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ASYMPTOTIC BEHAVIOR OF SOME FACTORIZATIONS OF

RANDOM WORDS

PHILIPPE CHASSAING AND ELAHE ZOHOORIAN AZAD

Abstract. This paper considers the normalized lengths of the factors of
the Lyndon decomposition of finite random words with n independent let-
ters drawn from a finite or infinite totally ordered alphabet according to a
general probability distribution. We prove, firstly, that the limit law of the
lengths of the smallest Lyndon factors is a variant of the stickbreaking pro-
cess. Convergence of the distribution of the lengths of the longest factors to a
Poisson-Dirichlet distribution follows. Secondly, we prove that the distribution
of the normalized length of the standard right factor of a random n-letters long
Lyndon word, derived from such an alphabet, converges, when n is large, to:

µ(dx) = p1δ1(dx) + (1− p1)1[0,1)(x)dx,

in which p1 denotes the probability of the smallest letter of the alphabet.

1. Introduction

First, recall some general definitions from [Lot83, Reu93]. Let A = {a1, a2, . . . }
be an ordered alphabet (a1 < a2 < . . . ), finite or infinite, and let An be the cor-
responding set of n-letters long words. If w ∈ An, write w = w1 . . . wn and define
τw = w2 . . . wnw1. Then 〈τ〉 = {Id, τ, . . . , τn−1} is the group of cyclic permuta-
tions of the letters of a word with length n. The orbit 〈w〉 of a word w under 〈τ〉 is
called a necklace. A word w ∈ An is called primitive if its necklace 〈w〉 has exactly
n elements. In this case the necklace is said to be aperiodic. A Lyndon word is
a primitive word that is minimal in its necklace, with respect to the lexicographic
order. A word v is a factor of a word w if there exists two other words s and t,
possibly empty, such that w = svt. If s (resp. t) is empty, v is a prefix (resp. a suf-
fix) of w. A word v is a factor of a necklace 〈w〉 if v is a factor of some word w′ ∈ 〈w〉.

The standard right factor v of a word w is its smallest proper suffix in the lex-
icographic order. The related factorization uv of w is often called the standard
factorization of w. Both the standard right factor v and the corresponding prefix u
(such that w = uv) of a Lyndon word are also Lyndon words. The standard factor-
ization of a Lyndon word is the first step in the construction of some basis of the
free Lie algebra overA, due to Lyndon [Lyn54] (see for instance [Lot83] or [Reu93]).

On the other hand, according to [Lot83, Theorem 5.1.5],
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2 PHILIPPE CHASSAING AND ELAHE ZOHOORIAN AZAD

Theorem 1.1 (Lyndon). Any word w ∈ A+ has a unique factorization as a non-
increasing product of Lyndon words:

w = wlwl−1 . . . w2w1, wi ∈ L, wl ≥ wl−1 ≥ · · · ≥ w2 ≥ w1,

in which A+ is the set of nonempty words on alphabet A and L the set of Lyndon
words on this alphabet.

If w is a Lyndon word, w1 = w, else w1 is the standard right factor of w. In this
paper, we shall study the asymptotic behavior of probability distributions related
to these factorizations.

w = aabb.aaabbab.aaabb.a.a.a.a

Figure 1. A word w with 7 factors and a sequence of lengths :
ρ(20)(w) = 1

20 (1, 1, 1, 1, 5, 7, 4, 0, 0 . . .).

1.1. Random words and random Lyndon words. From now on, we consider
a general probability distribution (pi)i≥1 on a set A = {a1 ≤ a2 ≤ . . . } of letters,
and we assume, without loss of generality, that 0 < p1 < 1, i.e. the probability that
a word has at least two letters does not vanish for n large. On the corresponding
set of words,

A⋆ = ∪n≥0An = {∅} ∪
(

∪
n≥1

An

)
,

we define the weight p(w) of a word w = aℓ1(w)aℓ2(w) . . . aℓn(w) as

p(w) = pℓ1(w)pℓ2(w) . . . pℓn(w).

The weight p(.) defines a probability measure Pn on the set An, through

Pn({w}) = p(w).

Pn (resp. Nn, Ln) denotes the set of n-letters long primitive words (resp. its
complement, resp. the set of n-letters long Lyndon words). Then we define a
probability measure Ln on Ln, as follows

Ln({w}) = λnp(w),

in which λn = 1/Pn(Ln) = n/Pn(Pn). The probability measure Ln has a trivial
extension to An (setting Ln (Lc

n) = 0).

1.2. Main results. The sequence ρ(n)(w) = (ρi,n(w))i≥1 of normalized lengths of
the Lyndon factors of a word w ∈ An, with Lyndon factorization w = wℓwℓ−1 . . . w1,
is defined as follows:

ρi,n(w) =

{
|wi|
n if 1 ≤ i ≤ ℓ

0 if i > ℓ.
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Thus ρi,n(w) denotes the normalized length of the i-th smallest1 Lyndon factor of
w. Our first result describes the limit distribution, as n grows, of the sequence
ρ(n)(w) = (ρi,n(w))i≥1, seen as a random variable on (An,Pn). We have:

Theorem 1.2. For a totally ordered alphabet with probability distribution p on its
letters, ρ(n) converges in law, when n → ∞, to the random sequence ρ = (ρi)i≥1

whose law is defined by the law of ρ1:

µ(dx) = p1δ0(dx) + (1 − p1)1(0,1](x)dx,

and the conditional law of ρi given (ρ1, ρ2, . . . , ρi−1):

µy(dx) =





p1δ0(dx) + (1− p1)1(0,1](x)dx ; y = 0

1
1−y1(0,1−y](x)dx ; y > 0,

in which y denotes ρ1 + ρ2 + · · ·+ ρi−1.

In other words, if we set si = 1−(ρ1+ρ2+ · · ·+ρi), then s = (si)i≥1 is a Markov
chain starting from 1 at time 0, with transition probability

p(y, dx) =





p1δ1(dx) + (1− p1)1(0,1](x)dx ; y = 1

1
y1(0,y](x)dx ; y < 1.

The process s is a variant of the stickbreaking process [McC65, PPY92] related
to the Poisson-Dirichlet(0,1) distribution, in which the first attempts to break the
stick would fail (with probability p1) and would produce a geometric number of
fragments with size 0 at the beginning of the process, while for the stickbreaking
process the transition probability p̃(y, dx) is 1

y1(0,y](x)dx for any y ∈ [0, 1]. Of

course, whence ρ(n) and ρ are rearranged in decreasing order, the small initial
fragments are rejected at the end or, in the case of ρ, they disappear. Thus

Corollary 1.3. The decreasing rearrangement of ρ(n) converges in law to the
Poisson-Dirichlet(1) distribution.

As regards the second result, for any Lyndon word w ∈ Ln, let Rn(w) denotes
the length of its standard right factor, and set rn = Rn/n. We have:

Theorem 1.4. For a totally ordered alphabet with probability distribution p on its
letters, the normalized lengths rn of the standard right factor of a random n-letters
long Lyndon word, when n → ∞, converges in law to

µ(dx) = p1δ1(dx) + (1 − p1)1[0,1)(x)dx,

where δ1 denotes the Dirac mass on the point 1 and dx the Lebesgue measure on R.
As a consequence the moments of rn converge to the corresponding moments of µ.

For instance, if p is the uniform distribution on q letters, then the limit law of
the normalized length of the standard right factor of a random Lyndon word, is

µ(dx) =
1

q
δ1(dx) +

q − 1

q
1[0,1)(x)dx.

1In this paper, when applied to words, or factors of words and necklaces (and, sometimes, to
factors with special properties, that we will call blocks), the adjectives “small” and “large” refer
to the lexicographic order on words, while “short” and “long” refer to the size (number of letters)
of factors.
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1.3. Context. The Poisson-Dirichlet family of distribution was introduced by King-
man [Kin75]. This distribution arises as a limit for the size of components of decom-
posable structures in a variety of settings, as shown by Hansen [Han94] or Arratia
et al. [ABT99].

When the distribution p is uniform on q letters, i.e.

pk =
1

q
111≤k≤q,

the combinatorics of the Lyndon decomposition have connections with that of q-
shuffles [BD92] and of monic polynomials of degree n over the finite field GF (q),
as explained in [GR93, DMP95]. When p is uniform, Corollary 1.3 is well known
(cf. [ABT93, Han94]). Actually, for a uniform p, a precise description of the size
of Lyndon factors in term of the standard Brownian motion is given in [Han93,
ABT93]. Our contribution is twofold :

• in Theorem 1.2, we give a description of the sizes of factors depending on
their rank in the decomposition. Obviously, the order of factors matters in
the Lyndon decomposition of words, while it does not for polynomials or
for shuffles ;

• the distribution p on letters is perfectly general (we only require more than
one letter). As a consequence, to our knowledge, combinatorics do not
provide closed form expressions for the distribution of sizes of factors. Thus,
for a general p, we were not able to prove, or to disprove, the conditioning
relation (cf. [ABT03, p. 2]) which is usually required for convergence to
the Poisson-Dirichlet distribution in such settings.

Theorem 1.4 deals with random words conditioned to be Lyndon words. This
Theorem is a first step, as were the papers [BCN05, MZA07], towards the study of
the Lyndon tree, that describes the complexity of some algorithms computing bases
of the free Lie algebra on A. The line of the proof of Theorem 1.4 is the same as
in [MZA07], where the case q = 2 was obtained. The proofs of some Lemmas and
Theorems in this paper are similar to their analogs in [MZA07] : in this paper, we
only give the proofs that are significantly different from the case q = 2. We refer
the interested reader to [MZA07] for more remarks and explanations.

1.4. Sketch of proofs. Consider a nonrandom partition of [0, 1] into a (large)
number of subintervals with small widths, k of these subintervals being marked.
After a random uniform shuffle of these subintervals, the positions X = (Xi)1≤i≤k

of the marked subintervals is close to a k-sample of the uniform distribution on [0, 1].
More specifically, their Wasserstein distance is bounded by the maximal width of
the subintervals, see Lemma 4.8.

To use this principle, one has to build a factorisation (partition) of the random
word such that :

(1) the distribution of the random word is invariant under a random uniform
shuffle of the factors (subintervals) ;

(2) the length of the factors is o(n) (while the Lyndon factors are Θ(n)) ;
(3) the marked factors are very small with respect to the lexicographic order,

for they begin with large runs of the letter a1.
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Thus, the marked factors, called “long blocks”, are strongly related to the Lyn-
don decomposition: they are prefixes of the longest Lyndon factors, and their po-
sitions, approximately uniform according to Lemma 4.8, govern the lengths of the
Lyndon factors.

Section 2 is devoted to preliminary results on some statistics on runs. Specially
useful is the observation that the length of the longest run of “a1” is typically of
order log1/p1

n.
In Section 3, we describe the partition of a random word with length n into

distinct “long blocks” with length of order log 1
β
n, long blocks that begin with the

longest runs of “a1”. We have to make sure that, with a high probability, the
Lyndon property is preserved by permutation of these blocks.

Once these preliminary tasks are performed, we use the shuffling principle,
Lemma 4.8, to prove the main results, Theorem 1.4 in Section 4, and Theorem
1.2 in Section 5.

2. Number of runs and length of the longest run

For w ∈ Pn, let π(w) denote the unique Lyndon word in the necklace of w. For
α ≥ 1, we set

‖p‖α =

(∑

i

pαi

)1/α

.

The next Lemma allows to translate bounds on Pn into bounds on Ln:

Lemma 2.1. For A ⊂ An, we have:

| Ln(A)− Pn(π
−1(A)) |= O (‖p‖n2 ) .

Note that ‖p‖1 = 1, and that, under the assumption {0 < p1 < 1}, ‖p‖α is
strictly decreasing in α. Among other well known inequalities, we shall make use
of ‖p‖2 ≤ √

max pi. We set

β = max {p1, 1− p1} .
For instance, the choice A = An leads to

| 1− Pn(Ln) |= O (‖p‖n2 ) = O (βn) .

Due to Lemma 2.1, the asymptotic properties of statistics, such as the number
of runs and the length of the longest runs, that behave nicely under cyclic per-
mutations, are the same on random words or on random Lyndon words, and the
preliminary results needed under Ln and under Pn, for Theorems 1.2 and 1.4, are
equivalent.

Proof. This proof rephrases in probabilistic terms some results of [Reu93, Section
7.1], to which the reader is referred for definitions. Let us define two sequences of
subsets of An,

An,k =
{
w ∈ An | ∃v ∈ Ak such that w = vn/k

}
,

Pn,k = An,k\


 ⋃

1≤i<k

An,i


 ,
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with probabilities νk = Pn(An,k) and ξk = Pn(Pn,k), respectively. Clearly

An,n = An, Pn,n = Pn.

Also, if k|n, (Pn,i)i|k is a partition of An,k (else, both An,k and Pn,k are empty).

Thus

νk =
∑

d|k

ξd,

and, by the Möbius inversion formula,

ξk =
∑

d|k

µ(d)νk/d,(1)

in which µ(d) denotes the Möbius function. On the other hand, when k|n,

νk =
∑

w∈An,k

p(w)

=
∑

v∈Ak

p(v)n/k

=
∑

∑
i ri=k

(
k

r1, r2, . . .

)
(pr11 pr22 . . . )

n/k

= ‖p‖nn/k .

Specializing (1) to k = n, we obtain

Pn(Pn) =
∑

d|n

µ(d) ‖p‖nd .(2)

Let the set of divisors of n be {1 < d1 < d2 < · · · < dℓ = n}. Then, by (2),
∣∣Pn(Pn)− 1 + ‖p‖nd1

∣∣ ≤ (ℓ− 1) ‖p‖nd2

≤ (n− 2) ‖p‖nd2
,

if n is not prime. Else Pn(Pn) = 1 − ‖p‖nd1
. In any case,

∣∣Pn(Pn)− 1 + ‖p‖nd1

∣∣ is a
o
(
‖p‖nd1

)
, and, since d1 ≥ 2,

(3) Pn(Pc
n) = O (‖p‖n2 ) .

Lemma 2.1 is a direct consequence of

Ln(A) =
Pn(π

−1(A))

Pn(Pn)
,

and of (3). �

Definition 2.2. Set B = {0, 1}. Now, let ϕ denote the morphism, from A⋆ to B⋆,
that sends the letter a1 on the digit 0, any other letter of A on the digit 1, and any
word w ∈ An on a word ϕ(w) ∈ Bn. We denote by Nn(w) the number of runs in

ϕ(w), by X1(w), X2(w), . . . , XNn(w) their lengths, by N
(e)
n (w) (resp. M

(e)
n (w)) the

number of runs of the digit e ∈ B in the word ϕ(w) (resp. the maximal length of
such runs).
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Lemma 2.3 (Number of runs of the letter a1).

Pn

(
N (0)

n <
p1(1− p1)

2
n

)
= O

(
n−1

)
,

and

Ln

(
N (0)

n <
p1(1− p1)

2
n

)
= O

(
n−1

)
.

Proof. In the case p1 = 0.5, N
(0)
n − 1 has a binomial distribution under Pn (see

[MZA07, Lemma 4.1]), but this property is lost as soon as p1 6= 0.5. In this general
case, we shall construct a random word tn(ω) in Bn by truncation of an infinite
word ω on the alphabet B:

ω = ω1ω2ω3 . . . −→ tn(ω) = ω1ω2ω3 . . . ωn.

In other words, ω is a Bernoulli process with parameter 1 − p1. Let P denote
the distribution of ω, an infinite product of Bernoulli distributions with parameter
1− p1.

We set ξ(ω) = 1 − ω1. For an element ω of the (almost sure) subset Ω of
infinite words that does not end with an infinite run, let η(ω) = (ηi(ω))i≥1 (resp.
θ(ω) = (θi(ω))i≥1) denote the sequences of lengths of runs of the digit 0 (resp. 1)
in ω. Under the probability measure P,

• ξ, η and θ are independent,
• η is a sequence of independent geometric random variables with expectation
(1 − p1)

−1,
• θ is a sequence of independent geometric random variables with expectation
p1

−1,
• ξ is a Bernoulli random variable with parameter p1.

The proof of Lemma 2.3 relies on the fact that the distribution of the prefix tn
under the probability measure P is also the image of Pn under ϕ (in other terms,

tn and ϕ have the same distribution), and N
(ε)
n will denote indifferently a statistic

on ϕ(w) or on tn(ω).

For k ≥ 0, set Sη
k =

∑k
i=1 ηi and Sθ

k =
∑k

i=1 θi. Then
{
N

(0)
n ◦ tn(ω) ≤ k

}
holds

if and only if
{{

ξ = 1 and Sη
k (ω) + Sθ

k−1(ω) ≥ n
}
∨
{
ξ = 0 and Sη

k (ω) + Sθ
k(ω) ≥ n

}}
.

Thus, by Chebyshev’s inequality,

Pn

(
N (0)

n ≤ k
)

≤ P
(
Sη
k + Sθ

k ≥ n
)

≤ V ar(Sη
k + Sθ

k)(
n− E

[
Sη
k + Sθ

k

])2 .

With the choice k = p1(1−p1)
2 n, we obtain

Pn

(
N (0)

n <
p1(1− p1)

2
n

)
= O

(
n−1

)
.

In order to obtain this result for Ln, note that for a primitive word w, we have

N
(0)
n (w) − 1 ≤ N

(0)
n (π(w)) ≤ N

(0)
n (w), then use Lemma 2.1 (see [MZA07, Lemma

4.1] for details). �
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We also need some information about the length of the longest runs of “a1” in
a word w ∈ An and in its necklace 〈w〉, for, among these long runs, the longest
is bound to be the prefix of the smallest Lyndon factor of w, or the prefix of the
unique Lyndon word in 〈w〉. Also, the second longest is bound to be the prefix of
the second smallest Lyndon factor of w or the prefix of the standard right factor of
the Lyndon word in 〈w〉. Furthermore, if Theorem 1.4 is to be true, there should
exist at least two long runs and, if Theorem 1.2 is to be true, the number of these
long runs should grow indefinitely with n, like the number of Lyndon factors of the
random word. These points are consequences of Theorems 1.4 and 1.2, but they
are also some of the steps of the proofs of these Theorems. They are addressed by
the next Lemmas. In this paper ε denotes a real number in (0, 1/2).

Definition 2.4. (Long runs and short runs) We call long run (resp. short run) of
w ∈ An a run of “a1” with length at least (resp. smaller than) (1 − ε) log1/p1

n.

We denote by Hn(w) the number of long runs of “a1” in w.

Lemma 2.5 (Number of long runs).

Pn (Hn ≥ αnε) = 1−O
(
n−1

)
,

and

Ln (Hn ≥ αnε) = 1−O
(
n−1

)
,

in which α is a constant smaller than p1(1−p1)
4 .

Proof. We choose a positive constant α ∈
(
0, p1(1−p1)

4

)
, so that

c = −α+
p1(1− p1)

4
> 0.

We assume that random words are produced the same way as in the proof of Lemma
2.3. We let, for i ≥ 1,

Bi = 1{ηi≥(1−ε) log1/p1
n}.

Then, for ω ∈ Ω,

(4) Hn (tn(ω)) ≥
∑

1≤2i−1≤N
(0)
n −1

B2i−1(ω) if ω1 = a,

and

(5) Hn (tn(ω)) ≥
∑

1≤2i≤N
(0)
n −1

B2i(ω) if ω1 = b.

Note also that, under P, (Bi)i≥1 is a Bernoulli process, and that its parameter
p(n, ε) satisfies nε−1 ≤ p(n, ε) ≤ nε−1/p1.

Thus relations (4) and (5), with Lemma 2.3, entail that, under Pn, Hn is,
roughly speaking, stochastically larger than the binomial distribution with parame-

ters p1(1−p1)
4 n and p(n, ε). More precisely, if Sp1,n,ε denotes a random variable dis-

tributed according to the binomial distribution with parameters πn =
⌊
p1(1−p1)n−2

4

⌋

and p(n, ε), then

Pn (Hn ≤ αnε) ≤ Pn

(
N (0)

n <
p1(1− p1)

2
n

)
+ P (Sp1,n,ε ≤ αnε) .
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But by the inequality of Okamoto [Oka58, Bol01], a binomial random variable Sn,p

with parameters n and p satisfies :

Pn (|Sn,p − pn| ≥ h) <
(pqn)1/2

h
exp

(
−h2/2pqn

)
.

As a consequence

P (Sp1,n,ε ≤ αnε) ≤ P
(
Sp1,n,ε − πnpn,ε ≤ (αn− πn)n

ε−1
)

≤ P
(
Sp1,n,ε − πnpn,ε ≤ − (4cn− 6)nε−1/4

)

< cnn
−ε/2 exp

(
− nε

2cn2

)
,

in which

lim
n

cn =
√
p1(1− p1)/2c.

The first statement of the Lemma follows. For the proof of the second statement,
we note that if w is a primitive word,

(6) Hn ◦ π(w) ≥ Hn(w) − 1,

with equality when w begins and ends with long runs. Together with Lemma 2.1,
it entails that

Ln (Hn ≤ αnε − 1) ≤ Pn ({w ∈ Pn, Hn ◦ π(w) ≤ αnε − 1}) +O
(
βn/2

)

≤ Pn (Hn ≤ αnε) +O
(
βn/2

)
.

and the Lemma follows. �

Recall that M
(1)
n denote the length of the largest run of non-a1 letters. We have:

Lemma 2.6 (Large values of the longest runs). Under Pn or Ln, the probabilities

of the events
{
M

(0)
n ≥ 2 log1/p1

n
}

and
{
M

(1)
n ≥ 2 log1/(1−p1) n

}
are O

(
n−1

)
.

Proof. First, we give the proof for

An =
{
M (1)

n ≥ 2 log1/(1−p1) n
}
.

Again, we assume that the random words are produced the same way as in the
proof of Lemma 2.3. For y > 0, we have:

Pn(M
(1)
n ≤ y) ≥ P(∀i ∈ {1, . . . , n}, θi ≤ y)

≥
(
1− (1− p1)

⌊y⌋
)n

.

Choosing y =
⌈
2 log1/(1−p1) n

⌉
− 1, we obtain that

Pn (An) = O
(
n−1

)
.

Note that for a primitive word w, we have

M (1)
n ◦ π(w) = max{M (1)

n (w), (X1(w) +XNn(w)) 1Iw1 6=a1 6=wn}
≤ max

{
M (1)

n (w), (X1(w)1Iw1 6=a1 +XNn(w)1Iwn 6=a1)
}
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Since Pn is invariant under words’ reversal, (X1, w1) and (XNn , wn) have the same
probability distribution. Thus, from Lemma 2.1, we deduce that

Ln (An) ≤ 2Pn

(
X11Ia1 6=w1 ≥ log1/(1−p1) n

)
+ Pn (An) +O (‖p‖n2 ) .

which leads to the desired bound for Ln (An). Similar arguments hold for M
(0)
n . �

3. Long blocks of words and good words

We mentioned in Section 1.4 that the lengths of the Lyndon factors are governed
by the positions of the longest runs of “a1”, but it was a rough simplification: as
already explained in [MZA07], some of these longest runs have equal lengths so we
need to compare longer factors beginning with these long runs, in order to decide
which runs are the prefixes of the Lyndon factors. In this section, we prove that
almost every word w ∈ An has a large number of long factors, that we call long
blocks, sharing three properties:

Definition 3.1. The long blocks are the factors of w that:

• begin with a long run of “a1”,
• end just before another run of “a1” (not necessarily the next run of “a1”),
• have the smallest possible length larger than 1 + 3 log1/β n.

Our main argument is valid only on a subset of An, the set Gn of good words :

Definition 3.2. A word w ∈ An is a good word if it satisfies the following condi-
tions:

i. w has at least ⌊αnε⌋ long blocks,
ii. the long blocks of w do not overlap,
iii. if two long blocks have a common factor, its length is smaller than 3 log1/β n,
iv. for each long run of w there exists a long block beginning with this run,

v. M
(0)
n (w) ≤ 2 log1/p1

n,

vi. M
(1)
n (w) ≤ 2 log1/(1−p1) n.

It turns out that Gn has a large probability:

Proposition 3.3. Under Pn or Ln, the probability of Gc
n is O

(
n2ε−1 log2 n

)
.

For the proof of Proposition 3.3, we need a few lemmas:

Lemma 3.4. Denote by En the set of words w ∈ An in which some ⌈3 log1/β n⌉-
letters long factor appears twice in the necklace 〈w〉, at two non-overlapping posi-
tions:

En =
{
w ∈ An | ∃(w′, v, a, b) ∈ 〈w〉 × A⌈3 log1/β n⌉ × (A⋆)2 s.t. w′ = vavb

}
.

Then, under Pn or Ln, the probability of En is O
(
n−1

)
.

A key argument of the proof of the main results breaks down if some long block
of the decomposition of a random word is a prefix of another long block, somewhere
else in the word. In order to preclude that, we shall consider blocks with at least
⌈3 log1/β n⌉ letters (at least thrice the length of the longest run(s)2 of the letter a1),
and we shall use Lemma 3.4.

2The probability that there exists several runs with the same maximal length inside a n-letters
long random word is non vanishing with n large, so log1/p1 n characters would be too short.
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Proof. We have

(7) Pn(En) = O
(
n2 β3log1/β n

)
= O

(
n−1

)
,

in which n2 is a bound for the number of positions of the pair of factors of w, and
β3log1/β n is a bound for the conditional probability that the second factor is equal
to the first factor, given the value of the first factor and the positions of the factors.

Due to Lemma 2.1, Ln(En) satisfies

| Ln(En)− Pn

(
π−1(En)

)
|= O

(
βn/2

)
,

and π−1(En) = En ∩ Pn ⊂ En. �

Lemma 3.5 (Overlap of long blocks). Let Fn denote the set of words w ∈ An such
that some factor of 〈w〉, ⌈7 log1/β n⌉-letters long, contains two disjoint long runs.

Then, under Pn or Ln, the probability of Fn is O
(
n2ε−1 log2 n

)
.

Proof. The bound for Pn(Fn) has a factor n for the position of the ⌊7 log1/β n⌋-
letters long factor, a factor 49(log1/β n)

2 for the positions of the 2 runs, and a

factor n2ε−2 for the probability of 2 disjoint runs at 2 specified positions. The
proof extends to Ln by virtue of Lemma 2.1. �

Lemma 3.6. Let In denote the set of words w ∈ An whose suffix of length
⌈6 log1/β n⌉ contains a long run of “a1”. Then, under Pn or Ln, the probability

of In is O
(
n2ε−1 log2 n

)
.

Proof. We have

Pn(In) ≤ nε−1 ⌈6 log1/β n⌉.
The factor ⌈6 log1/β n⌉, that will be explained in the next proof, counts the number

of positions where such a long run could begin. The factor nε−1 = p1
(1−ε) log1/p1

n

is the probability that a long run begins at some given position. The result for Ln

follows from Lemma 2.1, Lemma 3.5 and

Pn

(
π−1(In)

)
≤ Pn(Fn).

�

Proof of Proposition 3.3. Consider the sets

Vn = {w ∈ An |w satisfies v. and vi. and Hn(w) ≥ αnε }
and

G̃n = Vn\ (En ∪ Fn ∪ In) .

Then, under Pn or Ln, the probability of G̃c
n is O

(
n2ε−1 log2 n

)
, due to Lemmas

2.5, 2.6, 3.4 and 3.6. Let us prove that G̃n ⊂ Gn.
Consider a word w ∈ G̃n, and in order to prove that w satisfies conditions i. and

iv., consider a k-letters long long run of w, w = t ak1 s. Since w /∈ In, ⌈3 log1/β n⌉
characters after the beginning of this long run, we are still at least ⌈3 log1/β n⌉
characters away from the end of the word w, and, since w satisfies condition v.,
this long run is over at this point:

|t|+ k ≤ |t|+ ⌈3 log1/β n⌉ ≤ n− ⌈3 log1/β n⌉.
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On the other hand, we are away from the end of the corresponding long block by

at most ⌈(1 − ε) log1/p1
n⌉ − 1 +M

(1)
n (w) characters: the length of a short run of

the letter a1 followed by a run of the letter(s) ā1
3. But, due to condition vi.,

⌈(1− ε) log1/p1
n⌉ − 1 +M (1)

n (w) ≤ ⌈3 log1/β n⌉,
so there is room enough for the long block to end before the end of the word. Thus
to each long run is associated a long block, and w satisfies conditions iv., and also
i., since Hn(w) ≥ αnε.

Let us check that w ∈ G̃n satisfies the conditions ii. and iii.: a long block
is shorter than ⌈6 log1/β n⌉, due to conditions v. and vi., so it can overlap with
the next long block only if the 2 corresponding long runs are contained in some
⌈7 log1/β n⌉-letters long factor, i.e. only it can overlap if w ∈ Fn. Finally if w
satisfies ii. and fails to iii., then w ∈ En. �

In the two following sections, we prove separately the main theorems, Theorem
1.4 and Theorem 1.2.

4. Proof of Theorem 1.4

First, let us draw some consequences of the definitions of the previous sections.
Let Hn(w) be the number of long blocks of a word w ∈ An.

Proposition 4.1. A good Lyndon word w ∈ Gn ∩Ln satisfies the following points:

(1) each long block, by definition a factor of 〈w〉, is also a factor of w,
(2) long blocks are all distinct,
(3) there exists a smallest (resp. a second smallest) long block,
(4) given a sequence of long blocks, (ζi)1≤i≤k, sorted in increasing lexicographic

order, and any sequence of words, (vi)1≤i≤k, the sequence (ζivi)1≤i≤k is also
sorted in increasing lexicographic order,

(5) the smallest of the long blocks is a prefix of w,
(6) either the second smallest of the long blocks is a prefix of the standard right

factor of w, or rn(w) = 1− 1
n .

Proof. Item (1) follows from point iv. of Definition 3.2. Item (2) follows from point
iii. of Definition 3.2. Item (3) follows from item (2) and from point i. of Definition
3.2, as soon as ⌊αnε⌋ ≥ 2, since Hn(w) ≥ ⌊αnε⌋. For items (4) and (6), it can
be useful to remember a basic fact about the lexicographic order: if two words t1
and t2 have prefixes, respectively s1 and s2, such that s1 < s2, it does not entail
that t1 < t2. However, under the additional condition that s1 is not a prefix of
s2, s1 < s2 entails t1 < t2. Thus item (4) fails only if some ζi is a prefix of some
ζj , i < j. But this would violate point iii. of Definition 3.2. As a consequence of
the definition of Lyndon words, w begins with one of the longest runs of a1 in 〈w〉.
This longest run is a prefix of some long block due to point i. of Definition 3.2.
This, together with item (4), entails item (5).

For item (6), consider the two smallest long blocks, ζ1 < ζ2, in the necklace

〈w〉, and let k1 and k2 be the lengths of the runs they begin with: ζ1 = ak1
1 v1 and

ζ2 = ak2
1 v2, in which the words vi do not begin with the letter a1. We know that

3from now on, we do not need to use Bernoulli processes anymore, so, rather than discussing
runs of 0’s and 1’s in ϕ(w), we shall get back to w and discuss, equivalently, runs of letters a1 and
ā1, in which ”runs of ā1” stands for ”runs without any letter a1”.
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w begins necessarily with a long run. Thus w begins with a long block, necessarily
ζ1, for ζ1 is not a prefix of any other long block (see the considerations leading to
item (4)). The second smallest word in 〈w〉, w2 = τrw, begins with ζ2 or with

ak1−1
1 v1, but, since ak1−1

1 v1 or ζ2 are at least ⌈3 log1/β n⌉-letters long, they cannot

be prefixes of each other, due to point iii. of Definition 3.2. Thus rn(w) = 1− 1
n if

ak1−1
1 v1 < ζ2, and rn(w) = 1− r

n if ak1−1
1 v1 > ζ2. �

By Definition 3.2 and Proposition 4.1, a good Lyndon word w ∈ Gn ∩ Ln has a
unique decomposition

w = β1g1β2g2 . . . βHn(w)gHn(w),

in which the βi’s are a permutation of the long blocks ζi’s, now sorted with respect
to their position inside w rather than in lexicographic order (but β1 = ζ1). The
gi’s fill the gaps between the βi’s, and, if not empty, they begin with the letter a1,
but do not end with letter a1. As a consequence, if not empty, gi has a unique
decomposition

gi = aj11 āk1
1 aj21 āk2

1 . . . ajr1 ākr
1 ,

where r and all the exponents are positive. This leads to the definition of short
blocks of good Lyndon words :

Definition 4.2. The short blocks, denoted (sj)j , of a good Lyndon word w ∈
Gn ∩ Ln are the factors ajm1 ākm

1 appearing in the unique decomposition of factors
gi. As a consequence, any w ∈ Gn ∩ Ln has a unique block -decomposition

w = Y0(w)Y1(w) . . . YKn(w)−1(w)YKn(w)(w),

in which the Yi’s stand either for a long block βi or for a short block sj .

Remark 4.3. Set k0 = ⌈(1 − ε) log1/p1
n⌉. This decomposition of good Lyndon

words can be seen as the decomposition of the elements of some submonoid of
∪
l 6=1

ak0

1 A⋆al, containing Gn ∩ Ln, according to the code4 κn defined below:

• κn contains any word ak1a
k1

l1
ak2

l2
. . . akr

lr
such that r ≥ 1, 1 ≤ k < k0, ki ≥ 1,

li 6= 1 for 1 ≤ i ≤ r.
• κn contains the elements t = uv of ∪

l 6=1
ak0
1 A⋆al, with |u| = ⌊1+ 3 log1/β n⌋,

such that t does not contain any factor ala
k0
1 , l 6= 1 (long blocks do not

overlap), and such that, for ℓ 6= 1, ala1 is not a factor of v.

Remark 4.4. Note that the short blocks of some word w ∈ Gn ∩Ln have less than

k0 + 2 log1/(1−p1) n ≤ 3 log( 1
β∧ 1

1−p1
) n

letters, while the long blocks are not longer than

2 + (6 − ε) log( 1
β∧ 1

1−p1
) n.

For a long block, count ⌊2+ 3 log1/β n⌋ letters for the minimal size of a long block,

plus eventually a run of “a1” (a short one, due to point ii. of Definition 3.2, at most
⌈−1 + (1 − ε) log1/p1

n⌉ letters long starting before the ⌊2 + 3 log1/β n⌋-limit) and

a run of “ā1”, at most ⌈−1 + 2 log1/(1−p1) n⌉ letters, due to point v. of Definition
3.2.

4we understand a code as defined in [Lot05, p. 7], for instance.



14 PHILIPPE CHASSAING AND ELAHE ZOHOORIAN AZAD

When the factors of the block-decomposition are sorted according to the lexico-
graphic order, the long blocks βi’s turn out to be smaller than the si’s, since they
begin with longer runs of “a1”. By Proposition 4.1, the smaller of all these factors
is β1 = Y0(w). Let Jn(w) denote the index of the second smaller factor, and let dn
denote its (normalized) position, defined by

(8) dn(w) =
1

n

Jn(w)−1∑

i=0

|Yi(w)|.

If w ∈ a1Ln−1 (this happens with probability p1 + o(1), according to (13)),

rn(w) = 1− 1/n,

while if w ∈ Gn ∩ (Ln\a1Ln−1), the second smaller block YJn(w), also a long block,
is a prefix of the standard right factor, by Proposition 4.1, and

rn(w) = 1− dn(w).

When w ∈ Gn, both cases can be detected by inspection of the two smallest blocks.
Let Gn denote the conditional probability given Gn ∩ Ln:

Gn (A) =
Pn (A ∩ Gn ∩ Ln)

Pn (Gn ∩ Ln)
=

Ln (A ∩ Gn ∩ Ln)

Ln (Gn ∩ Ln)
.

Let UA (resp. Ud) denote the uniform probability distribution on a finite set A
(resp. the uniform distribution on [0, 1]d, for a given integer d). As a first step in
the proof of Theorem 1.4, we show that the distribution of dn under Gn converges
to U1 with respect to the L2-Wasserstein metric W2(., .).

The L2-Wasserstein metric W2(., .) is defined by

W2(µ, ν) = inf
L(X)=µ
L(Y )=ν

E

[
‖X − Y ‖22

]1/2
,(9)

in which µ and ν are probability distributions on R
d, and ‖.‖2 denotes the Eu-

clidean norm on Rd. Convergence of L(Xn) to L(X) with respect to W2(., .) entails
convergence of Xn to X in distribution (see [Rac91]). The multidimensional case
(d ≥ 1) is needed for section 5.

As in [MZA07], the key point is the invariance of Gn under uniform random
permutation of the blocks

{
Y1(w), . . . , YKn(w)(w)

}
.

Notations 4.5. Let Sn denotes the set of permutations of {1, . . . , n}. For w ∈
Gn ∩ Ln, and σ ∈ SKn(w), we set

σ.w = Y0(w)Yσ(1)(w) . . . Yσ(Kn(w))(w),

and

C(w) = {σ.w : σ ∈ SKn(w)}.

Proposition 4.6. Assume that w ∈ Gn ∩ Ln, and w′ ∈ C(w): then w′ ∈ Gn ∩ Ln

and w′ has the same multiset of blocks as w (it has the same blocks, with the same
multiplicity). As a consequence, for w,w′ ∈ Gn ∩ Ln, either C(w) = C(w′) or
C(w) ∩C(w′) = ∅.
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This follows directly from Definition 3.2 and the definition of a code. Let Cn =
{C(w) ; w ∈ Gn ∩ Ln}, and let Cn denote the σ-algebra generated by Cn. Also, let
X(w) = (Xi(w))i≥0 be the sequence of blocks of w sorted in increasing lexicographic

order, ended by an infinite sequence of empty words, and let Ξ(w) = (Ξi(w))i≥0 be
the corresponding sequence of lengths.

Corollary 4.7. The weight p(.), X, Ξ, Hn and Kn are Cn-measurable, and

Gn =
∑

C∈Cn

Card(C) p(C)

Pn(Gn ∩ Ln)
UC .

Given that w ∈ C, the ranks of the blocks (Xi)1≤i≤Kn(C) are uniformly distributed.

Proof. The weight p(w) depends only on the number of letters a1, a2, . . . that w
contains, not on the order of the letters in w, so that p(.) is constant on each
C ∈ Cn: thus, under Gn, the conditional distribution of w given that w ∈ C
is UC . As a consequence of Proposition 4.6, Cn is a partition of Gn ∩ Ln, so the
relation in Corollary 4.7 is just the decomposition of Gn according to its conditional
distributions given Cn. �

Due to the previous considerations, the general result below can be applied, in
this section, to prove the asymptotic uniformity of dn.

Lemma 4.8. Let W2(., .) denote the L2-Wasserstein metric on Rk. Consider a
random partition of [0, 1) into ℓ + 2 intervals ([ai(ω), bi(ω)))0≤i≤ℓ+1, with respec-

tive (non-random) widths (xi)0≤i≤1+ℓ (xi ≥ 0,
∑

i xi = 1), sorted according to a
random permutation ω ∈ Sℓ, meaning that, for 1 ≤ j ≤ ℓ:

aj(ω) = x0 +
∑

i: 1≤i≤ℓ,
and ω(i)<ω(j)

xi, bi(ω) = x0 +
∑

i: 1≤i≤ℓ,
and ω(i)≤ω(j)

xi.

and

[a0(ω), b0(ω)] = [0, x0], [aℓ+1(ω), bℓ+1(ω)] = [1− xℓ+1, 1].

Set ãk = (a1, . . . , ak); 1 ≤ k ≤ ℓ. Then

W2(ãk,Uk) ≤

√√√√k
3

ℓ∑

i=1

x2
i .

Proof. The proof is similar to the proof of [MZA07, Lemma 6.3], which is the special
case k = 1 of Lemma 4.8. As in the proof of [MZA07, Lemma 6.3], we rather define
the random permutation ω and the sequence (ai) with the help of a sequence of
i.i.d. uniform random variables (U1, . . . , Uℓ) :

aj = x0 +
∑

i: 1≤i≤ℓ,
and Ui<Uj

xi.

Among the many couplings between ãk and Uk, this special one provides the desired
bound on the Wasserstein distance. Actually, conditioning given Uj, 1 ≤ j ≤ k, we
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obtain

E
[
(Uj − aj)

2
]

= E



(
x0(Uj − 1) +

ℓ∑

i=1

xi

(
Uj − 1{Ui<Uj}

)
+ xℓ+1Uj

)2



= E
[
(1− Uj)

2
]
x2
0 + E

[
U2
j

]
x2
ℓ+1 + E [Uj(1 − Uj)]

ℓ∑

i=1

x2
i

= 1
3

(
x2
0 + x2

ℓ+1

)
+ 1

6

k∑

j=1

x2
j .

We struggle with the idea that such computations are new. Actually the argument
can be adapted (taking the xi’s in {0, 1/n}) to compute the L2 distance (

∑
t(1 −

t))/n between an evaluation Fn(t) of the empirical distribution function and t, cf.
[SW09, Ch. 3.1, p.85, display (3)]. �

We shall need the full generality of Lemma 4.8 in Section 5. In this section,
we specialize Lemma 4.8 to k = 1. If νn denotes the distribution of dn under
(Gn ∩ Ln,Gn), we deduce that:

Theorem 4.9 (Position of the second smallest block).

W2 (νn,U1) = O
(√

logn

n

)
.

As a consequence, under Gn, the moments of dn converge to the corresponding
moments of U1.

Proof. The proof of [MZA07, Theorem 6.4] holds step by step: if νC is the con-
ditional distribution of dn(w) given that w ∈ C, then νC is also the image of the
uniform probability on SKn(w) by the application σ 7−→ dn(σ.w). Thus Lemma 4.8
and (8) lead to

W2 (νC ,U1) ≤
1

n

√∑

i

Ξ2
i .

Then, Corollary 4.7 entails

W2 (νn,U1) ≤
1

n

√√√√E

[∑

i

Ξ2
i

]
,

and we conclude with the help of
∑

i a
2
i ≤ (

∑
i ai)×maxi ai, and of Remark 4.4. �

As in [MZA07, Theorem 6.5], asymptotic independence between Cn and dn holds
under Gn: for a Cn-measurable R-valued statistic Wn with probability distribution
χn,

W2 ((Wn, dn), χn ⊗ U1) = O
(√

logn

n

)
.(10)

In order to prove Theorem 1.4, let µn (resp. µ̃n) denote the image of Ln (resp. of
Gn) by rn. Set

L1
n = (Gn ∩ Ln) ∩ a1Ln−1 = Gn ∩ a1Ln−1, and L2

n = (Gn ∩ Ln)\L1
n.
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We remark that:

i. if w ∈ L1
n, rn(w) = 1− 1

n holds true5 ;

ii. if w ∈ L2
n, rn(w) = 1− dn(w) ;

iii. when w ∈ Ln\(Gn ∩ Ln), the crude bound 0 ≤ rn(w) ≤ 1 will prove to be
more than sufficient for our purposes.

First, the conditional law ν̃, given A, of a bounded r.v. X , defined on a proba-
bilistic space Ω, is Wasserstein-close to its unconditional law ν, if A is close to Ω.
More precisely

(11) W2 (ν, ν̃) ≤ 2P (Ω\A)1/2 ‖X‖∞ .

As a consequence, point iii., together with Proposition 3.3, entails that

W2(µn, µ̃n) = O
(
n−1/2+ε logn

)
.

Thus we shall now work on Gn ∩ Ln, under Gn, for µn has the same asymptotic
behaviour as µ̃n.

On Gn ∩ Ln, we have, according to points i. and ii.,

rn = fn
(
dn,1L2

n

)
= (1− dn)1L2

n
+

(
1− 1

n

)
(1− 1L2

n
).

The Cn-measurability of L2
n (see [MZA07, Section 7] for more details) and relation

(10) entails that

W2

(
(1L2

n
, dn), χn ⊗ U1

)
= O

(√
logn

n

)
.(12)

in which χn denotes the probability distribution of 1L2
n
. Thus, there exists a prob-

ability space, and, defined on this probability space, a couple (Wn, U) with distri-
bution χn ⊗ U1, and a copy6 of (1L2

n
, dn) whose L2 distance satisfies

∥∥1L2
n
−Wn

∥∥2
2
+ ‖dn − U‖22 = O

(
logn

n

)
.

Set

r̃n = (1− U)Wn +

(
1− 1

n

)
(1−Wn).

The inequality

|fn (d, w) − fn (d
′, w′)|2 ≤ 2

(
|d− d′|2 + |w − w′|2

)
,

that holds for (w,w′, d, d′) ∈ [0, 1]4, entails that

W2 (µ̃n, r̃n) = O
(√

logn

n

)
.

5Actually, rn(w) = 1 − 1
n

holds true if w ∈ akLn−1(ak , ak+1, . . . , an), but, since w ∈ Gn, w

contains at least one occurrence of the letter a1, which precludes w ∈ akLn−1(ak , ak+1, . . . , an)

for k ≥ 2.
6denoted (1L2

n
, dn) for sake of economy.
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Finally, using an optimal coupling
(
Wn, Ŵn

)
in which Ŵn is a Bernoulli random

variable with expectation 1− p1, independent of U , set

r̂n = (1− U)Ŵn +

(
1− 1

n

)
(1− Ŵn).

As above, we obtain easily

W2 (r̃n, r̂n) ≤ W2

(
Wn, Ŵn

)

≤
√
|Gn(L2

n)− (1− p1)|.
Also

(1 − U)Ŵn + (1− Ŵn) = r̂n +
1

n
(1 − Ŵn)

has distribution µ. Thus

W2 (r̂n, µ) ≤
1

n
.

Now
Pn(a1Ln−1)− Pn(Ln\Gn) ≤ Pn(L1

n) ≤ Pn(a1Ln−1).

So by Proposition 3.3 and the fact that Pn(Ln) =
1
n (1−O(βn/2)), we obtain

(13)
∣∣Gn(L1

n)− p1
∣∣ = O

(
(logn)2 n2ε−1

)

and

W2(r̃n, r̂n) = O
(
n−1/2+ε logn

)
.

With (12), this yields

W2(µn, µ) = O
(
n−1/2+ε logn

)
.

Since 0 ≤ rn ≤ 1, convergence of moments follows. �

5. Proof of Theorem 1.2

According to Definitions 3.1 and 3.2, for w ∈ Gn, the number of long blocks and
the number of long runs are the same. Thus w has a unique decomposition

w = ḡ1β1g2β2 . . . βHn(w)ḡHn(w),

in which the βi’s are long blocks and (ḡi)i∈{1,Hn(w)} and (gi)i∈{2,...,Hn(w)−1} are
some words in A⋆. The factors ḡ1 and ḡHn(w) have a unique factorization :

ḡ1 = āk1a1
j1 āk1

1 . . . a1
jh ākh

1 := āk1g1

and
ḡHn(w) = aj11 āk1

1 aj21 āk2
1 . . . a

jh′

1 ā
kh′

1 aj1 := gHn(w)a
j
1,

in which “āk1” denotes a run of k letters that does not contain the letter “a1”, and
h, h′ and all powers are positive or zero. Then if a factor gi; i∈{1,...,Hn(w)} is non
empty, it has a unique decomposition

gi = aj11 āk1
1 aj21 āk2

1 . . . ajr1 ākr
1 ,

in which r and all the exponents are positive. Now let us define the short blocks of
good words :

Definition 5.1. The short blocks, denoted (sj)j , of a good word w ∈ Gn are the

factors ajm1 ākm
1 appearing in the unique decomposition of factors gi.
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As a consequence, any word w ∈ Gn has a unique block-decomposition

w = ā
k(w)
1 Y1(w) . . . YK′

n(w)−1(w)YK′
n(w)(w)a

Ln(w)
1 ,

in which k ≥ 0, Ln(w) ≥ 0 and the Yi’s are either long blocks, or short blocks. Let
Ji,n(w), 1 ≤ i ≤ Hn(w), denote the index of the i-th smallest block of w ∈ Gn :
since i ≤ Hn(w), YJi,n has to be a long block. Let di,n(w), 1 ≤ i ≤ Hn(w), denote
the normalized position of YJi,n(w) in w, defined as the ratio |u|/|w|, in which w
has the factorization w = uYJi,n(w)v. The normalized position di,n(w) is given by
the formula :

di,n(w) =
1

n


k(w) +

Ji,n(w)−1∑

j=1

|Yj(w)|


 ; i = 1, . . . , Hn.

For a word ω ∈ An, it is convenient to complete the sequence (dk,n(ω))1≤k≤Hn(ω) by
an infinite sequence of 0’s. For a word ω ∈ Gn, this is not much of a perturbation,
since the original sequence is very long : according to Lemma 2.5, the probability
that Hn(ω) is smaller than αnε vanishes.

Let Ĝn denote the conditional probability given Gn:

Ĝn (A) =
Pn (A ∩ Gn)

Pn (Gn)
.

By arguments similar to those in Section 4, we obtain that for any k ≥ 1 the

sequence of random variables (di,n)1≤i≤k is, under Ĝn, asymptotically uniform on

[0, 1]k. Once again, the key point is the invariance of Ĝn under uniform random
permutations of the blocks Yi : let σ ∈ SK′

n(w) act on w by permutation of blocks :

σ.w = āk1Yσ(1)(w) . . . Yσ(K′
n(w))(w)a

Ln(w)
1 .

The action is slightly different from the action defined at Section 4, for the decom-

position is different, and in addition to the prefix āk1 , an eventual suffix a
Ln(w)
1 is

also left untouched by the permutation. Let

C(w) = {σ.w : σ ∈ SK′
n(w)}

denote the orbit of w under that action, and let C
′
n the σ-algebra generated by

C′
n = {C(w) ; w ∈ Gn}. The proof of the next theorem is similar of the proof of

Theorem 4.9 in Section 4.

Theorem 5.2 (Positions of the k first smallest blocks). Let ν̃k,n = (νi,n)1≤i≤k be

the distribution of d̃k,n = (di,n)1≤i≤k under (Gn, Ĝn). We have

W2 (ν̃k,n,Uk) = O
(√

logn

n

)
.

So far we saw that the normalized positions of the Hn smallest blocks are asymp-
totically independent and uniformly distributed on [0, 1]. These Hn blocks are the
prefixes of the Hn smallest words in the necklace of w. However, some of these
Hn blocks are not prefixes of Lyndon factors of w, but if the sequence i → Ji,n
is decreasing. For instance, in a word containing 9 long blocks with lexicographic
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ranks going from 1 to 9, the blocks could be placed along the word in the following
way :

. . . 4 . . . 8 . . . 3 . . . 5 . . . 7 . . . 1 . . . 9 . . . 2 . . . 6 . . . .

In this example, the long blocks which are prefixes of Lyndon factors of this word
are the blocks 1, 3 and 4, those whose ranks constitute records of the sequence
483571926 : the long blocks with ranks 9, 2 and 6 are immersed in the first Lyndon
factor starting with YJ1,n , and the long blocks with ranks 5 and 7 are immersed
in the second Lyndon factor, that starts with YJ3,n . Note that the largest (and
shortest) Lyndon factors, that do not begin with long blocks, do not appear in this
list of Hn factors, but, as a consequence of Theorem 1.2, the total length of these
largest factors is o(n) : once normalized by n, their length does not contribute to
the asymptotic behavior of the factorization.

By invariance of Ĝn under uniform random permutations of the blocks Yi, the
sequence of ranks of the long blocks is, conditionally given that Hn = k, a random
uniform permutation of Sk. Thus the conditional distribution of the number Λn

of Lyndon factors obtained this way, given that Hn = k, has the same law as
the number of records (or of cycles) of a uniform random permutation in Sk (see
[ABT03, Ch. 1] or [Lot02, Ch. 11]), with generating function

1

k!
x(x + 1)(x+ 2) . . . (x+ k − 1) =

1

k!

∑

0≤j≤k

[
k

j

]
xj ,

in which
[
k
j

]
is a Stirling number of the first kind. We can thus describe the

conditional law of Λn as follows : consider a sequence B = (Bi)i≥1 of indepen-
dent Bernoulli random variables with respective parameters 1/i, B and Hn being
independent. Set

Sn =
∑

1≤i≤n

Bi

and
Λ̃n = SHn =

∑

i

Bi 111≤i≤Hn .

Then Λn and Λ̃n have the same distribution, and we shall use the notation Λn for
both of them. The following lemma insures that with a probability close to 1, Λn

is at least of order logn.

Lemma 5.3.

Pn(Λn ≤ ε logn/3) = O
(

1

logn

)
.

Proof. The m-th harmonic number has the asymptotic expansion
m∑

i=1

1/i = Hm = lnm+ γ +
1

2m
− 1

12m2
+ . . . ,

in which γ is the Euler-Mascheroni constant (see [CG96]). We have

E(Sn) = Hn and Var(Sn) = Hn −
n∑

i=1

1

i2
.

By Lemma 2.5 :

Pn (Λn < ε logn/3) ≤ Pn (Λn < ε logn/3 | Hn ≥ αnε) +O
(
n−1

)
.
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In addition

Pn (Λn < ε logn/3 | Hn ≥ αnε) ≤ Pn (Sαnε < ε logn/3)

≤ Pn {|Sαnε − E(Sαnε)| ≥ ε logn/2}

= O
(

1

logn

)
,

in which the second inequality holds true for n large enough, and the last equality
follows from the Bienaymé-Chebyshev inequality. �

Let L denote a geometric random variable with parameter 1− p1, such that, for
k ≥ 0,

P(L = k) = pk1(1− p1),

and let U = (Uk)k≥1 be a sequence of independent random variables, uniform on
(0, 1). Assuming that U and L are independent, let µ denote the law of the pair
(L,U). We complete the sequences (dk,n)1≤k≤Hn and (ρk,n)1≤k≤Hn by 0’s in order

to form the infinite sequences dn and ρ(n). There are three steps:

(1) we use Theorem 5.2 to derive the convergence of (Ln, dn)n≥1 to µ ;

(2) we prove that ρ(n) is the image of (Ln, dn) by a functional L whose domain
of continuity CL satisfies µ (CL) = 1 ;

(3) we check that the distribution of L(L,U) is conform to the description given
in Theorem 1.2.

For step 1, thanks to [Kal97, Theorem 3.29], we know that weak convergence
holds for the infinite sequences, if weak convergence of the distribution (under Pn)
of the finite sequence (Ln, (di,n)1≤i≤k) holds for arbitrary k. Again, as in [MZA07,
Theorem 6.5], asymptotic independence between C

′
n and (di,n)1≤i≤k holds under

Ĝn: for a C
′
n-measurable R-valued statistic Wn with probability distribution χn,

W2 ((Wn, (di,n)1≤i≤k), χn ⊗ Uk) = O
(√

k logn

n

)
.(14)

But it holds true, from the definition of Ln, that Ln, or Wn = e−Ln , are C
′
n-

measurable, i.e. invariant on each C′(w).
Let χ̃n (resp. χ) denote the distribution of Wn under Pn (resp. the distribution

of e−L). Due to Proposition 3.3 and to relation (11),

W2 (χ̃n, χn) (= W2 (χ̃n ⊗ Uk, χn ⊗ Uk)) = O
(
n−1/2+εlogn

)
.

Now, under Pn, Ln has the same law as L ∧ n. This is perhaps clearer when one
considers the word ω obtained by reading the word ω from right to left : clearly,
under Pn, Ln defined by

Ln(ω) = Ln(ω)

has the same law as Ln, for ω and ω have the same weight. But Ln has the same
law as L ∧ n. Thus a.s. convergence of L ∧ n to L entails that

W2 (χ̃n, χ) (= W2 (χ̃n ⊗ Uk, χ⊗ Uk)) = O
(
e−n

)
.

Weak convergence of (Ln, (di,n)1≤i≤k) follows at once.
For the point 2, let T be the functional that shifts a sequence u as follows :

T (u) = T (u1, u2, . . . ) = (1, u1, u2, . . . ).
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Let S be the functional that keeps track of the sequence of low records (in the
broad sense) of a sequence u of real numbers. The functional S is well defined and
is continuous on a set of measure 1 of [0, 1]N, for instance on the set R of sequences
u without repetition such that lim inf u = 0. Then the functional L defined on
N×R by

L(k, u) = T k ◦ S(u)
is continuous as well, and L(Ln, dn) converges in distribution to L(L,U).

Set

si,n = 1− (ρ1,n + ρ2,n + · · ·+ ρi,n).

If Ln(w) = k ≥ 1, the first k factors of the Lyndon decomposition are k words
reduced to one letter “a1”. Thus, for 1 ≤ i ≤ k,

si,n = 1− i

n
.

The next Λn terms, sk+1,n, sk+2,n, . . . , sk+Λn,n, are the low records of the sequence
dn. The difference between the two sequences sn and L(Ln, dn) is thus

L(Ln, dn)− sn =
(
1
n ,

2
n , . . . ,

k
n , 0, 0, . . . , 0, sk+Λn+1,n, sk+Λn+2,n, . . .

)
.

Endowing [0, 1]N with the distance

d(u, v) =
∑

k≥1

2−k|uk − vk|,

we obtain

d(sn,L(Ln, dn)) ≤
L2
n

2n
+ 2−Ln−Λn .

This inequality and Lemma 5.3 entail that the d-Wasserstein distance between sn
and L(Ln, dn) goes to 0. Since L(Ln, dn) converges in distribution to L(L,U), sn
converges in distribution to L(L,U) too.

For point 3, we note that L(L,U) and s have the same distribution. Further-
more the transformation sending sn to ρ(n), and s to ρ, is bicontinuous. Thus the
convergence in distribution of ρ(n) to ρ follows.
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