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Abstract This paper deals with the problem of estimating the tail of a bi-
variate distribution function. To this end we develop a general extension of
the POT (Peaks-Over-Threshold) method, mainly based on a two-dimensional
version of the Pickands-Balkema-de Haan Theorem. We introduce a new pa-
rameter that describes the nature of the tail dependence and we provide a
way to estimate it. We construct a two-dimensional tail estimator and study
its asymptotic properties. We also present real data examples which illustrate
our theoretical results.
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1 Introduction

The univariate POT (Peaks-Over-Threshold) method is common for estimat-
ing extreme quantiles or tail distributions (see e.g. McNeil 1997, 1999 and
references therein). A key idea of this method is that a distribution is in the
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Université de Lyon, Université Lyon 1, ISFA, Laboratoire SAF, 50 avenue Tony Garnier,
69366 Lyon, France, Tel.: +33 4 37 28 74 28, Fax: +33 4 37 28 76 32
E-mail: veronique.maume@univ-lyon1.fr

Clémentine Prieur
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domain of attraction of an extreme value distribution if and only if the dis-
tribution of excesses over high thresholds is asymptotically generalized Pareto
(GPD) (e.g. Balkema and de Haan, 1974, Pickands, 1975):

Vξ,σ(x) :=

{
1−

(
1− ξx

σ

) 1
ξ , if ξ 6= 0, σ > 0,

1− e
−x
σ , if ξ = 0, σ > 0,

(1)

and x ≥ 0 for ξ ≤ 0 or 0 ≤ x < σ
ξ for ξ > 0. This univariate modelling is well

understood, and has been discussed by Davison (1984), Davison and Smith
(1990) and other papers of these authors.

In this paper, we are interested in the problem of fitting the joint distri-
bution of bivariate observations exceeding high thresholds. To this end, we
develop a two-dimensional extension of the POT method, mainly based on a
version of the Pickands-Balkema-de Haan Theorem in dimension 2 (Theorem
1). This extension is general in the sense that it allows to consider a two-
dimensional structure of dependence between both continuous random com-
ponents X and Y . The modelling of this dependence is done via a continuous
symmetric copula C, which is supposed to be unknown, with regularity prop-
erties specified in the statement of our theorems. An overview of multivariate-
threshold methods based on multivariate Generalized Pareto distribution can
be found e.g. in Tajvidi (1996).
We recall here some classical bivariate threshold models, based on a characteri-
zation of the joint tail by Resnick (1987). Let F denote the joint distribution of
(Y1, Y2) with marginals Fj , j = 1, 2. Define Zj = −1/ log(Fj(Yj)), j = 1, 2, i.e.
each Yj is transformed to a unit Fréchet variable and P(Zj ≤ z) = exp−1/z,
for 0 < z < ∞. Let F∗ denote the joint distribution of (Z1, Z2), we have
F (y1, y2) = F∗(z1, z2). The assumption F is in the maximum domain of at-
traction (MDA) of a bivariate extreme value distribution G is equivalent to F∗
being in the domain of attraction of a bivariate extreme value distribution G∗,
where the marginals of G∗ are unit Fréchet. The characterization of Resnick
(1987) can be written as

lim
t→∞

log(F∗(tz1, tz2))

log(F∗(t, t))
= lim
t→∞

1− F∗(tz1, tz2)

1− F∗(t, t)
=

log(G∗(z1, z2))

log(G∗(1, 1))
. (2)

Equating the left and the right-hand terms for large t leads to the following
model for the joint tail of F (see Ledford and Tawn, 1996):

F1(y1, y2) = exp{−l(− ln(FY1
(y1)),− ln(FY2

(y2)))}, (3)

for yj > uj , where uj are high thresholds for the marginal distributions and
with l the stable tail dependence function of the limiting extreme value distri-
bution G∗. Furthermore the first-order expansion of (3) gives

F2(y1, y2) = 1− l(1− FY1
(y1), 1− FY2

(y2)), (4)

for 1 − FYj (yj) sufficiently small. However (3) is preferable over (4) because
1− l(·, ·) undervalues the probability of joint exceedances (for details see e.g.
Beirlant et al., 2004, Section 8).
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Then approximations (3)-(4) can be estimated by

F̂∗1(y1, y2) = exp{−l̂(− ln(F̂ ∗Y1
(y1)),− ln(F̂ ∗Y2

(y2)))}, (5)

F̂∗2(y1, y2) := 1− l̂(1− F̂ ∗Y1
(y1), 1− F̂ ∗Y2

(y2)), (6)

for high values of y1 and y2, where F̂ ∗Y1
(y1) (resp. F̂ ∗Y2

(y2)) is an estimator

for the marginal tail of Y1 (resp. Y2). For instance F̂ ∗Y1
(y1) (resp. F̂ ∗Y2

(y2))

comes from the univariate POT method described in Section 3. In (5)-(6) l̂
is an estimator of the stable tail dependence function (see Drees and Huang,
1998, Draisma et al., 2004, Einmahl et al., 2008). For another approach, based
on the estimation of the so-called univariate dependence function of Pickands
(Pickands, 1981) see for instance Capéraà and Fougères (2000). Problems arise
with both these bivariate techniques when (Y1, Y2) are asymptotically indepen-
dent i.e.

λ := lim
t→0

P[F−1Y1
(Y1) > 1− t |F−1Y2

(Y2) > 1− t] = 0. (7)

When the data exhibit positive or negative association that only gradually
disappears at more and more extreme levels these methods produce a sig-
nificant bias. Basically this happens because a bivariate extreme value type
dependence structure is assumed to hold in the joint tail above the marginal
thresholds.

In order to overcome this problem, Ledford and Tawn (1996, 1997, 1998)
introduced a model in which the tail dependence is characterized by a coef-
ficient η ∈ (0, 1]. In these works the joint survival distribution function of a
bivariate random vector (Z1, Z2) with unit Fréchet marginals is assumed to

satisfy P[Z1 > z,Z2 > z] ∼ L(z)P[Z1 > z]
1
η , where L is a slowly varying func-

tion at infinity. Several methods to estimate this coefficient η are proposed in
Peng (1999), Draisma et al. (2004), Beirlant et al. (2010). For some counter
examples of the Ledford and Tawn’s model see Schlather (2001).

Contrary to this approach, we will propose a model based on regularity con-
ditions of the copula and on the explicit description of the dependence struc-
ture in the joint tail (see condition (11) in Theorem A of Juri and Wüthrich,
2003). In our model the structure of the tail dependence will be described by
a parameter θ coming from Theorem A. The general idea is to decompose
the estimation of P(X ≤ x, Y ≤ y), for x, y above some marginal thresholds
uX , uY , in the estimation of different bivariate regions. For the joint upper
tail in [uX , x]× [uY , y] we will use the non parametric estimators coming from
Theorem 1 (see Section 4). For the lateral regions [−∞, x] × [−∞, uY ] and
[−∞, uX ]× [−∞, y] we will approximate the distribution function F using (3).

The stability of our estimation compared to the one of F̂∗1 is analyzed in
some real cases (Section 8) which have been studied in some classical works
(e.g. Coles and Tawn, 1994, Ledford and Tawn 1997, Ramos and Ledford,
2009, Lescourret and Robert, 2006). Therefore our estimator, in a different
way from the Ledford and Tawn’s method, covers situations less restrictive
than dependence or perfect independence above the thresholds.
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Note also that our method is free from the pre-treatment of data because
we can work directly with the original general samples without the transfor-
mation in Fréchet marginal distributions.

The paper is organized as follows. We introduce an extension of the Pickands-
Balkema-de Haan Theorem in dimension 2 in the case of bivariate distributions
with different marginals (Theorem 1). In Section 4 we provide a new non para-
metric estimator for the dependence structure of a bivariate random sample
in the upper tail. In Section 5 we use Theorem 1 in order to build a new
estimator for the tail of the bivariate distribution. The study of the asymp-
totic properties of our estimator makes use of a new convergence result in the
univariate case (Theorem 5 of Section 6) dealing with asymptotic behavior of
the absolute error between the theoretical distribution function and its tail
estimator. Our main result is the gaussian approximation of this error with its
speed of convergence (Theorem 6). Examples with real data are presented in
Section 8. Some auxiliary results and more technical proofs are postponed to
the Appendix.

Remark 1 Assume we observe X1, . . . , Xn i.i.d. with common distribution
function F . If we fix some high threshold u, letN denote the number of excesses
above u. In the following, two approaches will be considered. In the first one, we
work conditionally on N . If n is the sample size and un the associated thresh-
old, the number of excesses is mn, with limn→∞mn =∞ and limn→∞

mn
n = 0.

The second approach considers the number of excesses Nn as a binomial ran-
dom variable (which is the case in the simulations), Nn ∼ Bi (n, 1 − F (un))
with limn→∞ 1− F (un) = 0 and limn→∞ n(1− F (un)) =∞.

2 On the two-dimensional Pickands-Balkema-de Haan Theorem

A central one dimensional result in tail estimation is the so-called Pickand-
Balkema-de Haan Theorem. As our aim is the estimation of bivariate tails,
we are interested in two-dimensional extensions of this theorem. Such a two
dimensional generalization of this result can be found in the literature (Juri
and Wüthrich 2003 and Wüthrich 2004) with the assumption FX = FY . We
provide here a precise formulation and proof of the Pickands-Balkema-de Haan
Theorem when FX 6= FY (Theorem 1 below). We first introduce some nota-
tions and recall results from Juri and Wüthrich (2003), McNeil et al. (2005)
and Nelsen (1999), which we will need later.

Definition 1 [Copula] A 2-dimensional copula is a function C(u, v) which is
the distribution function of a random vector (U, V ) with uniform marginals on
[0, 1].

Definition 2 [Survival Copula] The Survival copula C∗ of a copula C is de-
fined

by: ∀ (u1, u2) ∈ [0, 1]2, C∗(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2). (8)



Estimating Bivariate Tail 5

A Survival copula (8) is a copula. Moreover, if (X,Y ) is a random vector in
R2 with joint distribution F , copula C and marginal distributions FX and FY ,

we have: C∗(1− FX(x), 1− FY (y)) = P[X > x, Y > y], for (x, y) ∈ R2.
(9)

Let us assume the copula associated with (X,Y ) is continuous and symmetric
and, in a first time, that X and Y are uniformly distributed on [0, 1]. Let
us fix a threshold u ∈ [0, 1) such that P[X > u, Y > u] > 0, i.e. such that
C∗(1− u, 1− u) > 0. We consider the distribution of X conditioned on {X >
u, Y > u}:

∀x ∈ [0, 1], Fu(x) := P[X ≤ x |X > u, Y > u] = 1− C∗(1− x ∨ u, 1− u)

C∗(1− u, 1− u)
.

(10)
Note that the continuity of the copula C implies that Fu(·) is also continuous.
Its symmetry implies that (10) also defines the distribution of Y conditioned
on {X > u, Y > u} (recall that X and Y are uniformly distributed).

Definition 3 [Upper-tail dependence copula] Let X and Y be uniformly dis-
tributed on [0, 1]. Assume that the copula associated to (X,Y ) is symmetric.
For a threshold u ∈ [0, 1) satisfying C∗(1−u, 1−u) > 0, we define the upper-tail
dependence copula at level u ∈ [0, 1) relative to the copula C by

∀ (x, y) ∈ [0, 1]2, Cupu (x, y) := P[X ≤ Fu
−1

(x), Y ≤ Fu
−1

(y) |X > u, Y > u],

where Fu is given from (10).

Note that P[X ≤ x, Y ≤ y |X > u, Y > u] obviously defines a two di-
mensional distribution function whose marginals are both given by Fu. We
remark that Cupu (x, y) is a copula. Moreover, the asymptotic behavior of Cupu
for u around 1 describes the dependence structure of X,Y in their upper tails.
More precisely, Juri and Wüthrich (2003) demonstrate the following result:

Theorem A (Juri and Wüthrich, 2003; Theorem 2.3) Let C be a symmetric
copula such that C∗(1−u, 1−u) > 0, for all u > 0. Furthermore, assume that
there is a strictly increasing continuous function g : [0,∞)→ [0,∞) such that

lim
u→1

C∗(x(1− u), 1− u)

C∗(1− u, 1− u)
= g(x), x ∈ [0,∞). (11)

Then, there exists a θ > 0 such that g(x) = xθg
(
1
x

)
for all x ∈ (0,∞). Further,

for all (x, y) ∈ [0, 1]2

lim
u→1

Cupu (x, y) = x+ y − 1 +G(g−1(1− x), g−1(1− y)) := C∗G(x, y), (12)

where G(x, y) := yθg

(
x

y

)
, ∀ (x, y) ∈ (0, 1]2 and G :≡ 0 on [0, 1]2 \ (0, 1]2.
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Remark 2
� From (8), we note that C∗G(x, y) defined in (12) is the Survival copula of the
copula CG(x, y) := G(g−1(x), g−1(y)) (for more details see Juri and Wüthrich,
2003, Section 2) and thus, in particular, is a copula.
� G is continuous, symmetric with strictly increasing marginals (for more de-
tails about properties of G see Juri and Wüthrich, 2003, Section 2.3).
� In this work, the copula is assumed to be symmetric in the sense that
C(u, v) = C(v, u) (see e.g. Klement and Mesiar, 2006). This assumption is
needed for the proof of Theorem A by Juri and Wüthrich (2003). Hence a
preliminary task in the application is to test for the validity of this assump-
tion. In Section 8 the symmetry of the copula seems reasonable. If the present
results could be extended to the non symmetric setting is an interesting point
but outside the scope of the present paper.

de Haan (1970) proves that F ∈ MDA(Hξ) is equivalent to the existence of
a positive measurable function a(·) such that, for 1− ξ x > 0 and ξ ∈ R,

lim
u→xF

1− F (u+ x a(u))

1− F (u)
=

{
(1− ξ x)

1
ξ , if ξ 6= 0,

e−x, if ξ = 0.
(13)

This result is useful to give below a rigorous formulation of the two-dimensional
Pickands-Balkema-de Haan Theorem in a general case.

Theorem 1 Let X and Y be two continuous real valued random variables,
with different marginal distributions, respectively FX , FY , and symmetric cop-
ula C. Suppose that FX ∈MDA(Hξ1), FY ∈MDA(Hξ2) and that C satisfies
the hypotheses of Theorem A for some g. Then

sup
A

∣∣∣∣P[X − u ≤ x, Y − F−1Y (FX(u)) ≤ y
∣∣X > u, Y > F−1Y (FX(u))

]
− C∗G

(
1− g(1− Vξ1,a1(u)(x)), 1− g(1− Vξ2,a2(F−1

Y (FX(u)))(y))
)∣∣∣∣−−−−−→u→xFX

0,

(14)

where Vξi,ai(·) is the GPD with parameters ξi, ai(·) defined in (1), ai(·) is as in
(13), for i = 1, 2, xFX := sup{x ∈ R |FX(x) < 1}, xFY := sup{y ∈ R |FY (y) <
1} and A := {(x, y) : 0 < x ≤ xFX − u, 0 < y ≤ xFY − F−1Y (FX(u))}.

The proof of Theorem 1 is postponed to the Appendix.

3 Estimating the tail of univariate distributions

The estimation of bivariate tail distributions requires first the estimation of
one-dimensional tail (McNeil 1997, 1999). Fix a threshold u and define Fu(x) =
P[X ≤ x |X > u]. Let X1, X2, . . . be a sequence of i.i.d random variables

with unknown distribution function F and F̂X(u) the empirical distribution
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function evaluated at the threshold u. Recall that the univariate tail may be
estimated by

F̂ ∗(x) = (1− F̂X(u))Vξ̂,σ̂(x− u) + F̂X(u), for x > u, (15)

where ξ̂, σ̂ are the maximum likelihood estimators (MLE) based on the excesses
above u. Using (15) we get the estimator, proposed by Smith (1987)

1− F̂ ∗(y) =

 N
n

(
1− ξ̂ (y−u)

σ̂

) 1

ξ̂
, if ξ̂ 6= 0,

N
n

(
e

−(y−u)
σ̂

)
, if ξ̂ = 0,

(16)

with u < y <∞ (if ξ̂ ≤ 0) or u < y < σ̂

ξ̂
(if ξ̂ > 0) and N the random number

of excesses.

4 Tail dependence in the bivariate framework

As well known a bivariate distribution function F with continuous marginal
distribution functions FX , FY is said to have a stable tail dependence function
l if for x ≥ 0 and y ≥ 0 the following limit exists:

lim
t→0

1

t
P[1− FX(X) ≤ tx or 1− FY (Y ) ≤ ty] := l(x, y) (17)

or similarly

lim
t→0

1

t
P[1− FX(X) ≤ tx, 1− FY (Y ) ≤ ty] := R(x, y) = x+ y − l(x, y),

see Huang (1992). If FX , FY are in the maximum domain of attraction of two
extreme value distributions HX , HY and if (17) holds then F is in the domain
of attraction of an extreme value distribution H with marginals HX , HY and
with copula C determined by l because (17) is equivalent to

lim
t→0

1

t
(1− C(1− tx, 1− ty)) = l(x, y), for x ≥ 0, y ≥ 0. (18)

Note that the upper tail dependence coefficient defined in (7) is such that
λ = R(1, 1).

4.1 Asymptotic dependent case

If X and Y are asymptotically dependent (λ > 0) we can introduce an esti-
mator for g(x) which will be used later to estimate the tail of the bivariate
distribution function. Using (17)-(18), we write (11) and (12) as

g(x) =
x+ 1− l(x, 1)

2− l(1, 1)
=
R(x, 1)

R(1, 1)
, G(x, y) =

x+ y − l(x, y)

2− l(1, 1)
=
R(x, y)

R(1, 1)
,
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and in this case θ = 1. As η ∈ (0, 1] in the Ledford and Tawn’s model (see Led-
ford and Tawn 1996, 1997, 1998), θ describes the nature of the tail dependence,
it does not depend on the marginal distribution functions.
In order to estimate g and G, we can use the non parametric estimator of l
(see Einmahl et al., 2008):

l̂(x, y) =
1

kn

n∑
i=1

1{R(Xi)>n−knx+1 or R(Yi)>n−kny+1}, (19)

where kn → ∞, kn
n → 0 and R(Xi) is the rank of Xi among (X1, . . . , Xn),

R(Yi) is the rank of Yi among (Y1, . . . , Yn), i = 1, . . . , n.
We obtain

ĝ(x) =

∑n
i=1

1
kn

1{R(Xi)>n−knx+1;R(Yi)>n−kn+1}∑n
i=1

1
kn

1{R(Xi)>n−kn+1;R(Yi)>n−kn+1}
, (20)

Ĝ(x, y) =

∑n
i=1

1
kn

1{R(Xi)>n−knx+1;R(Yi)>n−kny+1}∑n
i=1

1
kn

1{R(Xi)>n−kn+1;R(Yi)>n−kn+1}
. (21)

Using (20)-(21) we get for any x > 0, x 6= 1 a non parametric estimator of θ:

θ̂x =
log(ĝ(x))− log(ĝ( 1

x ))

log(x)
. (22)

We observe the sensitivity of θ̂x to the sequence kn for different copulas: Sur-
vival Clayton and Logistic copulas (Figure 1). We draw the mean curve on
100 samples of size n = 1000 (full line) and the empirical standard deviation
(dashed lines). On simulations it seemed to us that for each value of x one
could exhibit a range of values of kn under which our estimate well behaved.
In the following we fixed x for each simulation and made vary kn. The choice
of kn does not appear to be crucial for θ̂x. In Figure 2 the mean squared error
for θ̂x is calculated on 100 samples of size n = 1000.

4.2 Asymptotic independent case

We say that X and Y are asymptotically independent if λ = R(1, 1) = 0. In
term of copula this means that C(u, u) = 1− 2(1− u) + o(1− u), for u→ 1.
In that case we deduce Proposition 2 below.

Proposition 2 If λ = 0 and C is a twice continuously differentiable symmet-
ric copula with the determinant of the Hessian matrix of C at (1, 1) different
to zero, then

lim
u→1

C∗(x(1− u), 1− u)

C∗(1− u, 1− u)
=
b/2(x2 + 1) + cx

b+ c
∀x ∈ [0,∞),

and θ = 2, with b = ∂2C
∂u2 (1, 1), c = ∂C

∂u∂v (1, 1).
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Figure 1 Estimators for θ, (k, θ̂x) (left) x = 0.07, Survival Clayton copula with parameter
1 (right) x = 5, Logistic copula with parameter 0.5

Figure 2 Mean squared error for θ̂x (left) x = 0.07, Survival Clayton copula with parameter
1 (right) x = 5, Logistic copula with parameter 0.5

Details of the proof will be omitted here. The main ingredient is the second-
order development of copula C.

The assumptions of Proposition 2 are satisfied, for example, in the case of Ali
Mikhail-Haq, Frank, Clayton with a ≥ 0, Independent and Fairlie-Gumbel-
Morgenstern copulas. Figure 3 show the mean curve on 100 samples of size
n = 1000 (full line) and the empirical standard deviation (dashed lines) in the
case of Independent and Clayton copulas. In Figure 4 the mean squared error
for θ̂ are calculated in 100 samples.
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Figure 3 Estimators for θ, (k, θ̂x) (left) x = 0.8, Independent copula (right) x = 0.7,
Clayton copula with parameter 0.05.

Figure 4 Mean squared error for θ̂x (left) x = 0.8, Independent copula (right) x = 0.7,
Clayton copula with parameter 0.05.

5 Estimating the tail of bivariate distributions

In this section we present the main construction of this paper. We propose in-
deed a new tail estimator for the two-dimensional distribution function F (x, y).
Asymptotic properties for this estimator are stated and proved in Section 7.

This construction generalizes the one-dimensional construction stated in Sec-
tion 3. Let X and Y be two real valued random variables with different contin-
uous marginal distributions FX and FY . The structure of dependence between
X and Y is represented by some continuous and symmetric copula C. For
x > u, y > F−1Y (FX(u)) := uY we define
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F̂ ∗(x, y) =

(
1

n

n∑
i=1

1{Xi>u, Yi>uY }

)(
1− ĝ(1− Vξ̂X ,σ̂X (x− u))

− ĝ(1− Vξ̂Y ,σ̂Y (y − uY )) + Ĝ
(
1− Vξ̂X ,σ̂X (x− u), 1− Vξ̂Y ,σ̂Y (y − uY )

))
+ F̂ ∗1 (u, y) + F̂ ∗2 (x, uY )− 1

n

n∑
i=1

1{Xi≤u, Yi≤uY }, (23)

where ξ̂X , σ̂X (resp. ξ̂Y , σ̂Y ) are MLE based on the excesses of X (resp. Y).

Description of the construction: Given a high threshold u and uY := F−1Y (FX(u)),
we introduce the distribution of excesses: Fu(x, y) := P[X − u ≤ x, Y − uY ≤
y |X > u, Y > uY ]. Using (3) for large value of u and x > u, y > uY , we can
approximate F (u, y) and F (x, uY ) as

F ∗1 (u, y) = e{−l(− lg(F (u)),− lg(F (y)))}, F ∗2 (x, uY ) = e{−l(− lg(F (x)),− lg(F (uY )))},
(24)

where l is the stable tail dependence function defined by (17). We recall that
behind approximation (24) we suppose that the data structure is character-
ized by dependence (or perfect independence) in the lateral regions [−∞, x]×
[−∞, uY ] and [−∞, uX ]× [−∞, y].
From Theorem 1 we now know that, for u around xF , we can approximate the
distribution of excesses with C∗G. So we obtain, for x > u, y > uY ,

F ∗(x, y) = (F (u, uY ))·C∗G
(
1−g(1−VξX ,σX (x−u)), 1−g(1−VξY ,σY (y−uY ))

)
+ F ∗1 (u, y) + F ∗2 (x, uY )− F (u, uY ). (25)

Then, we estimate F (u, uY ) and F (u, uY ) in (25) from the data {Xi, Yi}i=1,...,n,
using the empirical distribution estimates

F̂ (u, uY ) =
1

n

n∑
i=1

1{Xi≤u, Yi≤uY }, F̂ (u, uY ) =
1

n

n∑
i=1

1{Xi>u, Yi>uY }. (26)

From (24) and using the non parametric estimator (19) we obtain

F̂ ∗1 (u, y) = exp{−l̂(− lg(F̂X(u)),− lg(F̂Y
∗
(y)))}, (27)

F̂ ∗2 (x, uY ) = exp{−l̂(− lg(F̂X
∗
(x)),− lg(F̂Y (uY )))}, (28)

where F̂X(u) and F̂Y (uY ) are the empirical univariate estimators evaluated at

respective thresholds and F̂ ∗X(x) and F̂ ∗Y (y) are one-dimensional tail estimators
of the marginal distribution functions, defined by (15). Now, using (26)-(28),
we can approximate F ∗(x, y) for x > u, y > uY and u large by (23). Our tail
estimator, in the case with same marginal distributions, is a particular case of
(23) with same threshold u for X and Y .
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Remark 3 Note that F̂ ∗(x, y), is only valid for x > u and y > uY = F−1Y (FX(u)),
when u is large enough. The expression large enough is a fundamental problem
of the POT method. The choice of the threshold u is indeed a compromise: u
has to be large for the GPD approximation to be valid, but if it is too large,
the estimation of the parameters ξX , ξY and σX , σY will suffer from a lack of
observations over the thresholds u, uY . The compromise will be explained in
Section 6 and 7.

6 Convergence results in the univariate case

In order to study asymptotic properties of our bivariate tail estimator F̂ ∗(x, y)
we present in this section some extensions of one dimensional convergence
results in Smith (1987; Theorems 3.2. and 8.1.). Incidentally we get asymptotic
confidence intervals for the unknown theoretical function F (x), using Theorem
5. From now on we assume that the tail of F decays like a power function, i.e.
is in the domain of attraction of Fréchet i.e. F (x) = x−αL(x) for some slowly
varying function L(x), α > 0. As in Smith (1987), Section 3, we shall assume
that L satisfies the following condition

� SR2: L(tx)
L(x) = 1 + k(t)φ(x) + o(φ(x)), ∀ t > 0, as x→∞,

where φ(x) > 0 and φ(x) → 0 as x → ∞. Let Rρ be the set of ρ−regularly
varying functions. Condition SR2 implies, excluding trivial cases, φ ∈ Rρ, for

some ρ ≤ 0, and k(t) = c hρ(t), with hρ(t) =
∫ t
1
uρ−1du; (for more details

see Smith (1987), Section 3). Theorems 3.2. and 8.1. in Smith (1987) are
written conditionally on N = mn, N denoting the number of excesses above
the threshold. In practice we work with some threshold u and N is considered
as random. Therefore we give the analogue of Theorems 3.2. (resp. Theorem
8.1.), Corollary 3 (resp. Corollary 4).

Corollary 3 Suppose L satisfies SR2. Let n be the sample size and un := f(n)
the threshold, such that f(n) −−−−→

n→∞
∞. Let N = Nn denote the random number

of excesses of un. We define ξ = −α−1 and σn = f(n)α−1. If

n(1− F (un)) −−−−→
n→∞

∞, (29)

√
n(1− F (un))c φ(un) −−−−→

n→∞
µ(α− ρ), (30)

then there exists, with probability 1, a local maximum (σ̂n, ξ̂n) of the GPD log
likelihood function, such that

√
N

( σ̂n
σn
− 1

ξ̂n − ξ

)
d−−−−→

n→∞
N

 µ(1−ξ)(1+2ξρ)
1−ξ+ξρ

µ(1−ξ)ξ(1+ρ)
1−ξ+ξρ

 ;

(
2(1− ξ) (1− ξ)
(1− ξ) (1− ξ)2

) .
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Proof: If (29) and (30) hold then N(n (1 − F (un)))−1
P−−−−→

n→∞
1, and (3.2) in

Smith (1987) holds in probability, i.e.

√
N cφ(un)

α− ρ
=

√
N cφ(f(n))

α− ρ
P−−−−→

n→∞
µ ∈ (−∞,∞).

Hence we conclude with a Skorohod-type construction of probability spaces
on which (3.2) in Smith (1987) holds almost surely. �

Corollary 4 Suppose all the assumptions of Corollary 3 are satisfied. Let n
be the sample size, un := f(n) −−−−→

n→∞
∞ and zn := f(n) −−−−→

n→∞
∞ such that

(zn)−s ρ φ(un(zn)
s)

φ(un)
−−−−→
n→∞

1, for s ∈ [0, 1]. Let N = Nn denote the random

number of excesses above un.

If
lg (zn)√

n(1− F (un))
−−−−→
n→∞

0, (31)

then √
N

lg(f(n))

[
1− F̂ ∗(f(n) f(n))

1− F (f(n) f(n))
− 1

]
d−−−−→

n→∞
N(ν, τ2), (32)

where ν = 0 if ρ = 0, ν = µα(α+1)(1+ρ)
1+α−ρ for ρ < 0 and τ2 = α2(1 + α)2.

Proof: If (29), (30) and (31) hold, then (8.7), (8.8) and (8.11) in Smith (1987)
hold in probability, i.e

lg (zn)√
N

P−−−−→
n→∞

0,

√
N

lg(zn)

[
N

n (1− F (un))
− 1

]
P−−−−→

n→∞
0.

We conclude as for Corollary 3. �
Let us now give the central result of this section.

Theorem 5 Assume that all the assumptions of Corollary 4 are satisfied. We
use the same notation.

If (zn)α(n(1− F (un)))−1/2 −−−−→
n→∞

0, then (33)

√
N

lg(f(n)) F̂n(f(n) f(n))

[
F (f(n) f(n))− F̂ ∗(f(n) f(n)

]
d−−−−→

n→∞
N(ν, τ2), (34)

where ν = 0 if ρ = 0, ν = µα(α+1)(1+ρ)
1+α−ρ for ρ < 0 and τ2 = α2(1 + α)2.

The proof of Theorem 5 is postponed to the Appendix.
As a byproduct, it is possible to construct from (34) asymptotic confidence

intervals for F (f(n) f(n)).
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7 Convergence results in the bivariate case

In this section we provide a convergence result for our two-dimensional tail
estimator (23), using Theorem 5 above. Copula C is still assumed to be con-
tinuous and symmetric. We work unconditionally on N .

Remark 4 Let n be the sample size. We choose, from Theorem 1,

u1n := f1(n) −−−−→
n→∞

∞ threshold for X,

u2n = f2(n) = F−1Y (FX(f1(n))) −−−−→
n→∞

∞ threshold for Y.

7.1 Asymptotic dependent case

Our main result is a gaussian approximation of the absolute error of our bivari-
ate tail estimator (23). Its proof makes use of a result by Einmahl et al. (2006)
(see Theorem C in the Appendix) which specifies the asymptotic behaviour of

l̂(x, y) uniformly in 0 ≤ x, y ≤ 1.

Theorem 6 Suppose FX and FY belong to the maximum domain of attraction
of Fréchet, LX , LY satisfy the condition SR2 and that exists stable tail depen-
dence function l defined by (17). Assume that copula C is continuous, symmet-
ric, λ > 0 and that the assumptions of Theorem C are satisfied. Then under
assumptions of Theorem 1 and if sequences f1(n), f2(n), u := f1(n), uY :=
f2(n), defined by Remark 4, satisfy the conditions of Theorem 5 then∣∣√kn(F ∗(xn, yn)− F̂ ∗(xn, yn)) +B(x∗n, y

∗
n)
∣∣ P−−−−→
n→∞

0, (35)

with xn = f1(n)f1(n), yn = f2(n)f2(n), kn → ∞, kn
n → 0, kn/NX

P−→ 0,

kn/NY
P−→ 0, kn = o(n

2α
1+2α ), α > 0, B(x∗n, y

∗
n) = B(− lg(F̂X(f1(n))),− lg(F̂Y

∗
(yn)))+

B(− lg(F̂X
∗
(xn)),− lg(F̂Y (f2(n)))), where B(·, ·) is the gaussian process de-

fined in Theorem C.

The proof of Theorem 6 is postponed to the Appendix.

7.2 Asymptotic independent case

In the asymptotic independent case, the problem is that Equality g(x) = R(x,1)
R(1,1)

has no sense as R(1, 1) = λ = 0. In order to overcome this difficulty, we need
to introduce second order assumptions on copula C. More precisely we refine
condition (11). Let us assume

lim
t→0

C∗(tx,ty)
C∗(t,t) −G(x, y)

q1(t)
:= Q(x, y) (36)
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with x, y ≥ 0, x + y > 0, where q1 is some positive function and Q is neither
a constant nor a multiple of G. Under (36) and using Lemma 6.1 in Draisma
et al. (2004) we can prove a result of Gaussian approximation.

8 Real data

In this section we present three real cases (see Figure 5-8) for which we es-
timate bivariate tail probabilities to illustrate the finite sample properties of
our estimator. The stability with respect to kn of our estimation is compared
to the one of F̂∗1 (defined by (5)). In order to study these data we will follow
some classical models which make use of a symmetric copula structure.

Figure 5 Logarithmic scale (left) ALAE versus Loss (right) Storm damages.

Figure 6 Wave Height (m) versus Surge (m).

We consider the Loss-ALAE data following the approach in Frees and
Valdez (1998). Each claim consists of an indemnity payment (the loss, X) and
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an allocated loss adjustment expense (ALAE, Y ). We estimate F (2.105, 105).
The empirical probability (defined by (26)) is 0.9506667 and the survival em-
pirical probability is 0.006 (see Beirlant et al., 2010 for a comparison). Figure

7 shows the sensitivity of θ̂, F̂ ∗ with kn.

Figure 7 (left) θ̂0.04 (right) F̂ ∗(2.105, 105) (full line), F̂∗
1(2.105, 105) (dashed line), with

the empirical probability indicated with a horizontal line.

Now we consider an example from storm insurance: aggregate claims
of motor policies (Y ) and aggregate claims of household policies (X) from a
French insurance portfolio for 736 storm events (see Lescourret and Robert,
2006 for a detailed description). We estimate F (8000, 950). The empirical prob-
ability is 0.96875 and the survival empirical probability is 0.014. The stability
of our estimation compared to the one of F̂∗1 is presented in Figure 8.

Figure 8 (left) θ̂0.05 (right) F̂ ∗(8.103, 950) (full line), F̂∗
1(8.103, 950) (dashed line), with

the empirical probability indicated with a horizontal line.
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We analyze the wave surge data comprising 2894 bivariate events that
occurred during 1971− 1977 in Cornwall (England) (for details see e.g. Coles
and Tawn, 1994 or Ramos and Ledford, 2009). We estimate F (8.32, 0.51).
The empirical probability is 0.9903 and the survival empirical probability is
0.00069. The sensitivity of θ̂, F̂ ∗ with kn is presented in Figure 9.

Figure 9 (left) θ̂0.02 (right) F̂ ∗(8.32, 0.51) (full line), F̂∗
1(8.32, 0.51) (dashed line), with the

empirical probability indicated with a horizontal line.

9 Appendix: proofs and auxiliary results

Proof [ Theorem 1 ] : From (13) we obtain the existence of a1(·) and a2(·)
such that, for p := u+ xa1(u) and q := uY + ya2(uY )

Vξ1,1(x) = lim
u→xFX

1− 1− FX(p)

1− FX(u)
= lim
u→xFX

P[X ≤ p|X > u], (37)

Vξ2,1(y) = lim
uY→xFY

1− 1− FY (q)

1− FY (uY )
= lim
uY→xFY

P[Y ≤ q|Y > uY ]. (38)

From Y
d
= F−1Y (FX(X)), we take uY = F−1Y (FX(u)) and from (37)-(38) we

have
1− (1− Vξ1,1(x))(1− FX(u)) ∼u→xFX FX(u+ x a1(u)),

1−(1−Vξ2,1(y))(1−FY (F−1Y (FX(u)))) ∼ FY (F−1Y (FX(u))+y a2(F−1Y (FX(u)))).

It follows from (9) that

lim
u→xFX

P
[
X − u
a1(u)

> x,
Y − F−1Y (FX(u))

a2(F−1Y (FX(u)))
> y

∣∣∣∣X > u, Y > F−1Y (FX(u))

]
= lim
u→xFX

C∗
(
1− FX(u+ x a1(u)), 1− FY (F−1Y (FX(u)) + y a2(F−1Y (FX(u))))

)
C∗
(
1− FX(u), 1− FY (F−1Y (FX(u)))

)
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= lim
u→xFX

C∗
(
(1− Vξ1,1(x))(1− FX(u)), (1− Vξ2,1(y))(1− FY (F−1Y (FX(u))))

)
C∗
(
1− FX(u), 1− FY (F−1Y (FX(u)))

)
= lim
ν→1

C∗
(
(1− Vξ1,1(x))(1− ν), (1− Vξ2,1(y))(1− ν)

)
C∗
(
1− ν, 1− ν

) . (39)

Now, if h := (1 − ξ1 x)
1
ξ1 , ξ1 6= 0 or if h := e−x, ξ1 = 0 then 1 − Vξ1,1(x) =

V1,1(h). So (39) becomes limν→1 C
∗(V1,1(h)(1 − ν), V1,1(w)(1 − ν)

)
/C∗

(
1 −

ν, 1− ν
)
.

As C satisfies hypotheses of Theorem A, the above limit is equal to
G(V1,1(h), V1,1(w)) = G(1− Vξ1,1(x), 1− Vξ2,1(y)). From (9) we get

lim
u→xFX

P
[
X − u
a1(u)

≤ x,
Y − F−1Y (FX(u))

a2(F−1Y (FX(u)))
≤ y

∣∣∣∣X > u, Y > F−1Y (FX(u))

]
= C∗G

(
1− g(1− Vξ1,1(x)), 1− g(1− Vξ2,1(y))

)
. (40)

Since the limit is a continuous distribution function (as C∗G, g and the GPD
are), (40) can be strengthened to uniform convergence (see e.g. Embrechts et
al. 1997, p. 552). Then (14) follows. �

Proof [ Theorem 5 ]:
To begin with, we work conditionally on Nn = mn. We need first to prove the
following convergence in probability

F (f(mn) f(mn))

F̂ (f(mn) f(mn))

P−−−−→
n→∞

1. (41)

Then, using Theorem 8.1. in Smith (1987), we obtain

r̃mn

[
F (f(mn) f(mn))− F̂ ∗(f(mn) f(mn)

]
d−−−−→

n→∞
N(ν, τ2), (42)

with r̃mn =
√
mn

lg(f(mn))

(
1

1− 1
n

∑n
i=1 1(Xi≤f(mn)f(mn))

)
.

Now, to prove (41) we use the following result:

Proposition B (Einmahl, 1990; Corollary 1) Let a sequence of i.i.d random
variables X1, X2, . . . from a distribution function F . We denote with {kn}∞n=1

an arbitrary sequence of positive numbers, such that kn ≤ n and kn → ∞,
limn→∞

kn
n = 0. Let {γn}∞n=1 be a sequence of positive numbers, such that

limn→∞
γn√
kn

=∞, then supt≥F−1(1− knn )

(
n
γn

) ∣∣∣F̂ (t)− F (t)
∣∣∣ P−−−−→
n→∞

0.

We choose an arbitrary sequence {kn}∞n=1 := {mn}∞n=1 (number of excesses on
a sample of size n) such that mn ≤ n, limn→∞mn =∞ and limn→∞

mn
n =

0. We take {γn}∞n=1 := {√mn αn}∞n=1, where αn is an arbitrary sequence of
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positive numbers such that limn→∞ αn =∞.
Then, using Proposition B we have, for f(mn) f(mn) ≥ F−1(1− mn

n ),(
n

√
mn αn

F (f(mn) f(mn))

) ∣∣∣∣∣ F̂ (f(mn) f(mn))− F (f(mn) f(mn))

F (f(mn) f(mn))

∣∣∣∣∣ P−−−−→
n→∞

0.

(43)
We choose αn such that for large n

∃ c > 0 : 0 <

√
mn αn

nF (f(mn) f(mn))
≤ c. (44)

In the Fréchet case we have L(x) = xαF (x), for α > 0 and ∀ t > 0, L(tx)
L(x) =

1 + k(t)φ(x) + o(φ(x)) for x→∞. Using then Assumptions (8.7) and (8.8) of
Theorem 8.1. in Smith (1987) we obtain

F (f(mn) f(mn))

F (f(mn))
= f(mn)−α

[
1 + k(f(mn))φ(f(mn)) + o(φ(f(mn)))

]
.

Hence nF (f(mn) f(mn))√
mn

is equal to
n√
mn

F (f(mn))
[
f(mn)−α

(
1 + k(f(mn))φ(f(mn)) + o(φ(f(mn)))

)]
which can

be approximated by

√
mnf(mn)−α

(
1 + k(f(mn))φ(f(mn)) + o(φ(f(mn)))

)
. (45)

Assume now
(zmn )

α

√
mn

−−−−→
n→∞

0 (that is the analogue of (33) conditionally on

Nn = mn). Then the properties of k and φ insure that the right hand side of
(45) increases to infinity hence one can choose αn satisfying (44). To conclude
the proof, we use assumption (33) and a Skorohod type argument. �

Proof [ Theorem 6 ]:
To prove (35) we first observe, using Corollary 7, Proposition 8 and the ana-
logue of Kolmogorov-Smirnov Theorem in dimension 2 (see e.g. Donker, 1952
or Dudley, 1966), that
√
kn

∣∣∣∣C∗G(1−g(1−VξX ,σX (f1(n)f1(n)−f1(n))), 1−g(1−VξY ,σY (f2(n)f2(n)−

f2(n)))
)
·F (f1(n), f2(n))−F̂ (f1(n), f2(n))·C∗G

(
1−ĝ(1−Vξ̂X ,σ̂X (f1(n)f1(n)−

f1(n))), 1− ĝ(1− Vξ̂Y ,σ̂Y (f2(n)f2(n)− f2(n)))

)∣∣∣∣ P−−−−→
n→∞

0.

Furthermore rn

∣∣∣∣ 1n∑n
i=1 1{Xi≤f1(n), Yi≤f2(n)}

− F (f1(n), f2(n))

∣∣∣∣ P−−−−→
n→∞

0,

with rn <<
√
n. At last using Corollary 7, Theorem 5, we obtain the conver-

gence (35) with

B(x∗n, y
∗
n) = B(− lg(F̂X(f1(n))),− lg(F̂Y

∗
(yn)))+B(− lg(F̂X

∗
(xn)),− lg(F̂Y (f2(n)))),
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where B(·, ·) is the gaussian process defined in Theorem C.

Auxiliary results

Theorem C (Einmahl et al. 2006; Theorem 2.2) Assume that exists the limit
R(x, y) such that, for some α > 0

1

t
P(1− FX(X) ≤ tx, 1− FY (Y ) ≤ ty)−R(x, y) = O(tα), as t→ 0,

uniformly for max(x, y) ≤ 1, x, y ≥ 0. Let k = o(n
2α

1+2α ). If R1(x, y) := ∂R(x,y)
∂x

and R2(x, y) := ∂R(x,y)
∂y are continuous then we have

sup
0<x,y≤1

∣∣√k(l̂(x, y)− l(x, y)) +B(x, y)
∣∣ P−−−−→
n→∞

0,

where B(x, y) := W (x, y)−R1(x, y)W1(x)−R2(x, y)W2(y), with W a Gaussian
process on [0, x]×[0, y], W1(x) = W ([0, x]×[0,∞]), W2(y) = W ([0,∞]×[0, y]).

In the case where C is twice differentiable continuous copula, Theorem C holds
for any α ≥ 1.

Corollary 7 Under conditions of Theorem C if we have vn such that vn√
kn
→

0, for n→∞, and λ > 0 we obtain

vn sup
0<x,y≤1

∣∣l̂(x, y)− l(x, y)
∣∣ P−−−−→
n→∞

0,

vn sup
0<x,y≤1

∣∣Ĝ(x, y)−G(x, y)
∣∣ P−−−−→
n→∞

0, vn sup
0<x≤1

∣∣ĝ(x)− g(x)
∣∣ P−−−−→
n→∞

0,

with ĝ(x) as in (20), Ĝ(x, y) as in (21) and kn → ∞, kn
n → 0 and kn =

o(n
2α

1+2α ).

Proposition 8 Let Vξ,σ(x) the Generalized Pareto Distribution (GPD) and

ξ̂N , σ̂N , the maximum likelihood estimators of the parameters ξ = −α−1 < 0
and σ = unα

−1, in the case unconditionally on N . If all the conditions of
Corollary 3 hold then

pnx sup
x∈[0,+∞)

∣∣∣Vξ̂N ,σ̂N (x)− Vξ,σ(x)
∣∣∣ P−−−−→
n→∞

0, where
pnx√
Nx

P−−−−→
n→∞

0.

Proof: Using Corollary 3 we obtain for each point x ∈ [0,+∞),

pnx

[
Vξ̂X ,σ̂X (x)− Vξ,σ(x)

]
= pnx

(1− ξ x

σ

) 1
ξ

−

(
1− ξ̂X x

σ̂X

) 1

ξ̂X

 P−−−−→
n→∞

0,

(46)

where pnx√
Nx

P−−−−→
n→∞

0. Finally, applying a stochastic version of Polya’s Theo-

rem (see Horowitz, 2001), as Vξ,σ(x) is a continuous distribution function, the
convergence in (46) holds uniformly on [0,+∞). �
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