MLE) based on the excesses above u. Using [START_REF] Frees | Understanding relationships using copulas[END_REF] we get the estimator, proposed by Smith (1987)

1 -F * (y) =    N n 1 -ξ (y-u) σ 1 ξ , if ξ = 0, N n e -(y-u) σ , if ξ = 0, (23) 
with u < y < ∞ (if ξ ≤ 0) or u < y < σ ξ (if ξ > 0)
and N the random number of excesses above the threshold.

Estimating the tail of bivariate distributions

In this section we present the main construction of this paper. We propose indeed a POT procedure in order to estimate the two-dimensional distribution function F (x, y). Asymptotic properties for this estimator are stated and proved in Section 6. This construction generalizes the one-dimensional POT construction stated in Section 4.1. Let X and Y be two real valued random variables with different continuous marginal distributions F X and F Y . The structure of dependence between X and Y is represented by copula C.

Construction of the tail estimator: Given a high threshold u and u Y := F -1 Y (F X (u)), we introduce the distribution of excesses:

F u (x, y) := P[ X -u ≤ x, Y -u Y ≤ y | X > u, Y > u Y ]. Using (3)
for large value of u and x > u, y > u Y , we can approximate F (u, y) and

F (x, u Y ) as F * 1 (u, y) = e {-l(-log(F X (u)),-log(F Y (y)))} , (24) 
F * 2 (x, u Y ) = e {-l(-log(F X (x)),-log(F Y (u Y )))} , ( 25 
)
where l is the stable tail dependence function defined by [START_REF] Drees | On maximum likelihood estimation of the extreme value index[END_REF]. We recall that behind approximations ( 24)-( 25), in order to avoid significant bias, we suppose that the data structure is characterized by dependence (or perfect independence)

in the lateral regions [-∞, x] × [-∞, u Y ] and [-∞, u X ] × [-∞, y].
From Theorem 2.1 we now know that, for u around x F , we can approximate the distribution of excesses with C * G . So we obtain, for x > u, y > u Y ,

F * (x, y) = (F (u, u Y ))•C * G 1-g X (1-V ξ X ,σ X (x-u)), 1-g Y (1-V ξ Y ,σ Y (y-u Y )) + F * 1 (u, y) + F * 2 (x, u Y ) -F (u, u Y ). (26) 
Then, we estimate F (u, u Y ) and F (u, u Y ) in [START_REF] Javid | Limiting tail dependence copulas[END_REF] from the data {X i , Y i } i=1,...,n , using the empirical distribution estimates

F (u, u Y ) = 1 n n i=1 1 {Xi≤u, Yi≤u Y } , F (u, u Y ) = 1 n n i=1 1 {Xi>u, Yi>u Y } . ( 27 
)
From ( 24)-( 25) and using the non parametric estimator ( 16) we obtain

F * 1 (u, y) = exp{-l(-log( F X (u)), -log( F * Y (y)))}, (28) 
F * 2 (x, u Y ) = exp{-l(-log( F * X (x)), -log( F Y (u Y )))}, (29) 
where F X (u) and F Y (u Y ) are the empirical univariate estimators evaluated at respective thresholds and F * X (x) and F * Y (y) are one-dimensional POT tail estimators of the marginal distribution functions, defined by [START_REF] Frees | Understanding relationships using copulas[END_REF]. Now, using ( 27), ( 28) and ( 29), we can approximate

F * (x, y), for x > u, y > u Y = F -1
Y (F X (u)) and u large, by

F * (x, y) = 1 n n i=1 1 {Xi>u, Yi>u Y } 1 -g X (1 -V ξ X , σ X (x -u)) -g Y (1 -V ξ Y , σ Y (y -u Y )) + G 1 -V ξ X , σ X (x -u), 1 -V ξ Y , σ Y (y -u Y ) + F * 1 (u, y) + F * 2 (x, u Y ) - 1 n n i=1 1 {Xi≤u, Yi≤u Y } , (30) 
where ξ X , σ X (resp. ξ Y , σ Y ) are MLE based on the excesses of X (resp. Y ). Finally we remark that the second threshold in [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF] depends on the unknown marginal distribution functions F X and F Y . Then, in order to compute in practice F * (x, y), we propose to estimate u Y by u

Y = F -1 Y ( F X (u)), with F X (u) = 1 n n i=1 1 {Xi≤u} and F -1 Y
the empirical quantile function of Y . So we obtain, from [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF], the tail estimator for the two-dimensional distribution function for x > u and y > u Y :

F * (x, y) = 1 n n i=1 1 {Xi>u, Yi> u Y } 1 -g X (1 -V ξ X , σ X (x -u)) -g Y (1 -V ξ Y , σ Y (y -u Y )) + G 1 -V ξ X , σ X (x -u), 1 -V ξ Y , σ Y (y -u Y ) + F * 1 (u, y) + F * 2 (x, u Y ) - 1 n n i=1 1 {Xi≤u, Yi≤ u Y } , (31) 
In the case with same marginal distributions we have a particular case of ( 30), with the same threshold u for X and Y , and we do not need to estimate the second threshold.

Remark 3 Note that F * (x, y) in [START_REF] Ledford | Concomitant tail behaviour for extremes[END_REF], is only valid for x > u and y > u Y , when u is large enough. The expression large enough is a fundamental problem of the POT method. The choice of the threshold u is indeed a compromise: u has to be large for the GPD approximation to be valid, but if it is too large, the estimation of the parameters ξ X , ξ Y and σ X , σ Y will suffer from a lack of observations over the thresholds. The compromise will be explained in Sections 5 and 6.

Convergence results in the univariate case

In order to study asymptotic properties of our bivariate tail estimator we present in this section some slight modifications of one-dimensional convergence results in Smith (1987; Theorems 3.2 and 8.1). Incidentally we get asymptotic confidence intervals for the unknown theoretical univariate function F (x), using Theorem 5.1. From now on we assume that the tail of F decays like a power function, i.e. is in the domain of attraction of Fréchet i.e. F (x) = x -α L(x) for some slowly varying function L(x), with α > 0. As in [START_REF] Smith | Estimating tails of probability distributions[END_REF], Section 3, we shall assume that L satisfies the following condition

SR2: L(tx) L(x) = 1 + k(t)φ(x) + o(φ(x)), as x → ∞, ∀ t > 0,
where φ(x) > 0 and φ(x) → 0 as x → ∞. Let R ρ be the set of ρ-regularly varying functions. Condition SR2 implies, excluding trivial cases, φ ∈ R ρ , for some ρ ≤ 0, and k(t) = c h ρ (t), with h ρ (t) = t 1 u ρ-1 du; (for more details see Section 3 in Smith, 1987 or [START_REF] Goldie | Slow variation with remainder: theory and applications[END_REF].

The study of the asymptotic properties of the maximum likelihood estimators of the scale and shape parameters of the generalized Pareto distribution in the POT method has received attention in the literature. For instance asymptotic normality of ξ and σ, in the case of random threshold in the POT procedure is studied in depth in [START_REF] Drees | On maximum likelihood estimation of the extreme value index[END_REF]. [START_REF] Smith | Estimating tails of probability distributions[END_REF] examines a slightly different version of the MLE's that is based on the excesses over a deterministic threshold and on the second-order Condition SR2. For details about the difference between these two approaches see, for instance, Remark 2.3 in Drees et al. (2004). In this paper we follow the approach proposed in [START_REF] Smith | Estimating tails of probability distributions[END_REF]. In particular Theorems 3.2. and 8.1. in [START_REF] Smith | Estimating tails of probability distributions[END_REF] are written conditionally on N = m n , with N denoting the number of excesses above the threshold. In practice we work with some deterministic threshold u and N is considered as random (see Remark 1 in Section 1). Therefore we give the version of Theorem 3.2 in Smith (1987) (resp. Theorem 8.1), Corollary 5.1 (resp. Corollary 5.2), unconditionally on N . Corollary 5.1 Suppose L satisfies SR2. Let n be the sample size and

u n := f (n) the threshold, such that f (n) → ∞, for n → ∞. Let N = N n denote the random number of excesses of u n . We define ξ = -α -1 and σ n = f (n) α -1 . If n(1 -F (u n )) ----→ n→∞ ∞, (32) 
n(1 -F (u n ))c φ(u n ) ----→ n→∞ µ(α -ρ), (33) 
then there exists, with probability 1, a local maximum ( σ n , ξ n ) of the GPD log likelihood function, such that

√ N σn σn -1 ξ n -ξ d ----→ n→∞ N     µ(1-ξ)(1+2ξρ) 1-ξ+ξρ µ(1-ξ)ξ(1+ρ) 1-ξ+ξρ   ; 2(1 -ξ) (1 -ξ) (1 -ξ) (1 -ξ) 2   .
Proof: If ( 32) and ( 33) hold then

N (n (1 -F (u n ))) -1 P ----→ n→∞ 1
, and (3.2) in [START_REF] Smith | Estimating tails of probability distributions[END_REF] holds in probability, i.e.

√ N c φ(u n ) α -ρ = √ N c φ(f (n)) α -ρ P ----→ n→∞ µ ∈ (-∞, ∞).
Hence we conclude with a Skorohod-type construction of probability spaces on which (3.2) in [START_REF] Smith | Estimating tails of probability distributions[END_REF] holds almost surely.

Corollary 5.2 Suppose all the assumptions of Corollary 5.1 are satisfied. Let n be the sample size,

u n := f (n) → ∞ and z n := f (n) → ∞, for n → ∞, such that (z n ) -s ρ φ(un(zn) s ) φ(un) → 1, for n → ∞ and s ∈ [0, 1]. Let N = N n denote the random number of excesses above u n . If log (z n ) n(1 -F (u n )) ----→ n→∞ 0, ( 34 
) then √ N log(f (n)) 1 -F * (f (n) f (n)) 1 -F (f (n) f (n)) -1 d ----→ n→∞ N(ν, τ 2 ),
where F * is as in [START_REF] Goldie | Slow variation with remainder: theory and applications[END_REF],

ν = 0 if ρ = 0, ν = µα(α+1)(1+ρ)
1+α-ρ for ρ < 0 and

τ 2 = α 2 (1 + α) 2 .
Proof: If ( 32), ( 33) and ( 34) hold, then (8.7), (8.8) and (8.11) in [START_REF] Smith | Estimating tails of probability distributions[END_REF] hold in probability, i.e

log (z n ) √ N P ----→ n→∞ 0, √ N log(z n ) N n (1 -F (u n )) -1 P ----→ n→∞ 0.
We conclude as for Corollary 5.1. Note that, in simple cases, we often have φ(x) = x ρ ; in which case

(zn) -s ρ φ(un(zn) s ) φ(un)
→ 1, for n → ∞, is automatic satisfied. From Corollary 5.2 the following result can be obtained.

Theorem 5.1 Assume that all the assumptions of Corollary 5.2 are satisfied. We use the same notation. If

(z n ) α (n(1 -F (u n ))) -1/2 ----→ n→∞ 0, ( 35 
)
then √ N log(f (n)) F (f (n) f (n)) F (f (n) f (n)) -F * (f (n) f (n)) d ----→ n→∞ N(ν, τ 2 ), ( 36 
)
where F is the univariate empirical survival function, F * is as in [START_REF] Goldie | Slow variation with remainder: theory and applications[END_REF],

ν = 0 if ρ = 0, ν = µα(α+1)(1+ρ) 1+α-ρ for ρ < 0 and τ 2 = α 2 (1 + α) 2 .
The proof of Theorem 5.1 is postponed to the Appendix. As a byproduct, from [START_REF] Nelsen | An introduction to copulas[END_REF] it is possible to construct in practice asymptotic confidence intervals for F (f (n) f (n)).

Convergence results in the bivariate case

In this section we provide our main result: the consistency property of our bivariate tail estimator [START_REF] Ledford | Concomitant tail behaviour for extremes[END_REF] with convergence rate. We consider:

Remark 4 Let n be the sample size. We choose, from Theorem 2.1,

u 1 n := f 1 (n) ----→ n→∞ ∞ threshold for X, u 2 n := f 2 (n) = F -1 Y (F X (f 1 (n))), ----→ n→∞ ∞ threshold for Y.
Remark 5 As in Section 4.2 in the following we propose to estimate the second threshold

f 2 (n) by f 2 (n) := F -1 Y ( F X (f 1 (n))), with F X (f 1 (n)) = 1 n n i=1 1 {Xi≤f 1 (n)} and F -1 Y the empirical quantile function of Y .
In the following we state and prove separately our consistency result in the asymptotic dependent case (Theorem 6.1) and in the asymptotic independent one (Theorem 6.2).

Asymptotic dependent case

The proof of Theorem 6.1 below, makes use of a result by [START_REF] Einmahl | Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition[END_REF] which specifies the asymptotic behavior of l(x, y) uniformly in 0 ≤ x, y ≤ 1 and provides a convergence rate (see Theorem C in Appendix). More precisely in the asymptotic dependent case, using [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF] and applying Corollary 3.1, we obtain the following main result: Theorem 6.1 Suppose F X and F Y belong to the maximum domain of attraction of Fréchet, L X , L Y satisfy Condition SR2. Assume that λ > 0 and that the assumptions of Theorem 2.1 and Corollary 3.1 are satisfied. If sequences

f 1 (n), f 2 (n), f 1 (n), f 2 (n), defined by Remark 4, satisfy conditions of Theorem 5.1 then k n (F * (x n , y n ) -F * (x n , y n )) P ----→ n→∞ 0, ( 37 
)
with x n = f 1 (n)f 1 (n), y n = f 2 (n)f 2 (n). Moreover if f 2 (n) satisfies conditions of Theorem 5.1 in probability then k n (F * (x n , y n ) -F * (x n , y n )) P ----→ n→∞ 0, ( 38 
)
with

y n = f 2 (n)f 2 (n). In (37)-(38) we have k n → ∞, k n /n → 0, k n /N X P -→ 0, k n /N Y P -→ 0, k n = o(n 2α 1+2α ), α > 0.
The proof of Theorem 6.1 is postponed to the Appendix.

Remark 6 Let us study, on a class of examples, the assumption of Theorem 6.1. First if we suppose that the function φ(x) in Condition SR2 (Section 5) has the general form φ(x) = x ρ , with ρ ≤ 0, then

(z n ) -s ρ φ( f 2 (n)(z n ) s ) / φ( f 2 (n)) = 1, ∀ s ∈ [0, 1].
For instance this is the case of Burr or Fréchet univariate distributions. Furthermore if we assume that F Y belongs to the maximum domain of attraction of Fréchet (i.e. F Y (y) = y -α L(y)), F Y has positive density f Y ∈ R -1-α and f 2 (n) satisfies conditions in (32)- [START_REF] Michel | Some notes on multivariate generalized pareto distributions[END_REF] then also the estimated second threshold f 2 (n) satisfies, in probability, conditions in (32)- [START_REF] Michel | Some notes on multivariate generalized pareto distributions[END_REF].

We remark indeed that F X (f 1 (n)) is a high quantile within the sample (see [START_REF] Embrechts | Modelling extremal events[END_REF]

, i.e. F X (f 1 (n)) P ----→ n→∞ 1 and n(1-F X (f 1 (n))) P ----→ n→∞ ∞.
Then, using Theorem 6.4.14 in Embrechts et al. (1997) and a Skorohod-type construction of probability spaces we obtain

f 2 (n) f 2 (n) -1 P ----→ n→∞ 1. Furthermore, using Condition SR2, F Y ( f 2 (n)) F Y (f 2 (n)) = f 2 (n) -α f 2 (n) -α L( f 2 (n)) L(f 2 (n)) = f 2 (n) -α f 2 (n) -α 1 + k f 2 (n) f 2 (n) φ(f 2 (n)) + o(φ(f 2 (n))) .
Using properties of k and φ (see Section 5) we obtain

F Y ( f 2 (n)) F Y (f 2 (n)) P ----→ n→∞ 1.
Then f 2 (n) satisfies, in probability, condition in [START_REF] Lescourret | Extreme dependence of multivariate catastrophic losses[END_REF]:

n(1 -F Y ( f 2 (n))) = F Y ( f 2 (n)) F Y (f 2 (n)) n(1 -F Y (f 2 (n))) P ----→ n→∞ ∞.
The proof for conditions in ( 33)-( 35) is completely analogue to that of condition in (32).

Asymptotic independent case

As noticed in Section 3.2 in the asymptotic independent case we need to introduce a second-order refinement of condition in [START_REF] Coles | Statistical methods for multivariate extremes: an application to structural design[END_REF]. Under condition in ( 21) we obtain the following main result: Theorem 6.2 Suppose F X and F Y belong to the maximum domain of attraction of Fréchet, L X , L Y satisfy Condition SR2. Assume that the assumptions of Theorem 2.1, Proposition 3.1 and Corollary 7.1 are satisfied. If sequences

f 1 (n), f 2 (n), f 1 (n), f 2 (n), defined by Remark 4, satisfy conditions of Theorem 5.1 then √ a n (F * (x n , y n ) -F * (x n , y n )) P ----→ n→∞ 0, (39) 
where

x n = f 1 (n)f 1 (n), y n = f 2 (n)f 2 (n). Moreover if f 2 (n) satisfies conditions of Theorem 5.1 in probability then √ a n (F * (x n , y n ) -F * (x n , y n )) P ----→ n→∞ 0, (40) 
with

y n = f 2 (n)f 2 (n). In (39)-(40) we have a n = n q(k n /n) → ∞ (this implies k n → ∞), k n /n → 0, √ a n q 1 (q ← (a n /n)) → 0, k n /N X P -→ 0, k n /N Y P -→ 0, and k n = o(n 2α 1+2α
), for some α > 0.

The proof of Theorem 6.2 is postponed to the Appendix.

Illustrations with real data

In this section we present four real cases (see Figures 45) for which we estimate bivariate tail probabilities to illustrate the finite sample properties of our estimator. We analyze the stability of our estimation compared to the one of F * 1 , as well the estimation of parameter θ of these real cases. We consider the Loss-ALAE data (for details see [START_REF] Frees | Understanding relationships using copulas[END_REF]. Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment expense (ALAE, Y ). We estimate F (2.10 5 , 10 5 ). The empirical probability, defined by ( 27), is 0.9506667 and the survival empirical probability is 0.006 (for a comparison using the Ledford and Tawn's model see [START_REF] Beirlant | Reduced bias estimators for bivariate tail modelling[END_REF]. Figure 6 shows the sensitivity of θ and F * to the sequence k n and provides a comparison with the estimator F * 1 . We now consider an example from storm insurance: aggregate claims of motor policies (Y ) and aggregate claims of household policies (X) from a French insurance portfolio for 736 storm events (for a detailed description see [START_REF] Lescourret | Extreme dependence of multivariate catastrophic losses[END_REF]. We estimate F (8000, 950). The empirical probability is 0.96875 and the survival empirical probability is 0.014. The stability of our estimation compared to the one of F * 1 , as well the estimation of parameter θ are presented in Figure 7. We study the wave surge data comprising 2894 bivariate events that occurred during 1971 -1977 in Cornwall (England) (for details see [START_REF] Coles | Statistical methods for multivariate extremes: an application to structural design[END_REF] or [START_REF] Ramos | A new class of models for bivariate joint tails[END_REF]. We estimate F (8.32, 0.51). The empirical probability is 0.9903 and the survival empirical probability is 0.00069. The sensitivity of θ and F * to the sequence k n and the estimation of θ are presented in Figure 8. Finally we analyze the Wave height versus Water level data, recorded during 828 storm events spread over 13 years in front of the Dutch coast near the town of Petten (for details see [START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF]. We estimate F (5.93, 1.87). The empirical probability is 0.97584 and the survival empirical probability is 0.00604. The sensitivity of θ and F * to the sequence k n and the estimation of θ are presented in Figure 9. From Draisma et al. (2004) it seems that the coefficient η of Ledford and Tawn's model is smaller than 1, then it is plausible to assume asymptotic independence between the wave heights and the water level. Analogously, in our model the estimated parameter θ is greater than one (see Figure 9). 

Appendix: proofs and auxiliary results

Proof [ Proposition 2.1 ] : We know that C up u (x, y) = 1-

C * (1-F -1 X, u (x), 1-u) C * (1-u, 1-u) - C * (1-u, 1-F -1 Y, u (y)) C * (1-u, 1-u) + C * (1-F -1 X, u (x), 1-F -1 Y, u (y)) C * (1-u, 1-u) . Then lim u→1 C up u (x, y) = lim u→1 x + y -1 + C * (1 -F -1 X, u (x), 1 -F -1 Y, u (y)) C * (1 -u, 1 -u)
.

(41) We introduce the following lemma.

Lemma A (Charpentier and Juri, 2006; Lemma 6.1) Suppose that the random vectors (X n , Y n ) have continuous, strictly increasing marginals and are such that lim n→∞ (X n , Y n ) = (X, Y ) in distribution for some (X, Y ). Then

lim n→∞ ||C n -C|| ∞ = 0,
where C n and C denote the copulas of (X n , Y n ) and (X, Y ), respectively.

Let (X, Y ) have distribution function C. Note that

P [X > x(1 -u) | X > u, Y > u] = C * (1 -x (1 -u), 1 -u) C * (1 -u, 1 -u) , (42) 
P [Y > y(1 -u) | X > u, Y > u] = C * (1 -u, 1 -y (1 -u)) C * (1 -u, 1 -u) , (43) 
P [X > x(1 -u), Y > y(1 -u) | X > u, Y > u] = C * (1 -x (1 -u), 1 -y (1 -u)) C * (1 -u, 1 -u) .
(44) The distributions in ( 42)- [START_REF] Schlather | Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution[END_REF] are respectively the survival conditional distributions of X 1-u , Y 1-u and X 1-u , Y 1-u , given that X > u and Y > u. Since ∂C * (1 -u, 1 -v)/∂u < 0 and ∂C * (1 -u, 1 -v)/∂v < 0, for all u, v ∈ [0, 1), it follows that the distributions in ( 42)-( 43) are continuous and strictly increasing. By hypothesis, we have

lim u→1 C * (x (1 -u), y (1 -u)) C * (1 -u, 1 -u) = G(x, y
), for all x, y > 0, [START_REF] Smith | Estimating tails of probability distributions[END_REF] implying that the expressions in ( 42)-( 43) respectively converge to g X (1 -x) and g Y (1 -y) as u → 1, with g X (x) := G(x, 1), g Y (y) := G(1, y).

Since copulas are invariant under strictly increasing transformations of the underlying variables, it follows that we can use the conditional distributions in ( 42)-( 43), instead of F X, u and F Y, u , to construct C up u (x, y). Then, from (41) and using Lemma A, we have

lim u→1 C up u (x, y) = lim u→1 x + y -1 + C * (g -1 X (1 -x) (1 -u), g -1 Y (1 -y) (1 -u)) C * (1 -u, 1 -u) = x + y -1 + G(g -1 X (1 -x), g -1 Y (1 -y)).
As in the proof of Theorem 3.1 in Charpentier and Juri (2006), the limit in [START_REF] Smith | Estimating tails of probability distributions[END_REF] implies that there is a θ > 0 such that G is homogeneous of order θ, i.e. for all t, x, y > 0,

G(t x, t y) = t θ G(x, y). ( 46 
)
By a discussion of the general solution of functional [START_REF] Wüthrich | Bivariate extension of the Pickands-Balkema-de Haan theorem[END_REF] we obtain the explicit form of G:

G(x, y) = x θ g Y ( y x ) for y x ∈ [0, 1], y θ g X ( x y ) for x y ∈ (1, ∞).
For this part of the proof we refer the interested reader to Theorem 3.1 in [START_REF] Charpentier | Limiting dependence structures for tail events, with applications to credit derivatives[END_REF].

Proof [ Theorem 2.1 ] : From [START_REF] De Haan | On regular variation and its application to the weak convergence of sample extremes[END_REF] we obtain the existence of a 1 (•) and a 2 (•) such that, for p := u+x a 1 (u) and

q := u Y + y a 2 (u Y ) V ξ1,1 (x) = lim u→x F X 1 - 1 -F X (p) 1 -F X (u) = lim u→x F X P[X ≤ p|X > u], (47) 
V ξ2,1 (y) = lim u Y →x F Y 1 - 1 -F Y (q) 1 -F Y (u Y ) = lim u Y →x F Y P[Y ≤ q|Y > u Y ]. ( 48 
) From Y d = F -1 Y (F X (X)), we take u Y = F -1 Y (F X (u)) and from (47)-(48), as u → x F X , we have 1 -(1 -V ξ1,1 (x))(1 -F X (u)) ∼ F X (u + x a 1 (u)), 1-(1-V ξ2,1 (y))(1-F Y (F -1 Y (F X (u)))) ∼ F Y (F -1 Y (F X (u))+y a 2 (F -1 Y (F X (u)))). Then lim u→x F X P X -u a 1 (u) > x, Y -F -1 Y (F X (u)) a 2 (F -1 Y (F X (u))) > y X > u, Y > F -1 Y (F X (u)) = lim u→x F X C * 1 -F X (u + x a 1 (u)), 1 -F Y (F -1 Y (F X (u)) + y a 2 (F -1 Y (F X (u)))) C * 1 -F X (u), 1 -F Y (F -1 Y (F X (u))) = lim u→x F X C * (1 -V ξ1,1 (x))(1 -F X (u)), (1 -V ξ2,1 (y))(1 -F Y (F -1 Y (F X (u)))) C * 1 -F X (u), 1 -F Y (F -1 Y (F X (u))) = lim ν→1 C * (1 -V ξ1,1 (x))(1 -ν), (1 -V ξ2,1 (y))(1 -ν) C * 1 -ν, 1 -ν . (49) Now, if h := (1-ξ 1 x) 1 ξ 1 , ξ 1 = 0 or if h := e -x , ξ 1 = 0 then 1-V ξ1,1 (x) = V 1,1 (h). So (49) becomes lim ν→1 C * V 1,1 (h)(1 -ν), V 1,1 (w)(1 -ν) /C * 1 -ν, 1 -ν .
As C satisfies hypotheses of Proposition 2.1, the above limit is equal to 

G(V 1,1 (h), V 1,1 (w)) = G(1 -V ξ1,1 (x), 1 -V ξ2,1 (y)). Then lim u→x F X P X -u a 1 (u) ≤ x, Y -F -1 Y (F X (u)) a 2 (F -1 Y (F X (u))) ≤ y X > u, Y > F -1 Y (F X (u)) = C * G 1 -g X (1 -V ξ1,1 (x)), 1 -g Y (1 -V ξ2,1 ( 
r mn F (u mn z mn ) -F * (u mn z mn ) d ----→ n→∞ N(ν, τ 2 ), (51) 
with

r mn = √ mn log(zm n ) 1 1-1 n n i=1 1 (X i ≤um n zm n ) = √ mn log(zm n ) F (um n zm n ) .
To this end we need to prove that 

F (u mn z mn ) F (u mn z mn ) P ----→ n→∞ 1, (52) then 
= ∞, then sup t≥F -1 (1-kn n ) n γn F (t) -F (t) P ----→ n→∞ 0.
We choose an arbitrary sequence {k n } ∞ n=1 := {m n } ∞ n=1 (number of excesses on a sample of size n) such that m n ≤ n, lim n→∞ m n = ∞ and lim n→∞ mn n = 0 (see Remark 1 in Section 1). We take

{γ n } ∞ n=1 := { √ m n α n } ∞ n=1
, where α n is an arbitrary sequence of positive numbers such that lim n→∞ α n = ∞. Then, using Proposition B, we have for u mn z mn ≥ F

-1 (1 -mn n ) n √ m n α n F (u mn z mn ) F (u mn z mn ) -F (u mn z mn ) F (u mn z mn ) P ----→ n→∞ 0.
We choose α n such that for large n

∃ c > 0 : 0 < √ m n α n n F (u mn z mn ) ≤ c. (53) 
In the Fréchet case we have L(x) = x α F (x), for α > 0 and ∀ t > 0,

L(tx) L(x) = 1 + k(t)φ(x) + o(φ(x)) for x → ∞.
Then, using Assumptions (8.7) and (8.8) of Theorem 8.1. in [START_REF] Smith | Estimating tails of probability distributions[END_REF], we obtain

F (u mn z mn ) F (u mn ) = z -α mn [1 + k(z mn )φ(u mn ) + o(φ(u mn ))] . Hence n F (um n zm n ) √ mn
is equal to n √ mn F (u mn ) z -α mn 1+k(z mn )φ(u mn )+o(φ(u mn )) which, for n large, can be approximated by

√ m n z -α mn (1 + k(z mn )φ(u mn ) + o(φ(u mn ))) . (54) 
Assume now

(zm n ) α √ mn ----→ n→∞ 0
, that is the analogue of condition in [START_REF] Michel | Some notes on multivariate generalized pareto distributions[END_REF] conditionally on N n = m n . Then the properties of k and φ insure that the right hand side of (54) increases to infinity hence one can choose α n satisfying (53). To conclude the proof, we use assumption [START_REF] Michel | Some notes on multivariate generalized pareto distributions[END_REF] and a Skorohod type argument.

Proof [ Theorem 6.1 ]: To prove (37) we first observe, using Corollary 3.1, Proposition 7.1 and the analogue of Kolmogorov-Smirnov Theorem in dimension 2 (e.g. see [START_REF] Dudley | Weak convergences of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces[END_REF] ----→ n→∞ 0, where a n = n q(k n /n) and W (x, y) is a zero-mean gaussian process with E(W (x 1 , y 1 )W (x 2 , y 2 )) = G(x 1 ∧ x 2 , y 1 ∧ y 2 ). Then, in particular with ψ n << √ a n = n q(k n /n) and G as in [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF]. Finally for the marginals g X and g Y we have with g X and g Y as in [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF].

, that √ k n C * G 1-g X (1-V ξ X ,σ X (f 1 (n)f 1 (n)-f 1 (n))), 1-g Y (1-V ξ Y ,σ Y (f 2 (n)f 2 (n)- f 2 (n))) •F (f 1 (n), f 2 (n))-F (f 1 (n), f 2 (n))• C * G 1-g X (1-V ξ X , σ X (f 1 (n)f 1 (n)- f 1 (n))), 1 -g Y (1 -V ξ Y , σ Y (f 2 (n)f 2 (n) -f 2 (n)
Proof [ Theorem 6.2 ]: Under assumptions of Theorem 6.2 and Proposition 3.1 we obtain asymptotic convergence results for G(x, y), g X (x) and g Y (y), with convergence rate ψ n << n q(k n /n) and g X , g Y , G as in [START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF]. With the same proof structure of Theorem 6.1, using Corollary 7.1 and Proposition 7.1 we obtain convergence [START_REF] Pickands | Multivariate extreme value distributions[END_REF]. Moreover if f 2 (n) satisfies conditions of Theorem 5.1 in probability then we obtain [START_REF] Ramos | A new class of models for bivariate joint tails[END_REF].

Auxiliary results

Theorem C [START_REF] Einmahl | Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition[END_REF]; Theorem 2.2) Assume that exists the limit R(x, y) in ( 14) such that, for some α > 0 Note that (55) is a second-order condition quantifying the speed of convergence in [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF] and condition k n = o n 2α 1+2α

1 t P(1 -F X (X) ≤ tx, 1 -F Y (Y ) ≤ ty) -R(x, y) = O(t α ), as t → 0, (55) 
gives an upper bound on the speed with which k n can grow to infinity. This upper bound is related to the speed of convergence in (55) by α. If C is a twice continuously differentiable copula on [0, 1] 2 then (55) holds for any α ≥ 1. Furthermore, it is easily seen that l(x, y) + R(x, y) = kn x + kn y -2 kn ≤ kn x + kn y kn , almost surely, for each 0 < x, y ≤ 1, where z is the smallest integer ≥ z. Then under assumption of Theorem C we can easily obtain a gaussian approximation for R(x, y) -R(x, y). Note that the asymptotic variance of √ k n ( l(x, y) -l(x, y)), in Theorem C, vanishes in the asymptotic independent case. Then, with λ = 0, we obtain: 
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 152 Figure 1: Estimator for θ, (k, θx) (left) x = 0.07, survival Clayton copula with parameter 1 (right) x = 5, Logistic copula with parameter 0.5

Figure 3 :

 3 Figure 3: Clayton copula with parameter 0.05: (left) estimator for θ, (k, θx) with x = 0.7; (right) mean squared error for θx with x = 0.7.

Figure 4 :

 4 Figure 4: Logarithmic scale (left) ALAE versus Loss; (right) Storm damages.

Figure 5 :

 5 Figure 5: (left) Wave Height (m) versus Surge (m); (right) Wave heights versus Water level.

Figure 6 :

 6 Figure 6: (left) θ 0.04 ; (right) F * (2.10 5 , 10 5 ) (full line), F * 1 (2.10 5 , 10 5 ) (dashed line), with the empirical probability indicated with a horizontal line; Loss-ALAE data.

Figure 7 :

 7 Figure 7: (left) θ 0.05 ; (right) F * (8.10 3 , 950) (full line), F * 1 (8.10 3 , 950) (dashed line), with the empirical probability indicated with a horizontal line; Storm insurance data.

Figure 8 :

 8 Figure 8: (left) θ 0.02 ; (right) F * (8.32, 0.51) (full line), F * 1 (8.32, 0.51) (dashed line), with the empirical probability indicated with a horizontal line; Wave-Surge data.

Figure 9 : 11 =

 911 Figure 9: (left) θ 0.1 0.11 = θ 0.91 as in (19); (right) F * (5.93, 1.87) (full line), F * 1 (5.93, 1.87) (dashed line), with the empirical probability indicated with a horizontal line; Wave height-Water level data.

1 1

 1 {Xi≤f 1 (n), Yi≤f 2 (n)} -F (f 1 (n), f 2 (n)) At last using Corollary 3.1, Theorem 5.1, we obtain convergence[START_REF] Peng | Estimation of the coefficient of tail dependence in bivariate extremes[END_REF]. If f 2 (n) satisfies conditions of Theorem 5.1 in probability then with the same proof structure we obtain[START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]. Proof [ Proposition 3.1 ]: Under assumptions of Proposition 3.1, as in the proof of Lemma 6.1 in Draisma et al. (2004) we obtain sup {R(Xi)>n-knx+1; R(Yi)>n-kny+1} -G(x, y) -W (x, y) a.s.

1 kn 1 i=1 1 kn 1

 1111 {R(Xi)>n-kn x+1; R(Yi)>n-kn y+1} n {R(Xi)>n-kn+1; R(Yi)>n-kn+1} -G(x, y) = ψ n sup 0<x,y≤1 G(x, y) -G(x, y)

  uniformly for max(x, y) ≤ 1, x, y ≥ 0. Let k n → ∞, k n /n → 0 and k n = o n 2α 1+2α . If R 1 (x, y) := ∂R(x,y)∂x and R 2 (x, y) := ∂R(x,y) ∂y are continuous then sup 0<x,y≤1k n ( l(x, y) -l(x, y)) + B(x, y) x, y) := W (x, y) -R 1 (x, y)W 1 (x) -R 2 (x, y)W 2 (y), with W a continuous mean zero Gaussian process on [0, x] × [0, y] with covariance structure E(W (x 1 , y 1 ) W (x 2 , y 2 )) = R(x 1 ∧x 2 , y 1 ∧y 2 ) and with marginal processes defined by W 1 (x) = W ([0, x] × [0, ∞]), W 2 (y) = W ([0, ∞] × [0, y]).

Corollary 7 . 1 Proposition 7 . 1

 7171 Assume that, for some α > 01 t P(1 -F X (X) ≤ tx, 1 -F Y (Y ) ≤ ty) = O(t α ), as t → 0, uniformly for max(x, y) ≤ 1, x, y ≥ 0. Let k n → ∞, k n /n → 0 and k n = o n 2α 1+2α . Then it holds sup 0<x,y≤1k n ( l(x, y) -l(x, y)) Let V ξ,σ (x) the Generalized Pareto Distribution (GPD) and ξ n , σ n , the maximum likelihood estimators of the parameters ξ = -α -1 < 0 and σ = u n α -1 , in the case unconditionally on N . If all the conditions of Corollary 5.1 hold thenp nx sup x ∈[0,+∞)V ξn, σn (x) -V ξ,σ (x) Using Corollary 5.1 we obtain for each point x ∈ [0, +∞),p nx V ξn, σn (x) -V ξ,σ (x) = p nx ,applying a stochastic version of Polya's Theorem (seeHorowitz, 2001), as V ξ,σ (x) is a continuous distribution function, the convergence in (56) holds uniformly on [0, +∞).

  can be written as lim

t→∞ log(F * (tz 1 , tz 2 )) log(F * (t, t)) = lim t→∞ 1 -F * (tz 1 , tz 2 ) 1 -F * (t, t) = log(G * (z 1 , z 2 )) log(G * (1,

1

))

.

  g Y (y) and G(x, y) as in[START_REF] Einmahl | A method of moments estimator of tail dependence[END_REF]. Details of the proof are postponed to the Appendix. It is mainly based on Lemma 6.1 in[START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF]. In Proposition 3.2 below, by assuming some regularity properties on C, we deduce a specific form for G, g X , g Y and θ. If λ = 0 and C is a twice continuously differentiable copula with the determinant of the Hessian matrix of C at (1, 1) different to zero, then

	Proposition 3.2

  y)) . (50) Since the limit is a continuous distribution function (as C * G , g and the GPD are), (50) can be strengthened to uniform convergence (see e.g.Embrechts et al. 1997, p. 552). Then[START_REF] Draisma | Bivariate tail estimation: dependence in asymptotic independence[END_REF] follows.

Proof [ Theorem 5.1 ]: To begin with, we work conditionally on N n = m n . First we have to prove that
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