Frédéric Mouton 
  
Non-tangential, radial and stochastic asymptotic properties of harmonic functions on trees * †

Keywords: harmonic functions -trees -Fatou theorem -random walks. † Math. Classif. : 05C05, 31C20, 31C35, 60J15, 60J50

For a harmonic function on a tree with random walk whose transition probabilities are bounded between two constants in (0, 1/2), it is known that the radial and stochastic properties of convergence, boundedness and finiteness of energy are all a.s. equivalent. We prove here that the analogous non-tangential properties are a.e. equivalent to the above ones.

We are interested in the comparison between some non-tangential asymptotic properties of harmonic functions on a tree and the corresponding radial properties, using analogous stochastic ones. We proved in a previous work [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF], under a reasonable uniformity hypothesis, the almost sure equivalence between different radial and stochastic properties: convergence, boundedness and finiteness of the energy. The probabilistic-geometric methods, adaptated from those we used in the setting of manifolds of negative curvature [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques en courbure négative[END_REF], were flexible and presumed to extend to the non-tangential case for trees.

A recent article [START_REF] Atanasi | The lusin area function and local admissible convergence of harmonic functions on homogeneous trees[END_REF] shows by combinatorial methods the equivalence of the three non-tangential corresponding properties in the particular case of homogeneous trees. It seems to be time to show explicitely that our methods give in a swift way the non-tangential results for general trees satisfying the uniformity hypothesis above.

We use our previous results to compare the non-tangential notions with the radial and stochastic ones: we prove on one hand that the stochastic convergence implies the non-tangential convergence in the section 3 and on the other hand that the non-tangential boundedness implies almost surely the finiteness of the non-tangential energy in the section 4. The notations are fixed in the section 1 and our main result is stated in the section 2.

Setting

Let us briefly fix the notations (for details see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]). We consider a tree (S, A) i.e. a non-oriented, locally finite, connected and simply connected graph with vertices in S and edges in A. We will use the usual notions of path, distance and geodesic path and note x ∼ y iff (x, y) ∈ A.

We also consider a transient random walk (X n ) n on S such that the transition probability p(x, y) > 0 iff x ∼ y. Denote by P x the distribution of the walk starting from x and by p n (x, y) the probability P x [X n = y] of reaching y from x in n steps.

The Green function G(x, y) = ∞ n=0 p n (x, y) is finite by transience. Denote by H(x, y) the probability of reaching y starting from x. If z is on the geodesic path [x, y], the simple connectivity implies H(x, y) = H(x, z)H(z, y) and G(x, y) = H(x, z)G(z, y).

(

) 1 
If U ⊂ S, the Green function of U , defined on U × U , is the expectation of the number of times the walk starting from x hits y before exiting U . The Laplacian of a function

f on S is ∆f (x) = E x [f (X 1 )] -f (x). The function f is harmonic if ∆f = 0.
Let u be a fixed harmonic function. The stochastic energy of u is J * (u) = ∞ k=0 ∆u 2 (X k ) (non-negative terms). The events L * * , N * * and J * * are defined respectively by the convergence of (u(X n )) n , its boundedness and the finiteness of the stochastic energy. The Martingale theorem implies J * * ∼ ⊂ L * * (P x -almost sure inclusion) [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]. It is known since P. Cartier [START_REF] Cartier | Fonctions harmoniques sur un arbre[END_REF] that geometric and Martin compactifications agree and the random walk converges almost surely to a point of the boundary ∂S. The exit law starting from x is the harmonic measure µ x and µ = (µ x ) x is a familly of equivalent measures. Conditioning by Doob's method of h-processes gives probabilities P θ

x (ending at θ). Asymptotic events verify 0-1 law and we define sets

L * = θ ∈ ∂S|P θ x (L * * ) = 1 , N * = θ ∈ ∂S|P θ x (N * * ) = 1 , J * = θ ∈ ∂S|P θ x (J * * ) = 1
, which determine stochastic notions of convergence, boundedness and finiteness of the energy at θ ∈ ∂S. For θ ∈ L * , lim u(X n ) is P θ x -a.s. constant (independent from x) and called the stochastic limit at θ.

Fix a base point o. For θ ∈ ∂S, γ θ is the geodesic ray from o to θ and for c ∈ N, Γ θ c = {y ∈ S|d(y, γ θ ) ≤ c} is a non-tangential tube. Let u be a harmonic function. For c ∈ N, its c-non-tangential energy at θ is J θ c (u) = y∈Γ θ c ∆u 2 (y) and its radial energy at θ is

J θ (u) = J θ 0 (u) = ∞ k=0 ∆u 2 (γ θ (k)).
There is radial convergence, boundedness or finiteness of the energy depending wether (u(γ θ (n))) n converges, is bounded or has finite radial energy. There is nontangential convergence of u at θ if for all c ∈ N, u(y) has a limit when y goes to θ staying in Γ θ c . There is non-tangential boundedness (resp. finiteness of the energy) if for all c ∈ N, u is bounded on Γ θ c (resp. J θ c (u) < +∞).

Main result

We now suppose (H): ∃ε > 0, ∃η > 0, ∀x ∼ y, ε ≤ p(x, y) ≤ 1 2η, a discrete analogue of the pinched curvature for manifolds. It also forces at least three neighbors for each vertex, and ensures transience. We proved in [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]: Theorem 2.1 For a harmonic function u on a tree with random walk satisfying (H), the notions of radial convergence, radial boundedness, radial finiteness of the energy, stochastic convergence, stochastic boundedness, stochastic finiteness of the energy, are µ-almost equivalent.

We prove here the following theorem: Theorem 2.2 Under the same hypotheses, the notions of non-tangential convergence, non-tangential boundedness and non-tangential finiteness of the energy are µ-almost equivalent to the notions above.

Considering the trivial implications, it is sufficient to prove that stochastic convergence implies non-tangential convergence and non-tangential boundedness implies almost surely non-tangential finiteness of the energy.

Stochastic implies NT convergence

The first implication needs the following lemma due to A. Ancona in a general setting [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF], but easily proved here by simple connectivity: Lemma 3.1 If (x n ) n is a sequence converging non-tangentially to θ ∈ ∂S, the walk hits P θ o -a.s. infinitely many x n .

Let us see how this lemma helps. Assume that the harmonic function u has a stochastic limit l ∈ R at θ but does not converge non-tangentially towards l at θ. There exists δ > 0 and a sequence (x n ) n converging non-tangentially to θ such that |u(x n ) -l| ≥ δ for all n. As the random walk (X k ) k hits P θ o -a.s. infinitely many x n by the lemma, one can extract a subsequence (X kj ) j such that |u(X kj ) -l| ≥ δ for all j. Hence, P θ o -almost surely, the function u does not converge towards l along (X k ) k which leads to a contradiction.

Le us now prove the lemma. Recall that the principle of the method of Doob's h-processes is to consider a new Markov chain defined by p θ (x, y) = K θ (y) K θ (x) p(x, y) where the Martin kernel K θ (x) is defined as lim y→θ G(x,y) G(o,y) (see for example [START_REF] Dynkin | Boundary theory of markov processes (the discrete case)[END_REF]). This formula leads to analogous fomulae for the p θ n and the associated functions H θ and G θ . Consider for a fixed n the projection y n of x n on the geodesic ray γ θ (see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]). As the random walk starting from o and conditioned to end at θ hits almost surely y n due to the tree structure, the strong Markov property gives

H θ (o, x n ) = H θ (y n , x n ) = K θ (xn) K θ (yn) H(y n , x n ). By definition of the Martin kernel, K θ (xn) K θ (yn) = lim y→θ G(xn,y)
G(yn,y) and G(x n , y) = H(x n , y n )G(y n , y) as soon as

y n ∈ [x n , y], so H θ (o, x n ) = H(x n , y n )H(y n , x n ).
The distance between x n and y n is bounded as (x n ) n converges non-tangentially to θ, hence the last product is bounded from below by a constant C > 0 using (H). By Fatou's lemma, the probability conditioned to end at θ of hitting infinitely many x n is not smaller than C and the asymptotic 0-1 law ensures that it equals 1, which completes the lemma's proof.

NT boundedness implies finite NT energy

Denoting N c = {θ ∈ ∂S| sup Γ θ c |u| < +∞} and J c = {θ ∈ ∂S|J θ c (u)
< +∞}, we will show that for all c ∈ N, N c+1 ∼ ⊂ J c , which will give the wanted result by monotonous intersection. Let us write N c+1 = N ∈N N N c+1 , where

N N c+1 = θ ∈ ∂S sup Γ θ c+1 |u| ≤ N .
By countability it is sufficient to prove that for all N ,

N N c+1 ∼ ⊂ J c . Let us fix N ∈ N. Denote Γ = θ∈N N c+1
Γ θ c and τ the exit time from Γ. As

M n = u 2 (X n ) - n-1 k=0 ∆u 2 (X k )
is a martingale (see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]), Doob's stopping time theorem for the bounded exit time

τ ∧ n gives E o [M τ ∧n ] = E o [M 0 ] = u 2 (o) ≥ 0, hence E o τ ∧n-1 k=0 ∆u 2 (X k ) ≤ E o u 2 (X τ ∧n ) .
As X τ ∧n is at distance at most 1 from Γ, it lies in a tube Γ θ c+1 where θ ∈ N N c+1 and |u(X τ ∧n )| ≤ N . When n goes to ∞, monotonous convergence (∆u 2 ≥ 0) and the desintegration formula (see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]) give then, for µ-almost all θ ∈ ∂S,

E θ o τ -1 k=0 ∆u 2 (X k ) < +∞.
Let us use a conditioned version of formula 2 from [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF], which will be proved later :

Lemma 4.1 For a function ϕ ≥ 0 on Γ and τ the exit time of Γ,

E θ o τ -1 k=0 ϕ(X k ) = y∈Γ ϕ(y)G Γ (o, y)K θ (y).
This lemma implies that for µ-almost all θ ∈ ∂S, y∈Γ ∆u 2 (y)G Γ (o, y)K θ (y) is finite. In order to get an energy, we will show that G Γ (o, y)K θ (y) is bounded from below using the two following lemmas. The first one is due to A. Ancona [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] but has a very simple proof in the present context of trees. The second one enables comparison between G Γ and G. ⊂ J c . The proof of that fact is the same as in the analogous radial proof [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF] which completes the theorem's proof.

Let us now prove the lemmas. Concerning lemma 4.1, using Fubini,

E θ o τ -1 k=0 ϕ(X k ) = ∞ k=0 E θ o ϕ(X k )1 (k<τ ) .
The random variable ϕ(X k )1 (k<τ ) being measurable with respect to the σalgebra generated by (X i ) i≤k (see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]) and using formula 2 from [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF], the expectation above equals

∞ k=0 E o ϕ(X k )1 (k<τ ) K θ (X k ) = E o ∞ k=0 ϕ(X k )1 (k<τ ) K θ (X k ) = y∈Γ ϕ(y)G Γ (o, y)K θ (y),
which finishes the proof of lemma 4.1.

Let us prove lemma 4.2. Denote π(y) the projection of y on γ θ (see [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]) and remark that for z ∈ (π(y), θ), G(o, z) = H(o, π(y))G(π(y), z) and G(y, z) = H(y, π(y))G(π(y), z) by formula 1. Hence G(y,z) G(o,z) = H(y,π(y)) H(o,π(y)) does not depend anymore on z and its limit when z goes to θ is then K θ (y) = H(y,π(y)) H(o,π(y)) . By formula 1, G(o, y)K θ (y) = H(y, π(y)) G(o, y) H(o, π(y))

= H(y, π(y))H(π(y), y)G(y, y).

Lemma 4 . 2 Lemma 4 . 3

 4243 ∀c ∈ N, ∃α > 0, ∀θ ∈ ∂S, ∀y ∈ Γ θ c , G(o, y)K θ (y) ≥ α. For U ⊂ S containing Γ θ c and τ the exit time of U , lim y∈Γ θ c ,y→θ G U (o, y) G(o, y) = P θ o [τ = +∞]. By lemma 4.2, for µ-almost all θ ∈ N N c+1 , y∈Γ θ c ∆u 2 (y) G Γ (o, y) G(o, y) < +∞. If we show that for µ-almost all θ ∈ N N c+1 , P θ o [τ = +∞] > 0, lemma 4.3 gives N N c+1 ∼

But G(y, y) ≥ p 2 (y, y) ≥ 3ε 2 and H(y, π(y))H(π(y), y) ≥ ε 2c by (H) and d(y, π(y)) ≤ c, which finishes the proof of lemma 4.2.

Let us prove lemma 4.3 :

and by definition of Martin's kernel, if we could switch the limit and expectation, by a conditioning formula [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF],

We now justify that inversion by Lebesgue's theorem. The idea is to bound, when τ is finite, G(Xτ ,y) G(o,y) by a multiple of K θ (X τ ). We compare for that purpose G(X τ , y) with K θ (X τ ). Denote again by π the projection function on γ θ . We

, by formula 1 and the remark that this formula also implies by definition of K θ and by taking the limit that

. We also have, by definition and formula 1,

We know that G is bounded (see [START_REF] Picardello | Finite truncations of random walks on trees[END_REF][START_REF] Mouton | Comportement asymptotique des fonctions harmoniques sur les arbres[END_REF]) and H is a probability, so it just remains to compare H(o, π(y)) with G(o, y). But H(o,π(y)) G(o,y) = (G(π(y), y)) -1 and 1 G is bounded by 1 3ε 2 . Merging the two cases gives a constant β such that G(Xτ ,y) K θ (Xτ ) ≤ βG(o, y), which enables to use Lebesgue's theorem and completes the proof of lemma 4.3.