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Continuum Percolation in the Relative Neighborhood Graph

In the present study, we establish the existence of nontrivial site percolation threshold in the Relative Neighborhood Graph (RNG) for Poisson stationary point process with unit intensity in the plane.

Introduction

Percolation theory is very useful to describe various physical phenomena. In particular, there are important connections with phase transition problems [START_REF] Grimmet | Percolation, Second Edition[END_REF][START_REF] Georgii | The random geometry of equilibrium phases[END_REF].

The interest for percolation problems has grown rapidly during the last decades: see Lyons and Peres [START_REF] Lyons | Probability on Trees and Networks[END_REF] for percolation on trees and networks and Meester and Roy [START_REF] Meester | Continuum Percolation[END_REF] for continuum percolation and the references therein. In 1996, Häggström and Meester [START_REF] Häggström | Nearest Neighbor and Hard Sphere Models in Continuum Percolation[END_REF] proposed results for continuum percolation problems for the k-nearest neighbor graph under Poisson process. In a recent paper, Balister and Bollobás [START_REF] Balister | Percolation in the k-nearest neighbor graph[END_REF] give bounds on k for the k-nearest neighbor graph for percolation with several possible definitions.

Site and bond percolation as well as phase transition for several statistical mechanics models have also been studied by Häggström [START_REF] Häggström | Markov random fields and percolation on general graphs[END_REF] for general graphs and in particular for the Delaunay triangulation for the Poisson point process. It also shows for graphs with a bounded degree if the bond percolation threshold is not trivial then it implies a phase transition for the Ising model on this graph. For general results on Delaunay graphs and Voronoi tesselations see Moller [START_REF] Møller | Lectures on Random Voronoi Tessellations[END_REF]. For recent results on percolation on these graphs see Balister et al. [START_REF] Balister | Percolation in a voronoi process[END_REF][START_REF] Balister | Bond percolation with attenuation in high dimensional voronoi tilings[END_REF].

Benjamini and Schramm [START_REF] Benjamini | Percolation beyong Z d , many questions and a few answers[END_REF] proposed a comprehensive study on general graphs, with special focus on Cayley graphs, quasi-transitive graphs and planar graphs. Recently, Procacci and Scoppola [START_REF] Procacci | Infinite graphs with a nontrivial bond percolation threshold: some sufficient conditions[END_REF] proposed sufficient conditions on infinite graphs to deduce a non trivial bond percolation threshold. Among these assumptions, they assume that the dual graph is bounded degree. It is interesting to relax this condition in order to deal with proximity random graphs (which in general have a dual not bounded degree) like the skeletons on point Poisson processes of the plane. These random graphs includes the Gabriel graph and the Relative Neighborhood Graph (RNG) which are important for many applications.

Remark that continuous models defined on nearest neighbors graphs are interesting for small temperature as alternative of standard models on regular networks, because it allows vibrations and deformations of the network and may be find an application in physics of the solid state. In particular one example is the study of the order-disorder transition of binary alloys or ionic cristals. It is well-known that Delaunay graph or Voronoi regions (rather called Wigner-Seitz grid and Brillouin zone in physics framework) take a fondamental place for the understanding of the electrical current, waves propagation and phase transitions observed by Bragg diffraction of X rays.

Another domain of application should be found in cancerology for the study of the growth of tumour when the cancer cells suddently begin to invade healthy tissue. The Delaunay graph is well adapted for such study as explained in [START_REF] Bertin | Spatial Delaunay Gibbs Point Processes[END_REF] but the RNG should give some more information. More precisely, in histology we have some slides with marked cells (cancer cells and normal cells in first approximation) and probably, a connection between percolation and the grade of a given cancer will be helpful to give an aid for the diagnostic of a pathologist.

The existence and unicity at small activity of nearest neighbors stationary Gibbs states can be found in Bertin et al. [START_REF] Bertin | Existence of Delaunay Pairwise Gibbs Point Processes with Superstable Component[END_REF][START_REF] Bertin | Existence of "Nearest-Neighbour" Gibbs Point Models[END_REF][START_REF] Bertin | k-Nearest-Neighbour Gibbs Point Processes[END_REF]. In Bertin et al. [START_REF] Bertin | Phase Transition in Nearest-Neighbour Continuum Potts Models[END_REF], the phase transition in the Delaunay continuum Potts model is established. It is a generalization of the Lebowitz-Lieb model as described in Georgii and Häggström [START_REF] Georgii | Phase transition in continuum Potts models[END_REF] where the soft repulsion between several species of particules acts on the Delaunay graph. What is the good Delaunay subgraph on which the repulsion is strong enough to maintain a phase transition? In terms of percolation, it means: is bond percolation maintained in this subgraph? Bertin et al. [START_REF] Bertin | Continuum Percolation in the Gabriel Graph[END_REF] gave an answer for the Gabriel graph. Another well-known subgraph of Delaunay graph is the Minimum Spanning Tree (MST). The structure of spanning forest generalized minimum spanning tree for infinite graphs. Constructed with the greedy algorithm, this graph exactly is described in the book of Meester and Roy [START_REF] Meester | Continuum Percolation[END_REF]. The link between branching number and percolation on trees is proved by Lyons [START_REF] Lyons | Random walks and percolation on trees[END_REF]. Connection between minimum spanning forest and occupied and vacant percolation is strong (for more details on simultaneous uniqueness see Alexander [START_REF] Alexander | Percolation and minimal spanning forests in infinite graphs[END_REF]). Thus, the minimum spanning forest is a tree with one infinite path a.s. in two dimensions when the points are distributed under a stationary Poisson process. It comes that a.s. the site or bond critical threshold are equal to 1.

The present study gives an answer for the RNG, well known in computational geometry, when the points are distributed under a stationary Poisson point process with unit intensity in the plane. We adapted a powerful method of the rolling ball proposed by Balister and Bollobás [START_REF] Balister | Percolation in the k-nearest neighbor graph[END_REF] relying on 1-independent bond percolation on Z 2 . Then if we control the probability of having less than a fixed number of points in a given region and considering the event that all the sites are open in this region, we can proceed similarly as in Häggström [START_REF] Häggström | Markov random fields and percolation on general graphs[END_REF].

The paper is organized as follows. The first section is devoted to some definitions and notations. Next, the main result on site and bond percolation on the RNG is given. Then, we give the proof of the main result, by using a result of bond percolation in the 1-independent case in Z 2 and the rolling ball method. We conclude on possible extensions of this work.

Notations and definitions

Let |A| denotes the Lebesgue measure if the set A is a bounded Borel set of R 2 , and the counting measure if A is a discrete set.

Given a finite box Λ ⊂ R 2 , we denote by Π Λ the Poisson point process on the locally finite set of points in Λ denoted by Ω Λ with intensity 1 i.e.

ΩΛ f dΠ Λ = exp (-|Λ|) ∞ n=0 1 n! Λ n f ({x 1 , . . . x n })dx 1 , . . . dx n
for any bounded measurable function f on Ω Λ .

Let Ω the set of locally finite subsets of R 2 . We have to consider only the configurations ϕ ∈ Ω which are in general position (four points on the same circle do not occur and no three points are colinear) in order to ensure the existence and unicity of the Delaunay graph. One can notice that, for any stationary point processes, the probability of the set of tesselations in general position is equal to one [START_REF] Møller | Lectures on Random Voronoi Tessellations[END_REF]. Let us recall the definitions of Delaunay, Gabriel and relative neighborhood graphs. 

Definition 3

The Relative Neighborhood graph Rn(ϕ) of a configuration ϕ in Ω is defined as the set of edges {u, v} ⊂ ϕ such that the intersection of the disks with center u and v with radius uv does not contain any point of the configuration ϕ.

These graphs are planar in R 2 . Furthermore, the RNG is a subgraph of the Gabriel graph which is a subgraph of the Delaunay Graph (see figure 1).

Main result

We first deal with the site percolation on the RNG for the Poisson point process Φ. We introduce the Bernoulli process Θ(Φ) providing the type picking mechanism (1 for open and 0 for closed) of the points (or sites) in Φ. Obviously, Φ = (Φ, Θ(Φ)) can be seen as a marked Poisson process. The probability measure of Φ is given by : P(dϕ, dθ) = Π(dϕ)µ p ϕ (dθ) We now introduce p site c (Rn, Π) defined as the lowest p for which the probability of the event that there exists an infinite open cluster in the RNG relative to the marked point Poisson process Φ is equal to 1. By ergodicity of Π, this previous event, invariant by translation, is a trivial event. The marked point Poisson process Φ may exhibit some percolation phenomenon with critical value p site c (Rn, Π). We want to prove in the following theorem that this is a non trivial critical value, i.e., The following section is devoted to the proof of this theorem.

Proof

First, we point out that the method proposed by Häggström [START_REF] Häggström | Markov random fields and percolation on general graphs[END_REF] and used for k nearest neighbor graph and Delaunay graph, as well as the adaptation by Bertin et al. [START_REF] Bertin | Continuum Percolation in the Gabriel Graph[END_REF] to the Gabriel graph does not applied to the RNG. However, it is not sufficient to control the probability of having at least one point and less than a fixed number of points in each small box K (see figure 2).

Indeed, we may choose some configuration of points such that the length and number of points of a Rnpath between two points are arbitrary large, see figure 2. wt is an edge of the RNG but uv is not because for example the point q belongs to the vacuity region of this edge. Moreover, such methods are based on comparison with independent bond percolation on the grid Z 2 . As, in Balister and Bollobás [START_REF] Balister | Percolation in the k-nearest neighbor graph[END_REF] in the case of k nearest neighbor graph, we adapt the method of rolling ball (see figure 3) to the RNG. We procceed in two steps:

1. Controling the probability of some suitable configurations of points under Poisson point process.

2. Consider the Bernoulli site percolation in such configurations.

To prove that continuous percolation occurs, we shall compare the process to various bond percolation models on Z 2 . In these models, the states of the edges will not be independent. However they will satisfy the following definition: Definition 4 A bond percolation model is 1-independent if whenever E 1 and E 2 are sets of edges at graph distance at least 1 from each another (i.e., if no edge of E 1 is incident to an edge of E 2 ) then the state of the edges in E 1 is independent of the state of the edges in E 2 .

We shall use the following result in Balister et al. [START_REF] Balister | Continuum percolation in the square and the disk[END_REF]. Let us first consider the case of percolation in the RNG. Write u ∼ v if uv is an edge of the underlying graph Rn(ϕ). For percolation we need to find an infinite path, i.e., a sequence u 1 , u 2 . . . with u i ∼ u i+1 for all i. Consider the rectangular region consisting of two adjacent squares S 1 , S 2 shown in figure 3. Both S 1 and S 2 have side length 2r + 2s, where r and s are to be chosen later. We define the basic good event E S1,S2 to be the event that every vertex u 1 in the central disk C 1 of S 1 is joined to at least one vertex v in the central disk C 2 of S 2 by a Rnpath, regardless of the state of the Poisson process outside of S 1 and S 2 . Now consider the following percolation model on Z 2 . Each vertex (i, j) ∈ Z 2 corresponds to a square [Ri, R(i + 1)] × [Rj, R(j + 1)] ∈ R 2 , where R = 2r + 2s, and an edge is open between adjacent vertices (corresponding to squares S 1 and S 2 ) if both the corresponding basic good events E S1,S2 and E S2,S1 hold. Note that this is indeed a 1-independent model on Z 2 since the event E S1,S2 depends only on the Poisson process within the region S 1 and S 2 , and thus sets of edges at distance at least one apart in Z 2 depend on the Poisson process in disjoint regions of R 2 . Any open path in Z 2 corresponds to a sequence of basic good events E S1,S2 , E S2,S3 . . . that occur, where S i is the square associated with a site in Z 2 . Every vertex u 1 of the original Poisson process that lies in the central disk C 1 of S 1 now has an infinite path leading away from it, since one can find points u i in the central disk of S i and paths from u i-1 to u i inductively for every i > 1. In particular, each such u 1 lies in an infinite component. Moreover, such vertices exist in C 1 , so there is an infinite component. One can choose r and s so that the probability that the intersection of a basic good event is large and then we will apply the theorem 2.

In order to bound the probability that this intersection of a basic good event fails, we shall use the following rolling ball method. Let C 1 , C 2 , and L be as in Figure 3. (L is the region between the two disks C 1 and C 2 .) We need to define E S1,S2 the event that for every point v ∈ C 1 ∪ L, there is a u such that: a) v ∼ u; b) d(u, v) ≤ s; and c) u ∈ D v , where D v is the disk of radius r inside C 1 ∪ L ∪ C 2 with v on its C 1side boundary (the dotted disk in Figure 3). Note in particular that (b) implies that the condition u ∼ v in (a) is independent of the Poisson process outside of S 1 ∪ S 2 . This is because both u and v are at distance at least s from the exterior of S 1 ∪ S 2 , so the event that (u, v) is an edge of the RNG only depends on the points within S 1 ∪ S 2 . We denote ĒS1,S2 the complementary of E S1,S2 . The probability of ĒS1,S2 is bounded by the expected number of points u for which above conditions (a)-(c) fail. Thus, we have

Π( ĒS1,S2 ) ≤ 2r(2r + 2s)p Rn,r,s (1) 
where p Rn,r,s is the probability that (a)-(c) fail for some fixed v. Notice that this probability is independent of the location of v in C 1 ∪ L.

Lemma 1

We can choose r and s such that Π( ĒS1,S2 ) is arbitrary small.

Proof:

Let D(x, α) be the disk of radius α and of center x. To calculate this last integration, we have : 

             arccos( α
         |L(α, r, θ)| = α 2 θ + (α 2 -r 2 ) arcsin α sin θ √ r 2 + α 2 -2αr cos θ + αr sin θ |L(α, r, arccos α 2r -π/3)| = α 2 2 ( π 3 - √ 3 
2 ) -r 2 arcsin α 2r + rα For instance, the bound involved in inequality 1 gives around 10 -40 with r = s = 8000.

For our purpose, we also need to control the probability for the Poisson point process of having at least one point in C 1 and less than m points in C 2 ∪ C 1 ∪ L.

We denote

F C1 = {Φ(C 1 ) ≥ 1} and A m = {Φ(C 2 ∪ C 1 ∪ L) ≤ m}. Notice that as E S1,S2 ∩ F C1 ∩ A m ⊂ E S1,S2 then E S1,S2 ∩ E S2,S1 ∩ F C1 ∩ F C2 ∩ A m ⊂ E S1,S2 ∩ E S2,S1 .
We obtain that This bound becomes negligible whenever r ≫ 1 and m > e(8 + π)r 2 using Stirling formula.

Π(E S1,S2 ∩ E S2,S1 ) ≥ 1 -Π( ĒS1,S2 ) + Π( ĒS2,S1 ) + Π( FC1 ) + Π( FC2 ) + Π( Ām ) where Π( FC1 ) = Π( FC2 ) = e -
Set ǫ = 0.1361. Similarly as in Häggström [START_REF] Häggström | Markov random fields and percolation on general graphs[END_REF] but adapted in the 1-independent case, let B r,s be the event that all the sites are open in C 2 ∪ C 1 ∪ L with probability p = 1 -ǫ 2m and also define C r,s = E S1,S2 ∩ E S2,S1 ∩ B r,s . Then, we have: 

P (C r,s ) =
Π(E S1,S2 ∩ E S2,S1 ∩ F C1 ∩ F C2 ∩ A m ) ≥ 1 -ǫ/2
We conclude with theorem 2 that p site c (Rn, Π) ≤ 1 -ǫ 2m < 1.

Concluding remarks

This kind of proof also apply in the case of bond or site percolation of the k nearest neighbor graph: it is direct consequence of [START_REF] Balister | Percolation in the k-nearest neighbor graph[END_REF]. It is sufficient to use what they called p U , p B , p I or p O for several possible definitions of percolation. As suggested in [START_REF] Balister | Percolation in the k-nearest neighbor graph[END_REF] with a high confidence, k = 3 is the critical out-degrees for percolation on the k nearest neighbor graph. We notice that in the RNG the number of neighbors is bounded by 6. So a point have neighbors in several directions. It may be interesting to study a family of Delaunay subgraphs defined on sequence of vacuity regions such that the number of neighbors of each point is the lowest as possible but keep good connectivity properties for percolation purposes. Otherwise a challenge would be to extend the method of the rolling ball when points are distributed under a Gibbs point process for instance a hard-core point process.
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 12 The Delaunay graph Del 2 (ϕ) of a configuration ϕ in Ω is the set of edges of the unique triangulation Del 3 (ϕ) in which the interior of the circle circumscribed by every triangle of Del 3 (ϕ) does not contain any point of ϕ. The Gabriel graph Gab(ϕ) of a configuration ϕ in Ω is defined as the set of edges {u, v} ⊂ ϕ such that the open circle with {u, v} as diameter does not contain any point of the configuration ϕ.
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p 2 4r 2 + (2r 2 -s 2 ) arcsin s 2r + s 2 π/ 2 .

 2222 Rn, r, s ≤ e -|Dv∩D(v,s)| + Dv ∩D(v,s) p r, s (u) du where p r, s (u) = e -|Dv∩D(v, d(u,v))| (1 -e -|D(v, d(u,v))∩D(u, d(u,v))\Dv | ) is the probability that u is the closest point to v inside D v , but that (u, v) is not an edge of the RNG. To calculate this upper bound, note that |D v ∩ D(v, s)| = -rs 1 -s By choosing polar coordinates (α, θ) of u, it comes: Dv∩D(v,s) p r, s (u) du = 2 s 0 αe -|Dv ∩D(v,α)| arccos(α/(2r)) 0 J(α, θ) dθ dα where J(α, θ) = 1 -e -|D(v, α)∩D((α,θ), α)\Dv | .
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 22 Thus,Dv ∩D(v,s) p r, s (u) du = 2s 0 αe -|Dv ∩D(v,α)| × arccos α 2r -(α, r, θ)| dθ -2e -|L(α, r, arccos( α 2r )-π/3)| α 21 -e -α 2 π/6 dα.TakeDv ∩D(v,s) p r, s (u) du = 2 (v,α)|-|L(α,r,arccos( α 2r )-π/3)| 1 -e -α 2 π/6 dα we conclude that p Rn, r, s ≤ e -|Dv∩D(v,s)| + Dv ∩D(v,s) p r, s (u) du (v,α)|-|L(α,r,arccos( α 2r )-π/3)| 1 -e -α 2 π/6 dα which can be bounded by p Rn, r, s ≤ 1 -2 s 0 α e -|Dv ∩D(v,α)|-|L(α,r,arccos( α 2r )-π/3)| × arccos α 2r -π/3 + 2(1-e -α 2 π/6 )

  πr 2 and Π( Ām ) = k>m (2r(2r + 2s) + πr 2 ) k k! e -2r(2r+2s)-πr 2 . Choosing r = s, we have the following bound Π( Ām ) ≤ ((8 + π)r 2 ) m+1 (m + 1)! .

ES 1 ,S 2 ∩ES 2 ,S 1 ΠES 1 ,S 2

 122112 (dϕ) µ p ϕ (B r,s ) ≥ ∩ES 2 ,S 1 ∩FC 1 ∩FC 2 ∩Am Π (dϕ) µ p ϕ (B r,s ) ≥ (1 -ǫ/2)p m > 1 -ǫ = 0.8639because we can choose r, s, m (as preceding) such that