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ESTIMATING BIVARIATE TAIL

Elena Di Bernardino1 , Véronique Maume-Deschamps1 and Clémentine Prieur2

Université Lyon 11, and Université Joseph Fourier 2

Abstract: This paper deals with the problem of estimating the tail of a bivariate

distribution function. To this end we develop a general extension of the POT

(Peaks-Over-Threshold) method, mainly based on a two-dimensional version of

the Pickands-Balkema-de Hann Theorem. We construct a two-dimensional tail

estimator and study its asymptotic properties. We also present a simulation study

which illustrates our theoretical results.

Key words and phrases: Extreme Value Theory, Peaks Over Threshold method,

Pickands-Balkema-de Hann Theorem, tail dependence.

1 Introduction

The univariate POT (Peaks-Over-Threshold) method is common for estimating

extreme quantiles or tail distributions. A key idea of this method is the use of

the generalized Pareto distribution to approximate the distribution of excesses

over thresholds. Its justification can be found in the classical Extreme Value

Theory (EVT). The main point is given by the Pickands-Balkema-de Hann The-

orem, stating that the generalized Pareto distribution (GPD), whose distribution

function is given by

Vk,σ(x) :=

{
1 −

(
1 − kx

σ

) 1
k , if k 6= 0, σ > 0,

1 − e
−x
σ , if k = 0, σ > 0,

(1.1)

and x ≥ 0 for k ≤ 0 or 0 ≤ x < σ
k for k > 0, appears as the limit distribution

of scaled excesses over high thresholds u. A precise formulation of this result is

given in Theorem B below. To be self contained, we first recall the statement of

the Fisher-Tippet Theorem (Theorem A below).
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Theorem A (Embrechts, Kluppelberg and Mikosch (1997), Theorem 3.2.3) Let

X1, X2, . . . , Xn be an i.i.d. sequence with common distribution function F . If

there exist a sequence of positive numbers (an)n>0 and a sequence (bn)n>0 of real

numbers such that

lim
n→∞

P

[
max{X1, X2, . . . , Xn} − bn

an
≤ x

]
= Hk(x), x ∈ R, (1.2)

for a non-degenerate distribution function Hk(x), then Hk(x) is a member of the

GEV (Generalized Extreme Value Distribution) family

Hk(x) =





exp
(
− (1 − k x)

1
k

)
, if k 6= 0,

exp (−e−x) , if k = 0,

where 1 − k x > 0 and k ∈ R is a parameter determining the family to which the

limit belongs to (Fréchet for k < 0, Gumbel for k = 0 and Weibull for k > 0).

Definition 1 [Maximum Domain of Attraction] We say that F belongs to the

Maximum Domain of Attraction of a generalized extreme value distribution if

there exist a sequence of positive numbers (an)n>0 and a sequence (bn)n>0 of real

numbers such that (1.2) holds. We write F ∈ MDA(Hk).

We can now state a precise formulation of the Pickands-Balkema-de Hann The-

orem.

Theorem B (Embrechts, Kluppelberg and Mikosch (1997), Theorem 3.4.13(b))

F ∈ MDA(Hk) ⇔ lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x) − Vk,σ(u)(x)
∣∣ = 0,

where Fu(x) = P[X − u ≤ x |X > u] and xF := sup{x ∈ R |F (x) < 1}, (i.e. xF

is the right endpoint of F ).

This result suggests that, for sufficiently high thresholds u, the distribution func-

tion of the excesses may be approximated by a GPD Vk,σ(u)(x). Its use for

estimating the tail of a univariate distribution is now classical (see for example

McNeil (1997), McNeil (1999) and references therein).

In this paper, we are interested in the problem of fitting the joint distribution

of bivariate observations exceeding high thresholds. To this end, we develop a
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two-dimensional extension of the POT method. This extension is general in

the sense that it allows to consider a two-dimensional structure of dependence

between both random components X and Y . The modeling of this dependence

is done via a continuous symmetric copula C, which is supposed to be known or

inferred from the data structure.

The paper is organized as follows. To be self-contained, we recall main exist-

ing results (Theorems A to D) leading to an extension of the Pickands-Balkema-

de Hann Theorem in dimension 2 (Theorem E). We then give a generalization

of this theorem in the case of bivariate distributions with non necessarily equal

marginals (Theorem 1). To estimate the tail of two-dimensional distributions, we

need first to introduce a one-dimensional estimator for the tail. It is the purpose

of Section 3. In Section 4 we present the construction of a new bivariate tail

estimator, both in the case with equal marginals (FX = FY , see Section 4.1) and

in a general case (FX 6= FY , see Section 4.2). The study of the asymptotic prop-

erties of our estimator makes use of new convergence results in the univariate

case (Theorem 6 and Corollary 7 of Section 5) dealing with asymptotic proper-

ties of the absolute error between the theoretical distribution function and its

tail estimator. Our main results, concerned with the asymptotic properties of

our two-dimensional tail estimator, are stated in Section 6 (Theorems 9 and 10).

Examples with simulated data are presented in Section 7. Some auxiliary results

and more technical proofs are postponed to the Appendix.

Remark 1

� Assume we observe X1, . . . , Xn i.i.d. with common distribution function F .

If we fix some high threshold u, let N denote the number of excesses above u.

In the following, two approaches will be considered. In the first one, we work

conditionally on N . If n is the sample size and un the associated threshold, the

number of excesses is mn, with limn→∞ mn = ∞ and limn→∞
mn

n = 0. The

second approach considers the number of excesses Nn as a binomial random

variable (which is the case in the simulations), Nn ∼ Bi (n, 1 − F (un)) with

limn→∞ 1 − F (un) = 0 and limn→∞ n(1 − F (un)) = ∞.

� Our bivariate results are proved for continuous random variables X and Y

(in particular FX and FY are assumed to be continuous). The structure of

dependence between X and Y is described by a continuous and symmetric copula
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C. FX and FY are a priori unknown, with regularity properties specified in the

statement of our theorems.

2 On the two-dimensional Pickands-Balkema-de Hann Theorem

A central result in tail estimation is the so-called Pickand-Balkema-de Hann

Theorem. In the introduction we recalled its statement in dimension 1 (Theorem

B). As our aim is the estimation of bivariate tails, we are interested in two-

dimensional extensions of Theorem B. Such a generalization (Theorem E below)

can be found in the literature (Juri and Wüthrich (2003) and Wüthrich (2004))

with the assumption FX = FY . In the paper by Juri and Wüthrich (2003), the

non-exchangeable case FX 6= FY is discussed in a remark. We provide here a

precise formulation and proof of the Pickands-Balkema-de Hann Theorem when

FX 6= FY (Theorem 1 below). We first introduce some notations and recall

results from Juri and Wüthrich (2003), McNeil, Frey and Embrechts (2005) and

Nelsen (1999), which we will need later.

Definition 2 [Copula] A 2-dimensional copula is a function C(u, v) which is the

distribution function of a random vector (U, V ) with uniform marginals on [0, 1].

Remark 2

� For a given copula C and given marginal distributions FX and FY

F (x, y) = C(FX(x), FY (y)), ∀ (x, y) ∈ R
2 (2.1)

is a bivariate distribution function with marginals FX and FY .

� In the following, for a distribution function F , we will denote by F−1 its gen-

eralized left continuous inverse defined by F−1(p) = inf{x ∈ R, F (x) ≥ p}, p ∈
(0, 1). Then, for a joint distribution F with marginals FX and FY , there is always

a copula C satisfying (2.1). This copula is not necessarily unique, but it is if FX

and FY are continuous in which case (Sklar’s Theorem, Nelsen (1999), Theorem

2.3.3)

∀ (u1, u2) ∈ [0, 1]2, C(u1, u2) = F (F−1
X (u1), F

−1
Y (u2)). (2.2)

Definition 3 [Survival Copula] The Survival Copula C∗ of a copula C is defined

by: ∀ (u1, u2) ∈ [0, 1]2, C∗(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2). (2.3)
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A Survival Copula (2.3) is a copula. Moreover, if (X, Y ) is a random vector in

R
2 with joint distribution F , copula C and marginal distributions FX and FY ,

we have: C∗(1−FX(x), 1−FY (y)) = P[X > x, Y > y], for (x, y) ∈ R
2. (2.4)

In a first time, let us assume that X and Y are uniformly distributed on [0, 1],

and that the copula associated to (X, Y ) is continuous and symmetric. Let

us fix a threshold u ∈ [0, 1) such that P[X > u, Y > u] > 0, i.e. such that

C∗(1 − u, 1 − u) > 0. We consider the distribution of X conditioned on {X >

u, Y > u}:

∀x ∈ [0, 1], Fu(x) := P[X ≤ x |X > u, Y > u] = 1 − C∗(1 − x ∨ u, 1 − u)

C∗(1 − u, 1 − u)
.

(2.5)

Note that the continuity of the copula C implies that Fu(·) is also continuous.

Its symmetry implies that Equation (2.5) also defines the distribution of Y con-

ditioned on {X > u, Y > u} (recall that X and Y are uniformly distributed).

Definition 4 [Upper-tail dependence copula] Let X and Y be uniformly distrib-

uted on [0, 1]. Assume that the copula associated to (X, Y ) is symmetric. For

a threshold u ∈ [0, 1) satisfying C∗(1 − u, 1 − u) > 0, we define the upper-tail

dependence copula at level u ∈ [0, 1) relative to the copula C by

∀ (x, y) ∈ [0, 1]2, Cup
u (x, y) := P[X ≤ Fu

−1
(x), Y ≤ Fu

−1
(y) |X > u, Y > u],

where Fu is given from (2.5).

Note that P[X ≤ x, Y ≤ y |X > u, Y > u] obviously defines a two dimen-

sional distribution function whose marginals are both given by Fu. Hence we

deduce from (2.2) that C
up
u (x, y) is a copula. Moreover, the asymptotic behavior

of C
up
u for u around 1 describes the dependence structure of X, Y in their upper

tails. More precisely, Juri and Wüthrich (2003) demonstrate the following result:

Theorem C (Juri and Wüthrich (2003), Theorem 2.3) Let C be a symmetric

Copula such that C∗(1 − u, 1 − u) > 0, for all u > 0. Furthermore, assume that

there is a strictly increasing continuous function g : [0,∞) → [0,∞) such that

lim
u→1

C∗(x(1 − u), 1 − u)

C∗(1 − u, 1 − u)
= g(x), x ∈ [0,∞).
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Then, there exists a θ > 0 such that g(x) = xθg
(

1
x

)
for all x ∈ (0,∞). Further,

for all (x, y) ∈ [0, 1]2

lim
u→1

Cup
u (x, y) = x + y − 1 + G(g−1(1 − x), g−1(1 − y)) := C∗G(x, y), (2.6)

where G(x, y) := yθg

(
x

y

)
, ∀ (x, y) ∈ (0, 1]2 and G :≡ 0 on [0, 1]2 \ (0, 1]2.

Remark 3

� From (2.3), we note that C∗G(x, y) defined in (2.6) is the Survival Copula of the

Copula CG(x, y) := G(g−1(x), g−1(y)) (for more details see Juri and Wüthrich

(2003), Section 2) and thus, in particular, is a Copula.

� G is continuous, symmetric with strictly increasing marginals (for more details

about properties of G see Juri and Wüthrich (2003), Section 2.3).

Proposition D below is the last step before the statement of the central results

of this section.

Proposition D (Embrechts, Kluppelberg and Mikosch (1997), Theorem 3.4.5)

F ∈ MDA(Hk) is equivalent to the existence of a positive measurable function

a(·) such that, for 1 − k x > 0 and k ∈ R,

lim
u→xF

1 − F (u + x a(u))

1 − F (u)
=

{
(1 − k x)

1
k , if k 6= 0,

e−x, if k = 0.
(2.7)

Combining Proposition D with Theorem C, Juri and Wüthrich (2003) demon-

strate the following Theorem, which can be interpreted as a two-dimensional

extension of the Pickands-Balkema-de Hann Theorem in the case FX = FY .

Theorem E (Juri and Wüthrich (2003), Theorem 4.1) Let X and Y be two

continuous real valued random variables, with identical distribution function F

and with symmetric copula C. Suppose that F ∈ MDA(Hk) and that C satisfies

the hypotheses of Theorem C for some function g. Then

lim
u→xF

sup
0 < x, y ≤xF−u

∣∣∣∣P
[
X − u ≤ x, Y − u ≤ y

∣∣X > u, Y > u
]

− C∗G
(
1 − g(1 − Vk,a(u)(x)), 1 − g(1 − Vk,a(u)(y))

)∣∣∣∣= 0,
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where Vk,a(u) is the GPD with parameters k, a(u) defined in (1.1), a(·) is as in

(2.7); and xF := sup{x ∈ R |F (x) < 1}.

From (2.6), C∗G
(
1 − g(1 − Vk,a(u)(x)), 1 − g(1 − Vk,a(u)(y))

)
is equal to

1− g(1− Vk,a(u)(x))− g(1− Vk,a(u)(y)) + G
(
1− Vk,a(u)(x), 1− Vk,a(u)(y)

)
, (2.8)

where a(u) = σ(u), with σ(u) as in Theorem B.

Theorem E above is concerned with exchangeable random variables. Indeed it is

proved in Nelsen (1999), Theorem 2.7.4, that two continuous random variables

identically distributed and with symmetric copula are exchangeable. The case of

non-exchangeable random variables is mentioned in the remark following The-

orem 4.1 of Juri and Wüthrich (2003). We give below a rigorous result for this

more general case.

Theorem 1 Let X and Y be two continuous real valued random variables, with

different marginal distributions, respectively FX , FY , and symmetric copula C.

Suppose that FX ∈ MDA(Hk1), FY ∈ MDA(Hk2) and that C satisfies the hypo-

theses of Theorem C for some g. Then

sup
A

∣∣∣∣P
[
X − u ≤ x, Y − F−1

Y (FX(u)) ≤ y
∣∣X > u, Y > F−1

Y (FX(u))
]

− C∗G
(
1 − g(1 − Vk1,a1(u)(x)), 1 − g(1 − Vk2,a2(F−1

Y
(FX(u)))(y))

)∣∣∣∣−−−−−→u→xFX

0,

(2.9)

where Vki,ai(·) is the GPD with parameters ki, ai(·) defined in (1.1), ai(·) is as in

(2.7), for i = 1, 2, xFX
:= sup{x ∈ R |FX(x) < 1}, xFY

:= sup{y ∈ R |FY (y) <

1} and A := {(x, y) : 0 < x ≤ xFX
− u, 0 < y ≤ xFY

− F−1
Y (FX(u))}.

The proof of Theorem 1 is postponed to the Appendix.

3 Estimating the tail of univariate distributions

The estimation of bivariate tail distributions requires first the estimation of one-

dimensional tail. Let us describe a way to fit one-dimensional tail, starting from

the Pickands-Balkema-de Hann Theorem (see for example McNeil (1997), McNeil

(1999)). Fix a threshold u. For x > u, decompose F as

F (x) = P[X ≤ x] = (1 − P[X ≤ u])Fu(x − u) + P[X ≤ u], (3.1)
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where Fu(x) = P[X ≤ x |X > u]. Let X1, X2, . . . be a sequence of i.i.d ran-

dom variables with unknown distribution function F . Using Theorem B, and

estimating F (u) = P[X ≤ u] by the empirical distribution function F̂X(u) =
1
n

∑n
i=1 1{Xi≤u} we obtain the univariate tail estimate

F ∗(x) = (1 − F̂X(u))Vk,σ(x − u) + F̂X(u). (3.2)

Usually the parameters k and σ of the GPD are unknown and must be estimated

from the data. In this paper, we estimate these parameters by the maximum

likelihood estimators k̂, σ̂ (MLE) based on the excesses above u for which there

exist interesting asymptotic convergence results (see Section 5). We then write

(3.2) as

F̂ ∗(x) = (1 − F̂X(u))Vbk,bσ
(x − u) + F̂X(u), for x > u. (3.3)

Using (3.3) we get the estimator, proposed by Smith (1987)

1 − F̂ ∗(y) =





N
n

(
1 − k̂

(y−u)
bσ

) 1
bk , if k̂ 6= 0,

N
n

(
e

−(y−u)
bσ

)
, if k̂ = 0,

(3.4)

with u < y < ∞ (if k̂ ≤ 0) or u < y < bσ
bk

(if k̂ > 0) and N the random number

of excesses.

4 Estimating the tail of bivariate distributions

In this section we present the main construction of this paper. We propose

indeed a new tail estimator for the two-dimensional distribution function F (x, y).

Asymptotic properties for this estimator are stated and proved in Section 6. This

construction generalizes the one-dimensional construction stated in the previous

section. The two main steps are the following:

Step 1: We approximate F (x, y) by F ∗(x, y), using one of both two-dimensional

versions of the Pickands-Balkema-de Hann Theorem (Theorem E if FX = FY ,

and Theorem 1 if FX 6= FY ). An important quantity to define F ∗(x, y) is the

survival copula C∗G, introduced in Section 2.

Step 2: We define F̂ ∗(x, y) by replacing the parameters k and σ of the GPD by

the maximum likelihood estimators.

For sake of clarity, we first give the construction of our estimator when

FX = FY . We then give the generalization for FX 6= FY .
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4.1 Case with same marginal distributions

Let X and Y be two real valued random variables with same marginal distri-

bution F . The structure of dependence between X and Y is represented by

some continuous and symmetric copula C. Let u be a threshold such that

F (u, u) := P[X > u, Y > u] > 0. The bivariate tail estimator that we pro-

pose, for x > u, y > u, is

F̂ ∗(x, y) =

(
1

n

n∑

i=1

1{Xi>u, Yi>u}

)(
1−g(1−Vbk,bσ

(x−u))−g(1−Vbk,bσ
(y−u))

+G
(
1−Vbk,bσ

(x−u), 1−Vbk,bσ
(y−u)

))
+ F̂ ∗

1 (u, y) + F̂ ∗
2 (x, u)− 1

n

n∑

i=1

1{Xi≤u, Yi≤u}.

Description of the construction: Given a threshold u, we introduce the distribu-

tion of excesses above u: Fu(x, y) := P[X−u ≤ x, Y −u ≤ y |X > u, Y > u ]. We

have Fu(x, y) = [F (x + u, y + u) − F (u, y + u) − F (x + u, u) + F (u, u)]F (u, u)−1.

So we obtain, for x > u, y > u,

F (x, y) = (F (u, u)) · Fu(x − u, y − u) + F (u, y) + F (x, u) − F (u, u). (4.1)

From Theorem E we now know that for u around xF (that is for high thresholds

u) we can approximate Fu(x − u, y − u) with C∗G
(
1 − g(1 − Vk,a(u)(x − u)), 1 −

g(1 − Vk,a(u)(y − u))
)
. Then, we estimate F (u, u) and F (u, u) in (4.1) from the

data {Xi, Yi}i=1,...,n, using the empirical distribution estimates

F̂ (u, u) =
1

n

n∑

i=1

1{Xi≤u, Yi≤u}, F̂ (u, u) =
1

n

n∑

i=1

1{Xi>u, Yi>u}. (4.2)

We estimate F (u, y) and F (x, u) in (4.1) by

F ∗
1 (u, y) = C(F̂X(u), F ∗

Y (y)) and F ∗
2 (x, u) = C(F ∗

X(x), F̂Y (u)), (4.3)

where F̂X(u) and F̂Y (u) are the classical empirical estimators of FX and FY ,

evaluated at u. F ∗
X(x) (resp. F ∗

Y (y)) in (4.3) is the one-dimensional tail estimator

(defined by (3.2)) of the distribution function FX(x) (resp. FY (y)) for x > u
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(resp. y > u) and u large. In the case k 6= 0, recall that

F ∗
X(x) = (1 − F̂X(u))Vk,σ(x − u) + F̂X(u)

=

(
1

n

n∑

i=1

1{Xi>u}

)(
1 −

(
1 − k(x − u)

σ

) 1
k
)

+
1

n

n∑

i=1

1{Xi≤u}, (4.4)

F ∗
Y (y) = (1 − F̂Y (u))Vk,σ(y − u) + F̂Y (u)

=

(
1

n

n∑

i=1

1{Yi>u}

)(
1 −

(
1 − k(y − u)

σ

) 1
k
)

+
1

n

n∑

i=1

1{Yi≤u}. (4.5)

Since we assume FX = FY , the parameters k and σ for the GPDX and the GPDY

are the same (see (4.4) and (4.5)). Now, using (4.2) to (4.5), we can approximate

F (x, y) for x > u, y > u and u large by F ∗(x, y) defined by

(
F̂ (u, u)

)
C∗G

(
1 − g(1 − Vk,σ(x − u)), 1 − g(1 − Vk,σ(y − u))

)
+ F ∗

1 (u, y)

+ F ∗
2 (x, u) − F̂ (u, u).

Using (2.8) we obtain

F ∗(x, y) =

(
1

n

n∑

i=1

1{Xi>u, Yi>u}

)(
1 − g(1 − Vk,σ(x − u)) − g(1 − Vk,σ(y − u))

+G
(
1−Vk,σ(x−u), 1−Vk,σ(y−u)

))
+F ∗

1 (u, y)+F ∗
2 (x, u)− 1

n

n∑

i=1

1{Xi≤u, Yi≤u}.

In practice we estimate k and σ by MLE based on the excesses of X.

Remark 4 Note that F̂ ∗(x, y), is only valid for x > u and y > u, when u

is large enough. The expression large enough is a fundamental problem of the

POT method (Peak Over Threshold). The choice of the threshold u is indeed a

compromise: u has to be large for the GPD approximation to be valid, but if it

is too large, the estimation of the parameters k and σ will suffer from a lack of

observations over the threshold. The compromise will be explained in Section 6.

4.2 Case with different marginal distributions

Using the same procedure as the one of Section 4.1, we propose a new bivari-

ate tail estimator, in the case with continuous symmetric copula C and different
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marginal distributions FX and FY . For x > u, y > F−1
Y (FX(u)) := uY we define

F̂ ∗(x, y) =

(
1

n

n∑

i=1

1{Xi>u, Yi>uY }

)(
1 − g(1 − VbkX ,bσX

(x − u))

− g(1 − VbkY ,bσY
(y − uY )) + G

(
1 − VbkX ,bσX

(x − u), 1 − VbkY ,bσY
(y − uY )

))

+ F̂ ∗
1 (u, y) + F̂ ∗

2 (x, uY ) − 1

n

n∑

i=1

1{Xi≤u, Yi≤uY }, (4.6)

where k̂X , σ̂X (resp. k̂Y , σ̂Y ) are MLE based on the excesses of X (resp. Y ).

We refer to Remark 4 for the choice of u.

Description of the construction: The main difference, between the case with same

marginals and the case with different marginals, is represented by the theorem

of approximation of the distribution of excesses. The central idea, in this case,

is to use the bi-dimensional extension of Pickands-Balkema-de Hann Theorem in

case with continuous symmetric copula C and different marginal distributions,

that we have rigorously proved in Theorem 1. From this approach, following a

construction similar to Section 4.1, we obtain (4.6), with

F̂ ∗
1 (u, y) = C(F̂X(u), F̂ ∗

Y (y)), F̂ ∗
2 (x, uY ) = C(F̂ ∗

X(x), F̂Y (uY )). (4.7)

In (4.7), F̂X(u) and F̂Y (uY ) are the empirical univariate estimators, evaluated at

respective thresholds, and F̂ ∗
X(x) and F̂ ∗

Y (y) are one-dimensional tail estimators

of the marginal distribution functions, as proposed in (4.4)-(4.5). Finally, in

Section 7.3, we also remark that F−1
Y (FX(u)) may be estimated by its empirical

version.

5 Convergence results in the univariate case

Our main contributions (Theorem 6, Corollary 7) in this section are new one

dimensional convergence results, needed in Section 6 to derive asymptotic prop-

erties of the bivariate tail estimator (4.6). Incidentally we get asymptotic con-

fidence intervals for the unknown theoretical function F (x), using Theorem 4.

Cox and Hinkley (1974) (Chapter 9) and Smith (1987) develop theorems of con-

vergence for maximum likelihood estimators, k̂ and σ̂, and for the univariate

tail estimator F̂ ∗ defined in (3.4). In particular they show that it is possible to

obtain accurate results, with expressions of mean and variance assuming specific
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domains of attraction for the theoretical distribution F . From now on we as-

sume that the tail of F decays like a power function, i.e. is in the domain of

attraction of Fréchet. This class of distributions is quite large and includes the

Pareto, Burr, Cauchy and t-distributions and is called the class of heavy tailed

distributions. Let us recall the following result:

Theorem F (Embrechts, Kluppelberg and Mikosch (1997), Theorem 3.3.7) The

distribution function F belongs to the maximum domain of attraction of Fréchet

Φα(x) =

{
0, if x ≤ 0,

e−x−α

, if x > 0,

for some α > 0, (F ∈ MDA(Φα)), if and only if F (x) = x−αL(x) for some

slowly varying function L(x).

We remark that in this case the endpoint xF := sup{x ∈ R |F (x) < 1} = +∞.

As in Smith (1987), Section 3, we shall assume that L satisfies one of the following

conditions:

� SR1: L(tx)
L(x) = 1 + O(φ(x)), ∀ t > 0, as x → ∞,

� SR2: L(tx)
L(x) = 1 + k(t)φ(x) + o(φ(x)), ∀ t > 0, as x → ∞,

where φ(x) > 0 and φ(x) → 0 as x → ∞. Let Rρ be the set of ρ−regularly

varying functions. In the case SR2, excluding trivial cases, φ ∈ Rρ, for some

ρ ≤ 0, and k(t) = c hρ(t), with hρ(t) =
∫ t
1 uρ−1du; (for more details see Smith

(1987), Section 3). In the following we recall (Theorem G, H) important results

in Smith (1987). Those theorems are written conditionally on N = mn and

N denoting the number of excesses above the threshold. In practice we work

with some threshold u and N is considered as random. Therefore we give the

analogues (Corollary 2, 3) of Theorem G and H working unconditionally on N .

Let us now introduce the GDP density g(y, σ, k) = ∂
∂yV (y, σ, k) and the log

likelihood function Lmn(σ, k) =
∑mn

i=1 log(g(Yi, σ, k)).

An important result for maximum likelihood estimators k̂ and σ̂ of the General-

ized Pareto distribution is

Theorem G (Smith (1987), Theorem 3.2) Suppose L satisfies SR2. Let Y1, . . . ,

Ymn i.i.d from an unknown distribution function Fumn
where limn→∞ mn = ∞,
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limn→∞
mn

n = 0. For each mn we define a threshold umn := f(mn) −−−→
n→∞

∞
such that √

mn c φ(f(mn))

α − ρ
−−−→
n→∞

µ ∈ (−∞,∞). (5.1)

We define k = −α−1 and σmn = f(mn)α−1. Then there exists, with probability

tending to 1, a local maximum (σ̂mn , k̂mn) of the GPD log likelihood function

Lmn, such that

√
mn




bσmn

σmn
− 1

k̂mn − k


 d−−−→

n→∞
N






µ(1−k)(1+2kρ)
1−k+kρ

µ(1−k)k(1+ρ)
1−k+kρ


 ;

(
2(1 − k) (1 − k)

(1 − k) (1 − k)2

)
 .

If L satisfies only SR1, with φ non-increasing, and if
√

mn φ(f(mn)) −−−→
n→∞

0,

then the same result holds with µ = 0.

Corollary 2 Suppose L satisfies SR2. Let n be the sample size and un := f(n)

the threshold, such that f(n) −−−→
n→∞

∞. Let N = Nn denote the random number

of excesses of un. If

n(1 − F (un)) −−−→
n→∞

∞, (5.2)

√
n(1 − F (un))c φ(un) −−−→

n→∞
µ(α − ρ), (5.3)

then Theorem G holds also unconditionally on N .

Proof: If (5.2) and (5.3) hold then N(n (1 − F (un)))−1 P−−−→
n→∞

1, and (5.1) holds

in probability, i.e.
√

N cφ(un)

α − ρ
=

√
N cφ(f(n))

α − ρ

P−−−→
n→∞

µ ∈ (−∞,∞).

Hence we conclude with a Skorohod-type construction of probability spaces on

which (5.1) holds almost surely. �

We now recall an important result of convergence of the univariate tail estimator.

Theorem H (Smith (1987), Theorem 8.1) Suppose L satisfies SR2 and that the

other conditions of Theorem G hold. Let zmn be a sequence such that

zmn := f(mn) −−−→
n→∞

∞,
log(zmn)√

mn
−−−→
n→∞

0, (5.4)

√
mn

log(zmn)

[
mn

n (1 − F (umn))
− 1

]
−−−→
n→∞

0, (5.5)
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(zmn)−s ρ φ(umn(zmn)s)

φ(umn)
= f(mn)−s ρ φ(f(mn)f(mn)s)

φ(f(mn))
−−−→
n→∞

1, for s ∈ [0, 1].

Then √
mn

log(f(mn))

[
1 − F̂ ∗(f(mn) f(mn))

1 − F (f(mn) f(mn))
− 1

]
d−−−→

n→∞
N(ν, τ2), (5.6)

where ν = 0 if ρ = 0, ν = µα(α+1)(1+ρ)
1+α−ρ for ρ < 0 and τ2 = α2(1 + α)2.

Corollary 3 Suppose L satisfies SR2. Let n be the sample size, un := f(n) −−−→
n→∞

∞ and zn := f(n) −−−→
n→∞

∞ such that (zn)−s ρ φ(un(zn)s)
φ(un) −−−→

n→∞
1, for s ∈ [0, 1].

Let N = Nn denote the random number of excesses of un. If conditions (5.2)

and (5.3) hold and moreover

log (zn)√
n(1 − F (un))

−−−→
n→∞

0, (5.7)

then Theorem H holds also unconditionally on N .

Proof: If (5.2), (5.3) and (5.7) hold, then (5.4) and (5.5) hold in probability, i.e

log (zn)√
N

P−−−→
n→∞

0,

√
N

log(zn)

[
N

n (1 − F (un))
− 1

]
P−−−→

n→∞
0.

We conclude as for Corollary 2. �

In order to obtain a confidence interval from Theorem H, we have to estimate

the unknown quantity 1− F (f(mn) f(mn)). Define

r̃mn :=

√
mn

log(f(mn))

(
1

1 − 1
n

∑n
i=1 1(Xi≤f(mn)f(mn))

)
.

We then get the following result:

Theorem 4 Let F in the domain of attraction of Φα for some α > 0, and

suppose L satisfies SR2. If
(zmn)α

√
mn

−−−→
n→∞

0, (5.8)

and the other conditions of Theorems G and H hold, then

r̃mn

[
F (f(mn) f(mn)) − F̂ ∗(f(mn) f(mn)

]
d−−−→

n→∞
N(ν, τ2), (5.9)

where ν = 0 if ρ = 0 and ν = µα(α+1)(1+ρ)
1+α−ρ for ρ < 0 and τ2 = α2(1 + α)2.



ESTIMATING BIVARIATE TAIL 15

The proof of Theorem 4 is postponed to the Appendix. A straightforward con-

sequence of Theorem 4 is

Corollary 5 If all conditions of Theorem 4 hold then we have the following

convergence in probability

[
F (f(mn) f(mn)) − F̂ ∗(f(mn) f(mn)

]
P−−−→

n→∞
0.

Let us give the unconditionally version of Theorem 4 and Corollary 5.

Theorem 6 Suppose L satisfies SR2. Let n be the sample size, un := f(n) −−−→
n→∞

∞ and zn := f(n) −−−→
n→∞

∞ such that (zn)−s ρ φ(un(zn)s)
φ(un) −−−→

n→∞
1, for s ∈ [0, 1].

Let N = Nn denote the random number of excesses of un. If conditions (5.2),

(5.3) and (5.7) hold and if (zn)α(n(1 − F (un)))−1/2 −−−→
n→∞

0, then

√
N

log(f(n)) F̂n(f(n) f(n))

[
F (f(n) f(n)) − F̂ ∗(f(n) f(n)

]
d−−−→

n→∞
N(ν, τ2). (5.10)

Remark 5 It is important to notice that (5.10) yields asymptotic confidence

intervals for F (f(n) f(n)).

Corollary 7 Under assumptions of Theorem 6 we have

[
F (f(n) f(n)) − F̂ ∗(f(n) f(n))

]
P−−−→

n→∞
0.

Theorem 6 and Corollary 7 are proved from Theorem 4 and Corollary 5. The

proofs will be omitted here.

We can even obtain a more general result for the absolute error.

Theorem 8 Suppose F belongs to the maximum domain of attraction of Fréchet

and L satisfies SR2. Assume that the threshold un := f(n) −−−→
n→∞

∞, then if (5.2)

and (5.3) hold we get

sup
x>f(n)

∣∣∣F (x) − F̂ ∗(x)
∣∣∣ P−−−→

n→∞
0. (5.11)
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Proof: From (3.1) and (3.3) we can rewrite (5.11) as

sup
x>f(n)

∣∣∣∣F (f(n))Fu(x − f(n)) + F (f(n)) −
[
F̂ (f(n))Vbk,bσ

(x − f(n)) + F̂ (f(n))
] ∣∣∣∣

≤ sup
x>f(n)

∣∣F (f(n))Fu(x− f(n))− F̂ (f(n))Vbk,bσ
(x− f(n))

∣∣+
∣∣F (f(n))− F̂ (f(n))

∣∣.

To conclude we use Pickands-Balkema-de Hann Theorem B, univariate Glivenko-

Cantelli Theorem (8.9) and an auxiliary result (Proposition 12), postponed to

the end of the paper. �

6 Convergence results in the bivariate case

In this section we extend the univariate convergence results of Section 5 to the

two-dimensional tail estimator (4.6). We work here in the general setting with

non necessarily equal marginal distributions FX and FY . The copula C is still

assumed to be continuous and symmetric. We work unconditionally on N , which

is more interesting for applications.

Remark 6 Let n be the sample size. We choose, from Theorem 1,

u1 n := f1(n) −−−→
n→∞

∞ threshold for X,

u2 n = f2(n) = F−1
Y (FX(f1(n))) −−−→

n→∞
∞ threshold for Y.

We now introduce our main result of convergence in probability for the tail

estimator (4.6). To state the following result we need a two-dimensional version

of the Glivenko-Cantelli Theorem (Theorem J in Appendix).

Theorem 9 Suppose FX and FY belong to the maximum domain of attraction

of Fréchet and LX , LY satisfy the condition SR2. Assume that the copula C is

continuous and symmetric. Then under assumptions of Theorems C and 1, if

sequences f1(n), f2(n), defined by Remark 6, satisfy the conditions of Theorem

8 and if the conditions of Theorem J hold then

sup
x > f1(n), y > f2(n)

∣∣∣F (x, y) − F̂ ∗(x, y)
∣∣∣ P−−−→

n→∞
0. (6.1)

The proof of Theorem 9 is postponed to the Appendix.

In Section 7.3 we will propose an estimator for f2(n) denote by f̂2(n). This
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approach is useful in applications and Theorem 9 remains valid when replacing

f2(n) by f̂2(n) (see discussions in Section 7.3).

In Theorem 9 we are assuming the following structure of dependence between X

and Y:

� X, Y are continuous random variables, univariate, with distribution func-

tions FX , FY , and with continuous symmetric copula C, which represents

the structure of dependence between X and Y ;

� FX ∈ MDA(Φα1) and FY ∈ MDA(Φα2), with α1, α2 > 0 (domain of at-

traction of Fréchet);

� We consider {(X1, Y1), (X2, Y2), . . . , (Xn, Yn), . . .}, i.i.d. with distribution

function FX,Y .

For clarity, we recall the expressions of the two components of (6.1). From (4.1),

we have, for x > f1(n) and y > f2(n),

F (x, y) = F
(
f1(n), f2(n)

)
· Fu(x − f1(n), y − f2(n)) + F (f1(n), y)

+ F (x, f2(n)) − F (f1(n), f2(n)), (6.2)

and from (4.6) we obtain

F̂ ∗(x, y) =

(
1

n

n∑

i=1

1{Xi>f1(n), Yi>f2(n)}

)
C∗G

(
1 − g(1 − VbkX ,bσX

(x − f1(n))),

1−g(1−VbkY ,bσY
(y−f2(n)))

)
+F̂ ∗

1 (f1(n), y)+F̂ ∗
2 (x, f2(n))− 1

n

n∑

i=1

1{Xi≤f1(n)), Yi≤f2(n)},

(6.3)

where F̂ ∗
1 (f1(n), y) = C

(
F̂X(f1(n)), F̂ ∗

Y (y)
)

is equal to

C

(
1

n

n∑

i=1

1{Xi≤f1(n)},

(
1

n

n∑

i=1

1{Yi>f2(n)}

)
·VbkY ,bσY

(
y − f2(n)

)
+

1

n

n∑

i=1

1{Yi≤f2(n)}

)
,

and F̂ ∗
2 (x, f2(n)) = C

(
F̂ ∗

X(x), F̂Y (f2(n))
)

is equal to

C

((
1

n

n∑

i=1

1{Xi>f1(n)}

)
·VbkX ,bσX

(
x − f1(n)

)
+

1

n

n∑

i=1

1{Xi≤f1(n)},
1

n

n∑

i=1

1{Yi≤f2(n)}

)
.
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Remark 7 Since the sequence u2 n is obtained from u1 n (see Remark 6), the

asymptotic properties of u2 can be deduced from those of u1, with additional

regularity assumptions. Assume that u1 n satisfies the conditions of Theorem

8. So if limn→∞ u1 n = ∞, then also limn→∞ u2 n = ∞, and if u1 n satis-

fies (5.2) then also limn→∞ n(1 − FY (u2 n)) = ∞. If u1 n satisfies (5.3) and if

limn→∞
φ2(u2 n)
φ1(u1 n) = L ∈ (−∞,∞), then u2 satisfies

lim
n→∞

√
n(1 − FY (u2 n)) c2 φ2(u2 n)(α2 − ρ2)

−1 = µ2 ∈ (−∞,∞).

Remark 8 Assume that the marginal distributions are the same. We choose

u1 n = u2 n := f(n) −−−→
n→∞

∞ threshold for X, Y.

Theorem 9 can be reformulated as follows:

Theorem 10 Suppose F belongs to the maximum domain of attraction of Fréchet

and L satisfies the condition SR2. Assume that the copula C is continuous and

symmetric. Then under assumptions of Theorems C and E, if sequences f(n)

satisfies the conditions of Theorem 8 and if the conditions of Theorem J hold

then

sup
x, y > f(n)

∣∣∣F (x, y) − F̂ ∗(x, y)
∣∣∣ P−−−→

n→∞
0.

7 Simulation Study

We include three examples for the estimation of the bivariate tail (Theorem 9

and 10). Note that one of the characteristics of our estimator is that it is easy

to implement.

7.1 Case with identical marginal distributions

Model: We choose the marginal distributions FX , FY and the continuous sym-

metric copula C as follows:

C(u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula), (7.1)

FX(x) = 1− (1+x)−1, FY (y) = 1− (1+y)−1 (same Burr distributions). (7.2)

To draw our sample (Xi, Yi)i=1,...,n we use the conditional sampling approach

well described in Cherubini, Luciano and Vecchiato (2004). We estimate σ and

k by MLE based on the excesses of X.
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Figure 7.1: Copula Survival Clayton (7.1).

Figure 7.2: Bivariate distribution function

FX,Y (x, y), with FX = FY , for x > 0, y > 0,

as in (7.2).

Threshold: We choose f(n) = n
1
3

3 −−−→
n→∞

∞. Then the assumptions of Theorem

10 are satisfied hence

sup
x, y >f(n)

∣∣∣F (x, y) − F̂ ∗(x, y)
∣∣∣ P−−−→

n→∞
0.

We call t the number of simulations of n−samples. We define for each x > f(n),

y > f(n)

ERRi, abs =
∣∣∣F̂ ∗(x, y) − F (x, y)

∣∣∣ , for i = 1, . . . , t and ERRabs =
1

t

t∑

i=1

ERRi, abs,

(7.3)

ERRi, rel =

∣∣∣∣∣
F̂ ∗(x, y) − F (x, y)

F (x, y)

∣∣∣∣∣ , for i = 1, . . . , t and ERRrel =
1

t

t∑

i=1

ERRi, rel.

(7.4)

Let us fix t = 100, (x0, y0) = (10, 10), so that both x0 and y0 are above the

threshold f(n) for n = 1000, 2000, 5000 or 10000. We then compute for each

value of n the mean absolute and relative errors, ERRabs and ERRrel, as far as

the empirical variance of F̂ ∗(x0, y0) (see Table 7.1 below). It gives us an idea of

the ponctual convergence of our estimator as n → ∞ for (x0, y0) = (10, 10).

The last column of Table 7.1 gives the mean number of excesses above the

threshold (computed on the t = 100 samples). Recall that the choice of the
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threshold satisfies a compromise: the GPD approximation is valid only for high

thresholds but the number of excesses decreases rather fastly with the threshold.

n ERRabs var( bF ∗(x0, y0))t ERRrel f(n) mean(Excesses)t

1000 0.0112 1.95e−04 0.0129 3.333 233

2000 0.0086 8.87e−05 0.0099 4.199 384

5000 0.0051 4.14e−05 0.0059 5.699 745

10000 0.0034 2.16e−05 0.0039 7.181 1223

Table 7.1: Errors (7.3)-(7.4) and empirical variance for (x0, y0) = (10, 10),

t = 100, case with same marginals.

Now, for n = 1000 and t = 10, we discretize the set [f(n)+1, 250]2 = [4.333, 250]2

with a grid of 62500 points. On this grid we get max
(
ERRabs

)
= 0.0171,

max
(
ERRrel

)
= 0.0195 and max

(
var(F̂ ∗(x, y))

)
= 3.4e−04. For n = 2000

and t = 10, if we discretize the set [f(n) + 1, 250]2 = [5.199, 250]2, we obtain

max
(
ERRabs

)
= 0.0104, max

(
ERRrel

)
= 0.0121 and max

(
var(F̂ ∗(x, y))

)
=

1.9e−04. So the quality of our estimate is good for any point above the threshold.

7.2 Case with different marginal distributions

Model: We choose the marginal distributions FX , FY and the continuous sym-

metric copula C as follows:

C(u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula), (7.5)

FX(x) = 1 − (1 + x)−1, FY (y) = 1 − (1 + y2)−1 (different Burr distributions).

Still using conditional sampling we draw a sample (Xi, Yi)i=1,...,n. We estimate

the parameters by σ̂X , k̂X and σ̂Y , k̂Y , as described in Section 4.2.

Thresholds: We choose f1(n) = n
1
3

3 and f2(n) = F−1
Y (FX(f1(n))) =

√
n

1
3

3 . In

our particular case the marginals are continuous and invertible functions. From

Theorem 9 we have

sup
x > f1(n), y > f2(n)

∣∣∣F (x, y) − F̂ ∗(x, y)
∣∣∣ P−−−→

n→∞
0.

We call t the number of simulations of n−samples. We choose the point (x0, y0) =

(10, 10), with x0 > f1(n), y0 > f2(n), we fix t = 100 and we calculate the errors

in (7.3)-(7.4) and the empirical variance of F̂ ∗(x0, y0) (see Table 7.2 below).
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n ERRabs var( bF ∗(x0, y0))t ERRrel f1(n), f2(n) mean(Excesses)t

1000 0.0086 1.2e−04 0.0094 3.333, 1.825 231

2000 0.0061 4.6e−05 0.0067 4.199, 2.049 385

5000 0.0040 2.1e−05 0.0044 5.699, 2.387 744

10000 0.0027 1.1e−05 0.003 7.181, 2.679 1221

Table 7.2: Errors (7.3)-(7.4) and empirical variance for (x0, y0) = (10, 10), t = 100, case

with different marginals.

If we calculate ERRabs and ERRrel for n = 1000 and t = 10, in a grid of 62500

points in the region [f1(n)+1, 250]×[f2(n)+1, 250] = [4.333, 250]×[2.825, 250] we

get max
(
ERRabs

)
= 0.0123, max

(
ERRrel

)
= 0.0143 and max

(
var(F̂ ∗(x, y))

)
=

2.5e−04. For n = 2000 and t = 10, if we discretize the set [f1(n) + 1, 250] ×
[f2(n) + 1, 250] = [5.199, 250] × [3.049, 250] with a grid of 62500 points we get

max
(
ERRabs

)
= 0.0093, max

(
ERRrel

)
= 0.0111 and max

(
var(F̂ ∗(x, y))

)
=

1.1e−04.

7.3 Estimation of f2(n)

In the previous section the threshold f2(n) for the second marginal distribu-

tion was obtained as f2(n) = F−1
Y (FX(f1(n))). In practice FX and FY are

unknown so f2(n) has to be estimated. Let us be more precise. Let us draw a

sample (Xi, Yi)i=1,...,n from the bivariate distribution FX,Y . We estimate f2(n)

by f̂2(n) = F̂−1
Y (F̂X(f1(n))), with F̂X(f1(n)) = 1

n

∑n
i=1 1{Xi≤f1(n)} and F̂−1

Y the

empirical quantile function.

Let us justify it. We denote U(t) = F−1
Y

(
1 − 1

t

)
so that the quantile yp is

defined by yp = U
(

1
1−p

)
. Denoting Un(t) = F̂−1

Y

(
1 − 1

t

)
,

Un

(
n

k − 1

)
= F̂−1

Y

(
1 − k − 1

n

)
= Yk, n, for k = 1, . . . , n.

Hence Yk, n appears as a natural estimator of the
(
1 − k−1

n

)
-quantile. The range

[Yn, n, Y1, n] of the data allows one to make a within-sample estimation up to

the (1− 1
n)−quantile. From a mathematical point of view the difference between

high quantiles within and outside the sample can for instance be described as

follows. For n → ∞
� high quantiles within the sample: p = pn ր 1 and n(1− pn) → c ∈ (1,∞],

� high quantiles without the sample: p = pn ր 1 and n(1 − pn) → c ∈ [0, 1).
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In the first case with c = ∞ there are classical results that basically tell us that

we can just use the empirical quantile function for estimating the quantile yp as

follows:

Theorem 11 (Dekkers, de Haan (1989), Theorem 3.1) Suppose Y1, Y2, . . . , Yn

is an i.i.d. sample from FY ∈MDA(Φα), α > 0, and FY has a positive density

fY ∈ R−1−α. Write p = pn and k = k(n) = [n(1 − pn)], where [x] denotes the

integer part of x. If the conditions pn −−−→
n→∞

1 and n(1 − pn) −−−→
n→∞

∞ hold

then
√

2k
Yk, n − yp

Yk, n − Y2k, n

d−−−→
n→∞

N

(
0,

2
2
α

+1 1
α2

(2
1
α − 1)2

)
. (7.6)

From (7.6) we have Yk, n − yp
P−→ 0, for n → ∞.

Model: For the simulations we keep the model of Section 7.2.

Thresholds: We choose f1(n) = n
1
3

3 and f̂2(n) = F̂−1
Y (F̂X(f1(n))). In our case

p = pn = F̂X(f1(n))). From condition (5.2) and univariate Glivenko-Cantelli

Theorem we have limn→∞ n(1 − F̂X(f1(n))) = ∞. In that case assumptions of

Theorem 11 are satisfied hence we have

[
f̂2(n) − f2(n)

]
P−−−→

n→∞
0. (7.7)

Using (7.7) and the fact that the derivative of the Generalized Pareto distribution,

in the Fréchet case, is bounded it can be proved that Theorem 9 is true when

replacing f2(n) by f̂2(n).

We call t the number of simulated n−samples. We choose (x0, y0) = (10, 10)

with x0 > f1(n), y0 > f̂2(n). For t = 100 we calculate the errors in (7.3)-(7.4)

and the empirical variance of F̂ ∗(x0, y0) (see Table 7.3 below).

Now, for n = 1000 and t = 10, we discretize the set [f1(n) + 1, 250] ×
[mean(f̂2(n))t + 1, 250] = [4.333, 250] × [2.814, 250] with a grid of 62500 points.

On this grid we get max
(
ERRabs

)
= 0.0164, max

(
ERRrel

)
= 0.0195 and

max
(
var(F̂ ∗(x, y))

)
= 3.9e−04. If we calculate ERRabs and ERRrel for n =

2000 and t = 10, in a grid of 62500 points in the region [f1(n) + 1, 250] ×
[mean(f̂2(n))t + 1, 250] = [5.199, 250] × [3.054, 250] we obtain max

(
ERRabs

)
=

0.0094, max
(
ERRrel

)
= 0.011 and max

(
var(F̂ ∗(x, y))

)
= 1.3e−04.
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n ERRabs var( bF ∗(x0, y0))t ERRrel f1(n), mean(b
f2(n))t mean(Excesses)t

1000 0.0086 1.1e−04 0.0095 3.333, 1.814 229

2000 0.0068 5.3e−05 0.0075 4.199, 2.054 386

5000 0.0039 2.1e−05 0.0043 5.699, 2.389 747

10000 0.0031 1.4e−05 0.0034 7.181, 2.676 1225

Table 7.3: Errors (7.3)-(7.4) and the empirical variance calculate in (x0, y0) = (10, 10), in

the model with different marginal distributions, estimated threshold f
2
(n) and t = 100.

8 Appendix: proofs and auxiliary results

Proof [Theorem 1 ] : From (2.7) we obtain the existence of a1(·) and a2(·) such

that, for p := u + xa1(u) and q := uY + ya2(uY )

Vk1,1(x) = lim
u→xFX

1 − 1 − FX(p)

1 − FX(u)
= lim

u→xFX

P[X ≤ p|X > u], (8.1)

Vk2,1(y) = lim
uY →xFY

1 − 1 − FY (q)

1 − FY (uY )
= lim

uY →xFY

P[Y ≤ q|Y > uY ]. (8.2)

From X
d
= F−1

X (FY (Y )) or symmetrically Y
d
= F−1

Y (FX(X)), we take uY =

F−1
Y (FX(u)) and from (8.1)-(8.2) we have, as u → xFX

1 − (1 − Vk1,1(x))(1 − FX(u)) ∼ FX(u + x a1(u)),

1− (1−Vk2,1(y))(1−FY (F−1
Y (FX(u)))) ∼ FY (F−1

Y (FX(u))+ y a2(F
−1
Y (FX(u)))).

It follows from (2.4) that

lim
u→xFX

P

[
X − u

a1(u)
> x,

Y − F−1
Y (FX(u))

a2(F
−1
Y (FX(u)))

> y

∣∣∣∣X > u, Y > F−1
Y (FX(u))

]

= lim
u→xFX

C∗(1 − FX(u + x a1(u)), 1 − FY (F−1
Y (FX(u)) + y a2(F

−1
Y (FX(u))))

)

C∗(1 − FX(u), 1 − FY (F−1
Y (FX(u)))

)

= lim
u→xFX

C∗((1 − Vk1,1(x))(1 − FX(u)), (1 − Vk2,1(y))(1 − FY (F−1
Y (FX(u))))

)

C∗(1 − FX(u), 1 − FY (F−1
Y (FX(u)))

)

= lim
ν→1

C∗((1 − Vk1,1(x))(1 − ν), (1 − Vk2,1(y))(1 − ν)
)

C∗(1 − ν, 1 − ν
) . (8.3)

We can rewrite 1 − Vk1,1(x) = V1,1(h), with h := (1 − k1 x)
1

k1 , if k1 6= 0, or

h := e−x, if k1 = 0, and 1 − Vk2,1(y) = V1,1(w) with w := (1 − k2 y)
1

k2 , if k2 6= 0,
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or w := e−y, if k2 = 0. So (8.3) becomes

lim
ν→1

C∗(V1,1(h)(1 − ν), V1,1(w)(1 − ν)
)

C∗(1 − ν, 1 − ν
) .

Because C satisfies the hypotheses of Theorem C we have that the above limit

equals

G(V1,1(h), V1,1(w)) = G(1 − Vk1,1(x), 1 − Vk2,1(y)).

From (2.4) we have finally that

lim
u→xFX

P

[
X − u

a1(u)
≤ x,

Y − F−1
Y (FX(u))

a2(F
−1
Y (FX(u)))

≤ y

∣∣∣∣X > u, Y > F−1
Y (FX(u))

]

= 1 − g(1 − Vk1,1(x)) − g(1 − Vk2,1(y)) + G(1 − Vk1,1(x), 1 − Vk2,1(y))

= C∗G
(
1 − g(1 − Vk1,1(x)), 1 − g(1 − Vk2,1(y))

)
.

Since the limit is a continuous distribution function (because C∗G, g and the GPD

are) it follows that the convergence can the strengthened to uniform convergence

(see for example Embrechts, Kluppelberg and Mikosch (1997), pag. 552). So

sup
A

∣∣∣∣P
[
X − u

a1(u)
≤ x,

Y − F−1
Y (FX(u))

a2(F
−1
Y (FX(u)))

≤ y

∣∣∣∣X > u, Y > F−1
Y (FX(u))

]

− C∗G
(
1 − g(1 − Vk1,1(x)), 1 − g(1 − Vk2,1(y))

)∣∣∣∣−−−−−→u→xFX

0, (8.4)

where A := {(x, y) : 0 < x ≤ xFX
− u, 0 < y ≤ xFY

− F−1
Y (FX(u))}. Then (2.9)

is a straightforward consequence of (8.4). �

Proof [Theorem 4 ]:

To prove Theorem 4, we need to prove the following convergence in probability

r̃mn

rmn

=
F (f(mn) f(mn))

F̂ (f(mn) f(mn))

P−−−→
n→∞

1. (8.5)

If we are able to prove (8.5), using (5.6) and by direct application of Slutsky’s

Theorem, we obtain convergence (5.9). To prove (8.5) we use the following result.

Proposition I (Einmhal (1990), Corollary 1) Let a sequence of i.i.d random

variables X1, X2, . . . from a distribution function F . We denote with {kn}∞n=1
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an arbitrary sequence of positive numbers, such that kn ≤ n and kn → ∞,

limn→∞
kn

n = 0. Let {γn}∞n=1 be a sequence of positive numbers, such that

limn→∞
γn√
kn

= ∞, then

sup
t≥F−1(1− kn

n
)

(
n

γn

) ∣∣∣F̂ (t) − F (t)
∣∣∣ P−−−→

n→∞
0.

Then we will take, following Proposition I, an arbitrary sequence {kn}∞n=1 as

{kn}∞n=1 := {mn}∞n=1 (number of excesses on a sample of size n), such that

mn ≤ n, lim
n→∞

mn = ∞ and lim
n→∞

mn

n
= 0.

The sequence of positive numbers {γn}∞n=1 of Proposition I is taken as

{γn}∞n=1 := {√mn αn}∞n=1,

where αn is an arbitrary sequence of positive numbers such that limn→∞ αn = ∞.

Then, using Proposition I we have, for f(mn) f(mn) ≥ F−1(1 − mn

n ),

(
n√

mn αn
F (f(mn) f(mn))

) ∣∣∣∣∣
F̂ (f(mn) f(mn)) − F (f(mn) f(mn))

F (f(mn) f(mn))

∣∣∣∣∣
P−−−→

n→∞
0.

(8.6)

To prove (8.5), starting from (8.6), it is sufficient to choice αn such that for n

large enough, there exists c > 0 such that

0 <

√
mn αn

n F (f(mn) f(mn))
≤ c. (8.7)

Recalling that, in the Fréchet case L(x) = xαF (x), for α > 0, and L(tx)
L(x) =

1 + k(t)φ(x) + o(φ(x)), ∀ t > 0, as x → ∞. Using the assumptions of Theorem

H we obtain

F (f(mn) f(mn))

F (f(mn))
=

L(f(mn) f(mn)) f(mn)−α

L(f(mn))

= f(mn)−α
[
1 + k(f(mn))φ(f(mn)) + o(φ(f(mn)))

]
.

So we have

n F (f(mn) f(mn))√
mn

=
n√
mn

F (f(mn))
[
f(mn)−α

(
1 + k(f(mn))φ(f(mn))

+ o(φ(f(mn)))
)]

≈ √
mnf(mn)−α

(
1 + k(f(mn))φ(f(mn)) + o(φ(f(mn)))

)
.

(8.8)
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Then, recalling (5.8) and the properties of k and φ we prove that the right hand

side of (8.8) increases to infinity hence one can choose αn satisfying (8.7). It

concludes the proof. �

Proof [Theorem 9 ]:

To prove (6.1) we divide the problem in the study of four different uniform con-

vergences in probability. So, using (6.2)-(6.3), we want to prove

1. supx > f1(n), y > f2(n)

∣∣∣∣F (f1(n), f2(n))·Fu(x−f1(n), y−f2(n))−F̂ (f1(n), f2(n))·

C∗G

(
1 − g(1 − VbkX ,bσX

(x − f1(n))), 1 − g(1 − VbkY ,bσY
(y − f2(n)))

)∣∣∣∣
P−−−→

n→∞
0,

2. sup y > f2(n)

∣∣∣∣F (f1(n), y) − F̂ ∗
1 (f1(n), y)

∣∣∣∣
P−−−→

n→∞
0,

3. supx > f1(n)

∣∣∣∣F (x, f2(n)) − F̂ ∗
2 (x, f2(n))

∣∣∣∣
P−−−→

n→∞
0,

4.

∣∣∣∣
1
n

∑n
i=1 1{Xi≤f1(n), Yi≤f2(n)} − F (f1(n), f2(n))

∣∣∣∣
P−−−→

n→∞
0.

Convergence 1: We remark that, in our case (the Fréchet case), the endpoint

xF = +∞. To prove convergence 1 we will use Proposition 12 and the uniform

convergence (almost surely or in probability) for the bivariate empirical estimator

F̂ (x, y) introduced in Theorem J (see below).

If we call, for x > f1(n) and y > f2(n)

A := 1
n

∑n
i=1 1{Xi>f1(n), Yi>f2(n)},

B := C∗G
(
1 − g(1 − VbkX ,bσX

(x − f1(n))), 1 − g(1 − VbkY ,bσY
(y − f2(n)))

)
;

a := F (f1(n), f2(n)) and b := Fu(x − f1(n), y − f2(n)).

So by uniform convergences of Theorem 1, Proposition 12 and Theorem J we

have that uniformly

|A − a| P−−−→
n→∞

0; |B − b| P−−−→
n→∞

0; |AB − ab| ≤ |a(B − b)| + |B(A − a)| P−−−→
n→∞

0.

So we have proved the first uniform convergence.

Convergence 2: By definition of copula we know that F (x, y) := C(FX(x), FY (y))
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so F (f1(n), y) := C(FX(f1(n)), FY (y)), where C is a continuous function.

If we replace C(FX(f1(n)), FY (y)) with C
(
F̂X(f1(n)), F̂ ∗

Y (y)
)
, then we can use

to prove convergence 2 the uniform convergence of F̂X(x) to FX(x) (univariate

Glivenko-Cantelli Theorem)

sup
x

∣∣∣F̂X(x) − FX(x)
∣∣∣ =

∣∣∣∣∣
1

n

n∑

i=1

1{Xi≤x} − FX(x)

∣∣∣∣∣
(a.s.)−−−→
n→∞

0, (8.9)

and the uniform convergence of Theorem 8

sup
y > f2(n)

∣∣∣FY (y) − F̂ ∗
Y (y)

∣∣∣ P−−−→
n→∞

0.

Finally we know that convergence in probability is preserved under continuous

transformations and the copula C is continuous, by assumption, on a compact

set, then C is uniformly continuous. We have proved the convergence 2.

Convergence 3: The structure of this proof is equal to convergence 2.

Convergence 4: To prove the convergence 4 for the empirical distribution function

F̂ (x, y) to F (x, y) we use Theorem J below. This theorem shows that, under

suitable assumptions, F̂ (x, y) converges almost surely to F (x, y). So we can

obtain the desired convergence in probability:

sup
(x, y)

∣∣F̂ (x, y) − F (x, y)
∣∣ P−−−→

n→∞
0.

With these four uniform convergences we have proved (6.1). �

Auxiliary results

Proposition 12 Let Vk,σ(x) the Generalized Pareto Distribution (GPD), defined

by (1.1), and k̂N , σ̂N , the maximum likelihood estimators of the parameters k =

−α−1 < 0 and σ = unα−1, in the case unconditionally on N . If all the conditions

of Corollary 2 hold then

sup
x∈[0,+∞)

∣∣∣VbkN ,bσN
(x) − Vk,σ(x)

∣∣∣ P−−−→
n→∞

0.

Proof: From Corollary 2, we obtain

(σ̂N − σ)
P−−−→

n→∞
0,
(
k̂N − k

)
P−−−→

n→∞
0. (8.10)
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So, from (8.10) and with g(k, σ, x) = Vk,σ(x) we have the following pointwise

convergence in probability for each point x ∈ [0,+∞)

[
VbkN ,bσN

(x) − Vk,σ(x)
]

=



(

1 − k x

σ

) 1
k

−
(

1 − k̂N x

σ̂N

) 1
bkN


 P−−−→

n→∞
0. (8.11)

We remark that the random variable T := σ(U−k−1)
k ∼ Vk,σ(x), with U ∼

Uniform[0, 1]. Finally, we apply the Polya’s Theorem (Rao (1965), Theorem (vi),

pag. 120) and the general ideas of Horowitz (2001) and we obtain that point-

wise convergence (almost surely or in probability) of a sequence of distribution

functions to a continuous function implies that the sequence converges (almost

surely or in probability) to this function uniformly. Since the limit Vk,σ(x) is

a continuous distribution function it follows that the convergence in (8.11) can

be strengthened to uniform convergence (about this, see for example Embrechts,

Kluppelberg and Mikosch (1997), pag. 552). �

Extension of Glivenko-Cantelli Theorem

To prove Theorem 9, we need a preliminary result of uniform convergence (al-

most surely or in probability) for the bivariate empirical estimator F̂ (x, y), which

represents an extension of the Glivenko-Cantelli Theorem in higher dimensions.

Theorem J (Blum (1955), Theorem 1) If there exists

1. an absolutely continuous probability measure µ on the Borel sets of two di-

mensional Euclidean space R
2 and

2. a sequence of two-dimensional independent random vectors {Xn} := {(X1, Y1),

(X2, Y2), . . . , (Xn, Yn), . . .}, distributed according of µ

then P

[
lim

n→∞
sup
(x,y)

∣∣F̂ (x, y) − F (x, y)
∣∣ = 0

]
= 1. (8.12)

DeHardt (1970) constructs a counterexample to show that, without the assump-

tion of absolute continuity of the measure µ, the convergence (8.12) may not

hold.
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