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Abstract

In the present study, we establish the existence of noatrsite percolation
threshold in the Relative Neighborhood Graph (RNG) for Baisstationary point
process with unit intensity in the plane.

1 Introduction

Percolation theory is very useful to describe various pfatghenomena. In particular,
there are important connections with phase transitionlprod [15] TH].

The interest for percolation problems has grown rapidlyrdythe last decades: see
Lyons and Peresmlg] for percolation on trees and networidveester and RomO]
for continuum percolation and the references therein. B61Blaggstrom and Meester
[@] proposed results for continuum percolation probleorstiie k-nearest neighbor
graph under Poisson process. In a recent paper, BalistéBallubas [13] give bounds
on k for the k-nearest neighbor graph for percolation with several fessiefinitions.

Site and bond percolation as well as phase transition foeraéstatistical me-
chanics models have also been studied by Héggs@m [t&]eoeral graphs and in
particular for the Delaunay triangulation for the Poissaimpprocess. It also shows
for graphs with a bounded degree if the bond percolatiorstiole is not trivial then
it implies a phase transition for the Ising model on this grapor general results on
Delaunay graphs and Voronoi tesselations see Mdllgr [ récent results on perco-
lation on these graphs see Balister et[al[]4, 2].

Benjamini and Schramrr[|[6] proposed a comprehensive studyearral graphs,
with special focus on Cayley graphs, quasi-transitive gsagnd planar graphs. Re-
cently, Procacci and Scoppo@[ZZ] proposed sufficient itmms on infinite graphs
to deduce a non trivial bond percolation threshold. Amores¢hassumptions, they



assume that the dual graph is bounded degree. It is integetstirelax this condi-
tion in order to deal with proximity random graphs (which iengral have a dual not
bounded degree) like the skeletons on point Poisson prese$she plane. These ran-
dom graphs includes the Gabriel graph and the Relative Meitfiood Graph (RNG)
which are important for many applications.

Remark that continuous models defined on nearest neightaphgare interesting
for small temperature as alternative of standard model®gular networks, because
it allows vibrations and deformations of the network and rhayind an application in
physics of the solid state. In particular one example is thdysof the order-disorder
transition of binary alloys or ionic cristals. It is well-kwn that Delaunay graph or
Voronoi regions (rather called Wigner-Seitz grid and Builin zone in physics frame-
work) take a fondamental place for the understanding of baetrécal current, waves
propagation and phase transitions observed by Bragg diffiraof X rays.

Another domain of application should be found in cancerglfig the study of
the growth of tumour when the cancer cells suddently beginwade healthy tissue.
The Delaunay graph is well adapted for such study as expﬂain@] but the RNG
should give some more information. More precisely, in H&jg we have some slides
with marked cells (cancer cells and normal cells in first agpnation) and probably, a
connection between percolation and the grade of a giverecavilt be helpful to give
an aid for the diagnostic of a pathologist.

The existence and unicity at small activity of nearest nieggh stationary Gibbs
states can be found in Bertin et dl} [},[B, 9]. In Bertin et[@B][ the phase transition
in the Delaunay continuum Potts model is established. It gereralization of the
Lebowitz-Lieb model as described in Georgii and Héggﬂt@] where the soft re-
pulsion between several species of particules acts on treub&y graph. What is the
good Delaunay subgraph on which the repulsion is stronggimtaumaintain a phase
transition? In terms of percolation, it means: is bond platoan maintained in this
subgraph? Bertin et amll] gave an answer for the GabrégdlgrAnother well-known
subgraph of Delaunay graph is the Minimum Spanning Tree (M$fe structure of
spanning forest generalized minimum spanning tree foritefigraphs. Constructed
with the greedy algorithm, this graph exactly is describethe book of Meester and
Roy [RQ]. The link between branching number and percolatiorirees is proved by
Lyons [[18]. Connection between minimum spanning forest @emipied and vacant
percolation is strong (for more details on simultaneousgu@ness see Alexandﬂ [1D.
Thus, the minimum spanning forest is a tree with one infingtha.s. in two dimen-
sions when the points are distributed under a stationargsBoiprocess. It comes that
a.s. the site or bond critical threshold are equal.to

The present study gives an answer for the RNG, well known impmgational ge-
ometry, when the points are distributed under a stationargsBn point process with
unit intensity in the plane. We adapted a powerful methodhefrblling ball proposed
by Balister and BoIIobas[[S] relying on 1-independent bgedcolation orZ2. Then
if we control the probability of having less than a fixed numaiepoints in a given re-
gion and considering the event that all the sites are opdmnsmegion, we can proceed
similarly as in Haggstron|[16].

The paper is organized as follows. The first section is deMutesome definitions



and notations. Next, the main result on site and bond pedicnlan the RNG is given.
Then, we give the proof of the main result, by using a resubaid percolation in
the 1-independent case #¢ and the rolling ball method. We conclude on possible
extensions of this work.

2 Notations and definitions

Let |A| denotes the Lebesgue measure if the4ét a bounded Borel set @2, and
the counting measure # is a discrete set.

Given a finite boxA c R2, we denote bylI, the Poisson point process on the
locally finite set of points im\. denoted by2, with intensity1 i.e.

/S;A fdlly = exp(—|A|)n¥0 % /A f{a1, ...z })dey, . .. doy,

for any bounded measurable function fQR.

Let Q2 the set of locally finite subsets &2. We have to consider only the config-
urationsy €  which are in general position (four points on the same ciddenot
occur and no three points are colinear) in order to ensurexistence and unicity of
the Delaunay graph. One can notice that, for any stationaint processes, the proba-
bility of the set of tesselations in general position is dgo@ne ]. Let us recall the
definitions of Delaunay, Gabriel and relative neighborhgaaphs.

Definition 1 The Delaunay graplbels () of a configurationp in 2 is the set of edges
of the unique triangulatioDels () in which the interior of the circle circumscribed
by every triangle oDel3(p) does not contain any point gf

Definition 2 The Gabriel graphGab(y) of a configurationy in 2 is defined as the set
of edgequ, v} C ¢ such that the open circle witfu, v} as diameter does not contain
any point of the configuratiog.

Definition 3 The Relative Neighborhood grapkn(¢) of a configurationy in 2 is
defined as the set of edgés, v} C ¢ such that the intersection of the disks with
centeru andv with radiusuv does not contain any point of the configuratipn

These graphs are planarR?. Furthermore, the RNG is a subgraph of the Gabriel
graph which is a subgraph of the Delaunay Graph (see f@ure 1).

3 Main result

We first deal with the site percolation on the RNG for the Rmispoint proces®.

We introduce the Bernoulli proce&g ®) providing the type picking mechanisrfor

open and) for closed) of the points (or sites) . Obviously,® = (®,0(®)) can be
seen as a marked Poisson process. The probability meas@resafiven by :

P(dp.ds) = [ 1)t (d9)
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Figure 1: Vacuity regions for Gabriel and Relative neightward graphs for an edge
uv

where!, is the probability measure oft), 1}# of the Bernoulli proces®(¢) given
the configuratiorp € Q. Similarly H%n(@) is the probability measure of0, 1} #7(¥)

of the Bernoulli proces® (Rn(y)) given the graptRn(p) wherep € Q. We define
pe"* (g, Rn(p)) andpl”"* (¢, Rn(y)) such that:

pb, (3 at least one infinite open cluster iRn(y))
_ { 1 if p>p(p, Bn(p))
0 if p<p(p, Rn(p))
/ﬂ;%n(w) (3 at least one infinite open cluster Rn(y))

1 if  p > phond(p, Rn(p))
0 if p<plo™d(p, Rn(y))

Letus recall ] the following well known relation betwegii‘® andp®°™ on a given
graph with bounded degree: as the gréphRn(y)) have a degree at most

Vo eQ, 1/5<pl (o, Rn(p)) < pi*“(p, Rn(p)) < 1—[1-pt™(p, Rn(p))]°.

We now introduceptit® (Rn, IT) defined as the lowesgt for which the probability
of the event that there exists an infinite open cluster in tR&Relative to the marked
point Poisson procesB is equal tol. By ergodicity ofl1, this previous event, invariant
by translation, is a trivial event. The marked point Poispoocess® may exhibit
some percolation phenomenon with critical vahjé® (Rn,II). We want to prove in
the following theorem that this is a non trivial critical val, i.e.,

Theorem 1 psite (Rn, 1) < 1 andpb°d (Rn, 11) < 1.

The following section is devoted to the proof of this theorem



4 Proof

First, we point out that the method proposed by Héggst@i@nd used fok nearest
neighbor graph and Delaunay graph, as well as the adaptati@ertin et al. [1]1] to
the Gabriel graph does not applied to the RNG. However, ibtsaofficient to control
the probability of having at least one point and less thanedfixumber of points in
each small box< (see figur€[|2).

Indeed, we may choose some configuration of points suchitbd¢hgth and num-
ber of points of akn— path between two points are arbitrary large, see fiﬁi,lreﬂ.
is an edge of the RNG butv is not because for example the poinbelongs to the
vaculity region of this edge.

Figure 2: Example of construction of configuration with #rdaiy large Rn- path.

Moreover, such methods are based on comparison with indepg&bond percola-
tion on the gridZ2. As, in Balister and BoIIobésﬂ[B] in the case/ofiearest neighbor

graph, we adapt the method of rolling ball (see figﬂre 3) toRNKS. We procceed in
two steps:

1. Controling the probability of some suitable configurati@f points under Pois-
son point process.

2. Consider the Bernoulli site percolation in such confitjores.

To prove that continuous percolation occurs, we shall camfiee process to var-
ious bond percolation models &?. In these models, the states of the edges will not
be independent. However they will satisfy the following déifon:

Definition 4 A bond percolation model is 1-independent if whendveiand E, are
sets of edges at graph distance at least 1 from each anotleerifino edge of’; is
incident to an edge afs) then the state of the edgesin is independent of the state
of the edges irF,.

We shall use the following result in Balister et 4l. [5].
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Figure 3: The Rolling Ball Method

Theorem 2 If every edge in a 1-independent bond percolation modeLbis open
with probability at least).8639, then almost surely there is an infinite open compo-
nent. Moreover, for any bounded region, there is almostlgwaecycle of open edges
surrounding this region.

Let us first consider the case of percolation in the RNG. Write v if uv is an
edge of the underlying grapRn (). For percolation we need to find an infinite path,
i.e., a sequence;, us ... with u; ~ u;y for all 7. Consider the rectangular region
consisting of two adjacent squargs, S shown in figure[lS. Botly; andS> have side
length2r + 2s, wherer ands are to be chosen later. We define the basic good event
Es,.s, to be the event that every vertex in the central diskC; of S, is joined to at
least one vertex in the central dislCs of S, by a Rn— path, regardless of the state of
the Poisson process outside$fand.S,.

Now consider the following percolation model @%. Each vertexi,j) € Z?
corresponds to a squaiBi, R(i + 1)] x [Rj, R(j + 1)] € R?, whereR = 2r + 2s,
and an edge is open between adjacent vertices (corresgpioddguaress; and.Ss)
if both the corresponding basic good eveéits s, and &g, g, hold. Note that this
is indeed a 1-independent model @A since the evenfs, s, depends only on the
Poisson process within the regi6ih andSs, and thus sets of edges at distance at least
one apart inZ? depend on the Poisson process in disjoint regionR%f Any open
path inZ? corresponds to a sequence of basic good ev&pts, , £, s, - - - that occur,
whereS; is the square associated with a siteZih Every vertexu; of the original
Poisson process that lies in the central diskof S; now has an infinite path leading
away from it, since one can find points in the central disk of5S; and paths from
u;—1 10 u; inductively for everyi > 1. In particular, each such; lies in an infinite
component. Moreover, such vertices existi so there is an infinite component. One
can choose ands so that the probability that the intersection of a basic geght is
large and then we will apply the theorﬂn 2.



In order to bound the probability that this intersection dfasic good event fails,
we shall use the following rolling ball method. Lét, C2, andL be as in FigurﬂB.[(
is the region between the two disk§ andC>.) We need to defin&g, g, the event
that for every point € Cy U L, there is au such that:

a)v ~ u;

b) d(u,v) < s; and

c)u € D,, whereD, is the disk of radius insideC; U L U Cs with v on its C;-
side boundary (the dotted disk in Figlﬁe 3). Note in partictthat (b) implies that the
conditionu ~ v in (a) is independent of the Poisson process outsidg of So. This

is because both andv are at distance at leastfrom the exterior ofS; U S, so the
event thaiu, v) is an edge of the RNG only depends on the points withit S;. We
denoteEg, s, the complementary dEs, s,. The probability ofEs, s, is bounded by
the expected number of poinifor which above conditions (a)-(c) fail. Thus, we have

H(ES1,52) < 27‘(27‘ + 25)pRn,7',s (1)

wherepr,, . s is the probability that (a)-(c) fail for some fixeel Notice that this
probability is independent of the locationofn C; U L.

Lemma 1 We can choose ands such thafll(Es, s, ) is arbitrary small.
Proof:
Let D(x, o) be the disk of radius and of centet:.
Then,

DPRn,r,s < e_lDUﬂD(v’s)l +/ pr,s(u) du
D,ND(v,s)

Wherepr_ S(u) — 67|DvﬁD(v, d(u,v))| (1 _ ef\D(v,d(u,v))ﬁD(u, d(u,v))\DU\) is the prOb'
ability thatw is the closest point te inside D,,, but that(u, v) is not an edge of the
RNG. To calculate this upper bound, note that

2
|Dy, N D(v,s)] = —rsy/1— j? + (2r* — s%) arcsin (%) + %7 /2.

By choosing polar coordinatés;, #) of u, it comes:

s arccos(a/(2r))
/ Prs(u) du:2/ e~ PvND(v,a)] / J(a, 0)do do
D,ND(v,s) 0 0

where
J(a,0) =1— e—|D(v,@)ND((a,0), )\ Dy |

To calculate this last integration, we have :
arccos(%)fw/S arccos(%)fw/S
/ ’ J(a, ) dO = arccos (ﬁ) 77r/37/ ’ e~ ILm 0l g
0 2r 0

—|L(c, 7, arccos( 5% ) —7/3)|
5 (2 ) |:1 7670527T/6:|

arccos(2—“r) e
/ J(a,0)d0 =7/3 —2

rccos(%)fﬂ'/B o



Figure 4: The Lund.(«, r, 8) = D(u, a)\D, is the dotted area

with
asin @

Vr2 + a2 — 2ar cos

|L(a, 7, )| = a0 + (a?® — 7?) arcsin ( ) + arsind

|L(cv, r,arccos () — /3)| = %(% - @) — r?arcsin (££) + 224 /1 — %.

Thus,

/ Dr s(u)du = 2/ e IPeNDw)] {arccos (g) —
D,ND(v,s) ( ) 0 ( )2T
arccos( 5 ) —7/3 —|L(a, 7, arccos( 5= ) —m/3)|
/ e~ 1L Ol g 2 {1 - e_a2”/6} } do.
0

o?

Take

s o
/ prs(u)du = 2/ Qv arccos (—) e~ 1PvOP)l gy
D,ND(v,s) 0 2r
s arccos(%)—ﬂ/?)
_2/ ae—leD(w)\/ 1L 4 doy
0 0

. /S lei|DvﬂD(v,a)|f|L(a,r,arccos(%)77r/3)| |:1 o 67a27r/6:| dov
O a

we conclude that

PRn, v, s < e_lDUﬂD(U’S)l +/ pr,s(u) du
D,ND(v,s)
s arccos(%)—ﬂ'/3
-1— 2/ Oéef\DuﬂD(v,aH/ ef\L(a,r,G)\ do do
s Jo 0
_4/ le—|DUﬂD(v,a)|—|L(a,r,arccos(%)—ﬂ'/3)| {1 _ e—a2ﬂ—/6} dov
0 ¢«



which can be bounded by

S
Drmne < 1 2/ o e~ 1DoND(@,) | L(a,rarccos( g ) = /3)|
0

2 N
2l—e— /6
% dov.

X {arccos (&) —7/3+

([l

For instance, the bound involved in inequaﬁy 1 gives atbloT 40 with r = s =
8000.

For our purpose, we also need to control the probabilitytierRoisson point pro-
cess of having at least one pointdih and less tham points inCy U Cy U L.

We denotefo, = {®(Cy) > 1} andA,, = {®(Cy UCy U L) < m}. Notice that
asEg, s, N Fo, N A, C Es,.5, then

Es 5, NEg, s, N Fo, N Fe, N A, C Es,.9, NEs,,8,-
We obtain that
(Esy,5, NEsy,5,) > 1= [(Es, s,) + (Es, 5,) + (Fe, ) + (Fe,) + (Ay)]
wherell(Fg,) = II(Fg,) = e~ and

T 2r 27‘+23)+7T7“2)k —2r(2r428)—mr?
n(4,) = 3, Erere2 ¢ 2rier iz —ar?,

k>m
Choosingr = s, we have the following bound

2\ym+1
() < G
(m+ 1)!
This bound becomes negligible whenevers- 1 andm > e(8 + «)r? using Stirling
formula.

Sete = 0.1361. Similarly as in Haggstron[[]6] but adapted in the 1-inelegent
case, letB, ; be the event that all the sites are operCinu C; U L with probability
p=1— 5= and also defin€’,. ; = &, 5, N Es, 5, N By 5. Then, we have:

P(C) = [ I1(dg) 12, (By,.)
Es5,,55MNE55,5,

> I (dy) pf (Br,s)

Esl,s2ﬁE32’slﬁFclﬁFcz NA.,
>(1—¢€/2)p™>1—e=10.8639
because we can chooses, m (as preceding) such that
H(ESI_S2 NEs,.s, N Fe, NFe, N Am) >1- 6/2
We conclude with theoreff 2 thafi*(Rn,IT) < 1 — 5 < 1.



5 Concluding remarks

This kind of proof also apply in the case of bond or site peatioh of thek nearest
neighbor graph: it is direct consequence@f [3]. Itis sudfitito use what they called
pU, PB, pI OF po for several possible definitions of percolation.

As suggested irﬂ3] with a high confidende~= 3 is the critical out-degrees for
percolation on thé nearest neighbor graph. We notice that in the RNG the number
of neighbors is bounded W/ So a point have neighbors in several directions. It may
be interesting to study a family of Delaunay subgraphs défimesequence of vacuity
regions such that the number of neighbors of each point iothest as possible but
keep good connectivity properties for percolation purgos®therwise a challenge
would be to extend the method of the rolling ball when poimesdistributed under a
Gibbs point process for instance a hard-core point process.
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