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Non-tangential, radial and stochastic asymptotic

properties of harmonic functions on trees ∗†

Frédéric Mouton

April 21, 2010

Abstract

For a harmonic function on a tree with random walk whose transition
probabilities are bounded between two constants in (0, 1/2), it is known
that the radial and stochastic properties of convergence, boundedness and
finiteness of energy are all a.s. equivalent. We prove here that the analo-
gous non-tangential properties are a.e. equivalent to the above ones.

We are interested in the comparison between some non-tangential asymp-
totic properties of harmonic functions on a tree and the corresponding radial
properties, using analogous stochastic ones. We proved in a previous work [6],
under a reasonable uniformity hypothesis, the almost sure equivalence between
different radial and stochastic properties: convergence, boundedness and finite-
ness of the energy. The probabilistic-geometric methods, adaptated from those
we used in the setting of manifolds of negative curvature [5], were flexible and
presumed to extend to the non-tangential case for trees.

A recent article [2] shows by combinatorial methods the equivalence of the
three non-tangential corresponding properties in the particular case of homoge-
neous trees. It seems to be time to show explicitely that our methods give in a
swift way the non-tangential results for general trees satisfying the uniformity
hypothesis above.

We use our previous results to compare the non-tangential notions with the
radial and stochastic ones: we prove on one hand that the stochastic convergence
implies the non-tangential convergence in the section 3 and on the other hand
that the non-tangential boundedness implies almost surely the finiteness of the
non-tangential energy in the section 4. The notations are fixed in the section 1
and our main result is stated in the section 2.

∗Key-words : harmonic functions — trees — Fatou theorem — random walks.
†Math. Classif. : 05C05, 31C20, 31C35, 60J15, 60J50.
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1 Setting

Let us briefly fix the notations (for details see [6]). We consider a tree (S,A)
i.e. a non-oriented, locally finite, connected and simply connected graph with
vertices in S and edges in A. We will use the usual notions of path, distance
and geodesic path and note x ∼ y iff (x, y) ∈ A.

We also consider a transient random walk (Xn)n on S such that the transi-
tion probability p(x, y) > 0 iff x ∼ y. Denote by Px the distribution of the walk
starting from x and by pn(x, y) the probability Px[Xn = y] of reaching y from
x in n steps.

The Green function G(x, y) =
∑∞

n=0 pn(x, y) is finite by transience. Denote
by H(x, y) the probability of reaching y starting from x. If z is on the geodesic
path [x, y], the simple connectivity implies

H(x, y) = H(x, z)H(z, y) and G(x, y) = H(x, z)G(z, y). (1)

If U ⊂ S, the Green function of U , defined on U ×U , is the expectation of the
number of times the walk starting from x hits y before exiting U .

The Laplacian of a function f on S is ∆f(x) = Ex[f(X1)] − f(x). The
function f is harmonic if ∆f = 0.

Let u be a fixed harmonic function. The stochastic energy of u is J∗(u) =
∑∞

k=0

(

∆u2
)

(Xk) (non-negative terms). The events L∗∗, N ∗∗ and J ∗∗ are
defined respectively by the convergence of (u(Xn))n, its boundedness and the

finiteness of the stochastic energy. The Martingale theorem implies J ∗∗
∼
⊂ L∗∗

(Px-almost sure inclusion) [6]. It is known since P. Cartier [3] that geometric and
Martin compactifications agree and the random walk converges almost surely
to a point of the boundary ∂S. The exit law starting from x is the harmonic
measure µx and µ = (µx)x is a familly of equivalent measures. Conditioning
by Doob’s method of h-processes gives probabilities P θ

x (ending at θ). Asymp-
totic events verify 0–1 law and we define sets L∗ =

{

θ ∈ ∂S|P θ
x (L

∗∗) = 1
}

,

N ∗ =
{

θ ∈ ∂S|P θ
x (N

∗∗) = 1
}

, J ∗ =
{

θ ∈ ∂S|P θ
x (J

∗∗) = 1
}

, which determine
stochastic notions of convergence, boundedness and finiteness of the energy at
θ ∈ ∂S. For θ ∈ L∗, limu(Xn) is P θ

x -a.s. constant (independent from x) and
called the stochastic limit at θ.

Fix a base point o. For θ ∈ ∂S, γθ is the geodesic ray from o to θ and for
c ∈ N, Γθ

c = {y ∈ S|d(y, γθ) ≤ c} is a non-tangential tube. Let u be a harmonic
function. For c ∈ N, its c-non-tangential energy at θ is Jθ

c (u) =
∑

y∈Γθ
c
∆u2(y)

and its radial energy at θ is Jθ(u) = Jθ
0 (u) =

∑∞
k=0 ∆u2(γθ(k)). There is

radial convergence, boundedness or finiteness of the energy depending wether
(u(γθ(n)))n converges, is bounded or has finite radial energy. There is non-

tangential convergence of u at θ if for all c ∈ N, u(y) has a limit when y goes
to θ staying in Γθ

c . There is non-tangential boundedness (resp. finiteness of the
energy) if for all c ∈ N, u is bounded on Γθ

c (resp. Jθ
c (u) < +∞).
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2 Main result

We now suppose (H): ∃ε > 0, ∃η > 0, ∀x ∼ y, ε ≤ p(x, y) ≤ 1
2 − η, a discrete

analogue of the pinched curvature for manifolds. It also forces at least three
neighbors for each vertex, and ensures transience. We proved in [6]:

Theorem 2.1 For a harmonic function u on a tree with random walk satisfying

(H), the notions of radial convergence, radial boundedness, radial finiteness of

the energy, stochastic convergence, stochastic boundedness, stochastic finiteness

of the energy, are µ-almost equivalent.

We prove here the following theorem:

Theorem 2.2 Under the same hypotheses, the notions of non-tangential con-

vergence, non-tangential boundedness and non-tangential finiteness of the energy

are µ-almost equivalent to the notions above.

Considering the trivial implications, it is sufficient to prove that stochastic
convergence implies non-tangential convergence and non-tangential bounded-
ness implies almost surely non-tangential finiteness of the energy.

3 Stochastic implies NT convergence

The first implication needs the following lemma due to A. Ancona in a general
setting [1], but easily proved here by simple connectivity:

Lemma 3.1 If (xn)n is a sequence converging non-tangentially to θ ∈ ∂S, the

walk hits P θ
o -a.s. infinitely many xn.

Let us see how this lemma helps. Assume that the harmonic function u has
a stochastic limit l ∈ R at θ but does not converge non-tangentially towards l
at θ. There exists δ > 0 and a sequence (xn)n converging non-tangentially to
θ such that |u(xn) − l| ≥ δ for all n. As the random walk (Xk)k hits P θ

o -a.s.
infinitely many xn by the lemma, one can extract a subsequence (Xkj

)j such
that |u(Xkj

)− l| ≥ δ for all j. Hence, P θ
o -almost surely, the function u does not

converge towards l along (Xk)k which leads to a contradiction.
Le us now prove the lemma. Recall that the principle of the method of Doob’s

h-processes is to consider a new Markov chain defined by pθ(x, y) = Kθ(y)
Kθ(x)

p(x, y)

where the Martin kernel Kθ(x) is defined as limy→θ
G(x,y)
G(o,y) (see for example [4]).

This formula leads to analogous fomulae for the pθn and the associated functions
Hθ and Gθ. Consider for a fixed n the projection yn of xn on the geodesic ray
γθ (see [6]). As the random walk starting from o and conditioned to end at
θ hits almost surely yn due to the tree structure, the strong Markov property

gives Hθ(o, xn) = Hθ(yn, xn) =
Kθ(xn)
Kθ(yn)

H(yn, xn). By definition of the Martin

kernel, Kθ(xn)
Kθ(yn)

= limy→θ
G(xn,y)
G(yn,y)

and G(xn, y) = H(xn, yn)G(yn, y) as soon as

yn ∈ [xn, y], so Hθ(o, xn) = H(xn, yn)H(yn, xn). The distance between xn and
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yn is bounded as (xn)n converges non-tangentially to θ, hence the last product
is bounded from below by a constant C > 0 using (H). By Fatou’s lemma, the
probability conditioned to end at θ of hitting infinitely many xn is not smaller
than C and the asymptotic 0-1 law ensures that it equals 1, which completes
the lemma’s proof.

4 NT boundedness implies finite NT energy

Denoting Nc = {θ ∈ ∂S| supΓθ
c
|u| < +∞} and Jc = {θ ∈ ∂S|Jθ

c (u) < +∞}, we

will show that for all c ∈ N, Nc+1

∼
⊂ Jc, which will give the wanted result by

monotonous intersection. Let us write Nc+1 =
⋃

N∈N
NN

c+1, where

NN
c+1 =

{

θ ∈ ∂S

∣

∣

∣

∣

∣

sup
Γθ
c+1

|u| ≤ N

}

.

By countability it is sufficient to prove that for all N , NN
c+1

∼
⊂ Jc. Let us fix

N ∈ N. Denote Γ =
⋃

θ∈NN
c+1

Γθ
c and τ the exit time from Γ. As

Mn = u2(Xn)−
n−1
∑

k=0

∆u2(Xk)

is a martingale (see [6]), Doob’s stopping time theorem for the bounded exit
time τ ∧ n gives Eo [Mτ∧n] = Eo[M0] = u2(o) ≥ 0, hence

Eo

[

τ∧n−1
∑

k=0

∆u2(Xk)

]

≤ Eo

[

u2(Xτ∧n)
]

.

As Xτ∧n is at distance at most 1 from Γ, it lies in a tube Γθ
c+1 where θ ∈ NN

c+1

and |u(Xτ∧n)| ≤ N . When n goes to ∞, monotonous convergence (∆u2 ≥ 0)
and the desintegration formula (see [6]) give then, for µ-almost all θ ∈ ∂S,

Eθ
o

[

τ−1
∑

k=0

∆u2(Xk)

]

< +∞.

Let us use a conditioned version of formula 2 from [6], which will be proved
later :

Lemma 4.1 For a function ϕ ≥ 0 on Γ and τ the exit time of Γ,

Eθ
o

[

τ−1
∑

k=0

ϕ(Xk)

]

=
∑

y∈Γ

ϕ(y)GΓ(o, y)Kθ(y).
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This lemma implies that for µ-almost all θ ∈ ∂S,
∑

y∈Γ ∆u2(y)GΓ(o, y)Kθ(y)
is finite. In order to get an energy, we will show that GΓ(o, y)Kθ(y) is bounded
from below using the two following lemmas. The first one is due to A. Ancona [1]
but has a very simple proof in the present context of trees. The second one
enables comparison between GΓ and G.

Lemma 4.2 ∀c ∈ N, ∃α > 0, ∀θ ∈ ∂S, ∀y ∈ Γθ
c , G(o, y)Kθ(y) ≥ α.

Lemma 4.3 For U ⊂ S containing Γθ
c and τ the exit time of U ,

lim
y∈Γθ

c ,y→θ

GU (o, y)

G(o, y)
= P θ

o [τ = +∞].

By lemma 4.2, for µ-almost all θ ∈ NN
c+1,

∑

y∈Γθ
c

∆u2(y)
GΓ(o, y)

G(o, y)
< +∞.

If we show that for µ-almost all θ ∈ NN
c+1, P

θ
o [τ = +∞] > 0, lemma 4.3 gives

NN
c+1

∼
⊂ Jc. The proof of that fact is the same as in the analogous radial proof [6]

which completes the theorem’s proof.
Let us now prove the lemmas. Concerning lemma 4.1, using Fubini,

Eθ
o

[

τ−1
∑

k=0

ϕ(Xk)

]

=

∞
∑

k=0

Eθ
o

[

ϕ(Xk)1(k<τ)

]

.

The random variable ϕ(Xk)1(k<τ) being measurable with respect to the σ-
algebra generated by (Xi)i≤k (see [6]) and using formula 2 from [6], the expec-
tation above equals

∞
∑

k=0

Eo

[

ϕ(Xk)1(k<τ)Kθ(Xk)
]

= Eo

[

∞
∑

k=0

ϕ(Xk)1(k<τ)Kθ(Xk)

]

=
∑

y∈Γ

ϕ(y)GΓ(o, y)Kθ(y),

which finishes the proof of lemma 4.1.
Let us prove lemma 4.2. Denote π(y) the projection of y on γθ (see [6])

and remark that for z ∈ (π(y), θ), G(o, z) = H(o, π(y))G(π(y), z) and G(y, z) =

H(y, π(y))G(π(y), z) by formula 1. Hence G(y,z)
G(o,z) = H(y,π(y))

H(o,π(y)) does not depend

anymore on z and its limit when z goes to θ is then Kθ(y) = H(y,π(y))
H(o,π(y)) . By

formula 1,

G(o, y)Kθ(y) = H(y, π(y))
G(o, y)

H(o, π(y))
= H(y, π(y))H(π(y), y)G(y, y).
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But G(y, y) ≥ p2(y, y) ≥ 3ε2 and H(y, π(y))H(π(y), y) ≥ ε2c by (H) and
d(y, π(y)) ≤ c, which finishes the proof of lemma 4.2.

Let us prove lemma 4.3 :

GU (o, y) = G(o, y)− Eo[G(Xτ , y)1(τ<+∞)]

= G(o, y)

(

1− Eo

[

G(Xτ , y)

G(o, y)
1(τ<+∞)

])

and by definition of Martin’s kernel, if we could switch the limit and expectation,
by a conditioning formula [6],

lim
y∈Γθ

c ,y→θ

GU (o, y)

G(o, y)
= 1− Eo[Kθ(Xτ )1(τ<+∞)] = P θ

o [τ = +∞].

We now justify that inversion by Lebesgue’s theorem. The idea is to bound,

when τ is finite, G(Xτ ,y)
G(o,y) by a multiple of Kθ(Xτ ). We compare for that purpose

G(Xτ , y) with Kθ(Xτ ). Denote again by π the projection function on γθ. We
distinguish two cases

If π(Xτ ) ∈ [o, π(y)], G(Xτ ,y)
Kθ(Xτ) = G(π(Xτ ),y)

Kθ(π(Xτ)) = G(o,y)
Kθ(o)

= G(o, y), by for-

mula 1 and the remark that this formula also implies by definition of Kθ

and by taking the limit that Kθ(Xτ ) = H(Xτ , π(Xτ ))Kθ(π(Xτ )) and Kθ(o) =
H(o, π(Xτ ))Kθ(π(Xτ )).

If π(Xτ ) 6∈ [o, π(y)], again G(Xτ ,y)
Kθ(Xτ) = G(π(Xτ ),y)

Kθ(π(Xτ)) . We also have, by defini-

tion and formula 1, Kθ(π(Xτ )) = (H(o, π(Xτ )))
−1, hence the quotient above

equals H(o, π(Xτ ))G(π(Xτ ), y) = H(o, π(y))H(π(y), π(Xτ ))G(π(Xτ ), y). We
know that G is bounded (see [7, 6]) and H is a probability, so it just remains

to compare H(o, π(y)) with G(o, y). But H(o,π(y))
G(o,y) = (G(π(y), y))−1 and 1

G
is

bounded by 1
3ε2 .

Merging the two cases gives a constant β such that G(Xτ ,y)
Kθ(Xτ) ≤ βG(o, y),

which enables to use Lebesgue’s theorem and completes the proof of lemma 4.3.
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