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Exact Sparse Matrix-Vector Multiplication on GPU's and Multicore Architectures

We propose different implementations of the sparse matrix-dense vector multiplication (SpMV) for finite fields and rings Z /m Z. We take advantage of graphic card processors (GPU) and multi-core architectures. Our aim is to improve the speed of SpMV in the LinBox library, and henceforth the speed of its black box algorithms. Besides, we use this and a new parallelization of the sigma-basis algorithm in a parallel block Wiedemann rank implementation over finite fields.

Introduction

Nowadays, personal computers and laptops are often equipped with multicore architectures, as well as with more and more powerful graphic cards. The latter ones can be easily programmable for a general purpose computing usage (Nvidia Cuda, Ati Stream, OpenCL). Graphic processors offer nowadays quite frequently superior performance on a same budget as their CPU counterparts. However, programmers can also efficiently use many-core CPUs for parallelization e.g. with the OpenMP standard.

On the numerical side, several libraries automatically tune the sparse matrix kernels [START_REF] Vuduc | Oski: A library of automatically tuned sparse matrix kernels[END_REF][START_REF] Vuduc | Fast sparse matrix-vector multiplication by exploiting variable block structure[END_REF][START_REF] Tvrdik | A new approach for accelerating the sparse matrix-vector multiplication[END_REF] and recently some kernels have been proposed e.g. for GPU's [START_REF] Vazquez | The sparse matrix vector product on GPUs[END_REF][START_REF] Buluç | Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks[END_REF][START_REF] Bell | Implementing sparse matrix-vector multiplication on throughput-oriented processors[END_REF]. In this paper we want to adapt those techniques for exact computations and we first mostly focused on Z /m Z rings, with m smaller that a machine word.

The first idea is to use the numerical methods in an exact way as has been done for dense matrix operations [START_REF] Dumas | Finite field linear algebra subroutines[END_REF]. For sparse matrices, however, the extraction of sparse matrices is slightly different. Also, over small fields some more dedicated optimizations (such as a separate format for ones and minus ones) can be useful. Finally, we want to be able to use both multi-cores and GPU's at the same time and the best format for a given matrix depends on the underlying architecture.

Therefore, we propose an architecture with hybrid data formats, user-specified or heuristically discovered dynamically. The idea is that a given matrix will have different parts in different formats adapted to its data or the resources. Also we present a "just-in-time" technique that allows to compile on the fly some parts of the matrix vector product directly with the values of the matrix.

We have efficiently implemented 1 "Sparse Matrix-Vector multiplication" (SpMV) on finite rings, together with the transpose product and iterative process to compute the power of a matrix times a vector, or a sequence of matrix products.

We also make use of this library to improve the efficiency of the block Wiedemann algorithm's of the LinBox2 library. Indeed, this kind of algorithm uses block "black box" [START_REF] Kaltofen | Factoring high-degree polynomials by the black box Berlekamp algorithm[END_REF] techniques: the core operation is a matrix-vector multiplication and the matrix is never modified. We use the new matrix-vector multiplication library, together with a new parallel version of the sigma-basis algorithm, used to compute minimal polynomials [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Dumas | Parallel computation of the rank of large sparse matrices from algebraic k-theory[END_REF].

In section 2 we present different approaches to the parallelization of the SpMV operation, with the adaptation of numerical libraries (section 2.3), new formats adapted to small finite rings (section 2.4) together with our new hybrid strategy and their iterative versions (section 2.5). Then in section 3 we propose a new parallelization of the block Wiedemann rank algorithm in LinBox, via the parallelization of the matrix-sequence generation (section 3.1) and the parallelization of the matrix minimal polynomial computation (section 3.2).

Sparse-Vector Matrix multiplication

We begin with introducing some notations. In this section, we will consider a matrix A; the element at row i, column j is A[i, j]. The number nbnz is the number of non zeros elements in matrix A, it has row lines and col columns. If x and y are vectors, then we perform here the operation y ← A x + y. The general operation y ← αA x +β y can then be done by pre-multiplying x and y by α and β respectively. The apply operation in black box algorithms, or y ← A x, is performed by first setting y elements to zero. For further use in block methods, we also provide the operation Y ← αA X +β Y where X and Y are sets of vectors.

Sparse Matrix Formats and Multiplication

Sparse matrices arise form various domains and their shapes can be very specific. Taking into consideration the structure of a sparse matrix can dramatically improve the performance of SpMV. However, there is no general storage format that is efficient for all kind of sparse matrices.

Among the most important storage formats is the COO (coordinate) format which stores triples. It consists of three vectors of size nbnz, named data, colid and rowid, such that data

[k]= A [rowid[k],colid[k]].
The CSR (compressed storage row) stores more efficiently the previous representation: the rowid field is replaced by a (row + 1)

long start vector such that if start[i] k < start[i + 1], then data[k]= A[i,colid[k]].
In other words, start indicates where a line starts and ends in the other two ordered fields.

The ELL (ELLpack) format stores data in a denser way: it has data and colid fields such that data[i, j 0 ]= A[i,colid[i, j 0 ]], where j 0 varies between 0 and the maximum number of non zero elements on a line of A. One notices that these fields can be stored in row-major or column-major order. A variant is the ELL_R format that adds a row long rownb vector that indicates how many non zero entries there are per line.

The DIA (DIAgonal) is used to store matrices with non zero elements grouped along diagonals. It stores these diagonals in an array along with offsets where they start. We refer to [START_REF] Bell | Implementing sparse matrix-vector multiplication on throughput-oriented processors[END_REF], [START_REF] Vazquez | The sparse matrix vector product on GPUs[END_REF] for more details on these formats.

This very schematic description of a few well-known formats shows that each of them has pros and cons. Our aim is to produce a more efficient implementation of the SpMV operation on finite fields than the one present in LinBox, taking first advantage of this variety of formats.

Finite field representation

We present now how the data is stored. We use data types such as float, int. Firstly, when doing modular linear algebra, we try to minimize the number of costly f mod (reduction) operation calls. For instance, we prefer if possible the left loop to the right one in the next figure: . The latter representation enables us to perform twice more operations before a reduction, but this reduction is slightly more expensive. Another trade-off consists in choosing a float representation instead of double (on the architectures that support double). Indeed, operations can be much faster on float that on double but the double representation lets us do more operations before reduction. This is particularly true on some GPU's. In figure 1, we present variations in efficiency due to the storage data type and the size of m on one core of a 3.2GHz Intel Xeon CPU and a Nvidia GTX280 GPU. The timings correspond to the average of 50 SpMV operations, where x and y are randomly generated on the CPU (which also takes into account every data transfer between the CPU and GPU). The measures corresponds to the number of million floating point operations per seconds (flops); a SpMV operation requires 2 * nbnz such operations. The performance correspond to the best ones achieved on the matrices 3 For further information about these techniques on these rings and fast arithmetic in Galois extensions, see e.g. [START_REF] Dumas | Finite field linear algebra subroutines[END_REF].

Adapting numerical libraries

Another speed-up consists in using existing numerical libraries. The ideas behind using them on the rings Z /m Z, is twofold. Firstly, we delay the modular reduction, secondly we can use highly optimized popular libraries and get instant speed-ups as compared to more naive self-written routines.

Just like BLAS libraries can be used to speed up modular linear algebra [START_REF] Dumas | Dense linear algebra over wordsize prime fields: the FFLAS and FFPACK packages[END_REF], we can use numerical libraries for our purposes, or get inspiration for our algorithms from their techniques. For instance, there is the Oski library [START_REF] Vuduc | Oski: A library of automatically tuned sparse matrix kernels[END_REF] for sequential numerical SpMV, or the GPU implementation of SpMV by Nathan Bell et al. in [START_REF] Bell | Implementing sparse matrix-vector multiplication on throughput-oriented processors[END_REF]. The BLAS specifications include sparse BLAS4 but they are seldom fully implemented on free BLAS implementations.

Unfortunately, they usually cannot be used as-is. We need to extract submatrices from the sparse matrices, which is more complicated than for its dense counterpart when the use of strides and dimensions suffices. For instance, if one can do b accumulations on y[i] before reducing and the line i of A has r i non zero elements. Then we want to split this line between ⌈r i /b⌉ matrices. Finally, we can use the numerical libraries on these submatrices we have created. The general algorithm reads like follows: 

spmv(y,A,x){ foreach submatrix Ai in A do{ spmv_num(y,Ai,x); reduce(y,m); } }

New formats

Most of the formats implemented show a row-level parallelism, except COO that has element-wise parallelism. The COO case is not obvious to implement and generally much slower. The parallel efficiency of other formats will depend then on the length of the rows as well as the data regularity. Unbalanced rows on a GPU architecture will produce many idle threads. Two solutions exist: the vector approach of Bell (they split the rows into shorter chunks) or the rearranging of rows with permutations to sort the row according to their length. The latter will not work in e.g. a power distribution of the row lengths. The ELL format answers very well this problem because each row has the same length.

An other way to parallelize the SpMV operation is to split the matrix A along rows to get smaller submatrices and treat them in parallel. We took this approach on the CPU COO algorithm. Also, we are dealing with large matrices, used many times as black-boxes. Therefore there is a trade-off between the time spent on optimizing the matrix and how much faster these optimizations will make SpMV run.

Things to consider during preprocessing may include for instance: reordering row-columns to create denser parts, choosing best-fitting formats, cutting the matrix into efficient sub-matrices ( [START_REF] Vuduc | Fast sparse matrix-vector multiplication by exploiting variable block structure[END_REF], [START_REF] Tvrdik | A new approach for accelerating the sparse matrix-vector multiplication[END_REF]). . . The preprocessing approach is taken by Oski: if the expected number of SpMV is very high, optimizing the matrix deeper will prove efficient.

Base case: JIT

One idea to improve SpMV on a given matrix is to hard code this operation in a static library. We read the matrix file and create a library that will apply this matrix to input vectors. For instance the y ← y +A x operation on the matrix 2 1 0 3 would be translated to (if m = 27)

void spmv(float * y, const float * x) { y[0] += 2*x[0] ; y[0] += x[1] ; y[0] = fmod(y[0],27); y[1] += 3*x[1] ; y[1] = fmod(y[1],27); }
Then we compile this generated file a as static library and use dlopen to access its functions. As we can see in this example, one can implement various optimizations: rearranging the rows so that the work is more even (non implemented yet), replacing the occurrences of ±1 in the matrix by less costly additions or subtractions. We have better control on what the compiler will produce. However, large matrices take extremely long to compile. gcc cannot compile the library if the source holds in one huge file, so we divide the matrix into parts of 1000 non zero elements and compile them. Only then for instance, we could compile bibd_81_3 but it takes 63s on the same Xeon machine. Once it is compiled, the CPU version runs at 620 Mflops, which is reasonably fast.

Taking into account the ±1

The example of JIT and the observation that many matrices arising from different applications have a lot of ±1 F tends to draw our attention to this special case. Moreover, many matrices on a small fields also share this property. Thus we can extract two submatrices corresponding to the 1 and -1 from the rest of the matrix and replace multiplications by usually less expensive additions. Besides, the data field in most formats (except ELL, DIA) can be forgotten as we know they only consist of 1 or -1: this reduces the memory usage. Doing only additions as opposed to axpy also hugely delays reduction.
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Figure 3: Speed improvement on one 3.2GHz Intel Xeon CPU and a Nvidia GTX280 GPU when segregating or not the ±1 Figure 3 shows a maximum 20% improvement on a matrix with only 1s and 15% on matrix with 50% of ±1.

Basic Formats

As evoked earlier, the matrix A can be split into smaller submatrices. These submatrices can have a format adapted to them and/or can be treated differently. For instance, we can split row-wise and distribute these matrices for parallelism, or split them column-wise as in the delaying case (figure 2. This makes (possibly) many matrices that we each want to optimize individually so we get better overall performance.

We start with some observations. The COO format is slow due to the many fmod calls, it is best used when the matrix is extremely sparse. The CSR format is denser and can let delayed reduction occur, but one has to ensure the row lengths are well balanced when parallelizing. The ELL formats are very efficient on matrices that have roughly the same number of non zeros per line. The ELL_R format ( [START_REF] Vazquez | The sparse matrix vector product on GPUs[END_REF]) is better for uneven rows lengths. One difference in the CPU and GPU architecture makes the ELL row-major on the CPU (for better cache use) and column-major on the GPU (for better coalescing). The following figure shows on one example (bibd_81_3) the variation of efficiency. The data is normalized so that CSR is 1 on the CPU or GPU.

Figure 4: Speed-ups for various formats on matrix bibd_81_3 both on one 3.2GHz Intel Xeon CPU and a Nvidia GTX280 GPU; reference is CSR on each architecture

Hybridization

The previous remarks lead us to combine these formats to take advantage of them. A hybrid format such as ELL(R)+COO or ELL(R)+CRS leads to good performance on the GPU. When the ELL part is taken out of a matrix, many rows can be left empty. Then, we use a format called COO_S that is a CSR format with pointers only to the non empty rows. It has data, colid same as in CSR and COO. The number rowid[k] corresponds to the k th non empty row that starts in data and colid at start[k]. This format could be avoided if we used row permutations and ordered the lines according to their weight.

Heuristic format chooser

The previous remarks show a great complexity in the formats and the cutting of the matrix. We have implemented a user-helped heuristic format chooser. For instance, the user can indicate if she wants to try and make use of ±1. If so, for each submatrix, the program tries to find an a priori efficient format for them or if it fails, does not separate the 1 or the -1 from the rest. She can also indicate what is the format she wants to fill in priority.

The hybridization of the matrix is usually done as follows. If the matrix is large enough and most of the lines are filled, it will try to fit a part of the matrix in an ELL or ELL_R format. This choice is supported by the observation that many matrices have a c + r row distribution where c is some constant and r ∈ Z varies and the fact that ELL is generally much faster that other formats for matrices with even row weight. The rest of the matrix will be put in a CSR, COO or COO_S format, according to the number of empty lines and the number of residual non zero elements. Parameters that decide when segregating the 1s, that choose the best length for ELL matrix, etc., vary according to the architecture of the computer and need some specific tuning. This tuning is not yet provided at compile time but some of it could be automatically performed at install time.

Experiments show that this heuristic often gives equal or better results that simple formats on the CPU and the GPU.

Block and iterative versions

Using multi-vectors

We have described the SpMV operation y ← A x where x and y are vectors. We also need x and y to be multi-vectors, for they may be used for block algorithms. There are at least two ways of representing them : row or column-major order. In the row-major order, we can use the standard SpMV many times (and align the vectors). In the column-major order, we can write dedicated versions that try and make use of the cache. Indeed, in this case, we traverse the matrix only once and x and y are read/written contiguously. On figure 5, we note that on the CPU, using column-major multivectors is a non negligible gain of speed. On the contrary, the GPU implementation fails to sustain good efficiency for blocks of more than 8 vectors and some large matrices start to reach the memory limit.

Performance issues

The GPU operation on a single SpMV call from the host point of view is very slow because we need to move the vectors between the host and the device. It is therefore only usable on operations that need no data moving between the host and the device. Examples include the computation y ← A n x or the 3 Parallel block Wiedemann algorithm Some of the most representative applications requiring efficient sparse matrixvector product are blackbox methods based on the Lanczos/Krylov approach. In particular, the method proposed by Wiedemann [START_REF] Wiedemann | Solving sparse linear equations over finite fields[END_REF] and its block version proposed by Coppersmith [START_REF] Coppersmith | Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm[END_REF] are well suited to highlight efficiency of sparse matrix-vector product since the latter is quite often their bottleneck.

As an application, we propose to improve the implementation of the Block Wiedemann rank algorithm presented in [START_REF] Dumas | Parallel computation of the rank of large sparse matrices from algebraic k-theory[END_REF]. Let us first briefly recall the outline of this algorithm, we let the reader refer to e.g. [START_REF] Turner | A block Wiedemann rank algorithm[END_REF] for further details.

Let A ∈ F n×n be a matrix satisfying the preconditions of [START_REF] Kaltofen | On Wiedemann's method of solving sparse linear systems[END_REF]. Then the algorithm can be decomposed in three steps:

1. Compute the matrix sequence S i = Y T A i Y for i = 0..2n/s + O(1), with Y ∈ F n×s chosen at random 2. Compute the minimal matrix generator F A Y ∈ F s×s [x] of the matrix series S(x) = i S i x i 3. Return the rank r = deg(det(F A Y )) -codeg det(F A Y ).
Our approach is to separate the parallelization of each step. The first step is clearly related to sparse matrix-vector product and we will re-use our tools presented in previous sections. The second step needs the computation of a minimal matrix generator. This can be achieved by a σ-basis computation as explained in [8, section 2.2]. Finally, the last step reduces to computing the co-degree of the determinant of the σ-basis . The degree of the determinant being directly computed as the sum of the row degrees of F A Y since, due to the σ-basis properties, the matrix is already in Popov form.

Parallelization of the matrix sequence generation

The parallelization proposed in [START_REF] Dumas | Parallel computation of the rank of large sparse matrices from algebraic k-theory[END_REF] was to ship independent set of vector blocks of V to different cores and apply them in parallel. Then gather the results to compute the dense dot products by U T .

An alternative is to use the SpMV library and let it take care of the iteration with the algorithm of the preceding section.

In figure 7 we compare both approaches:

Figure 7: Speed up from the new SpMV library compared to the native LinBox implementation in the generation of the matrix sequence (2n iterations) on one core of a 2.33GHz Intel Xeon E5345 CPU

Parallelization of the σ-basis computation

One can efficiently compute σ-basis using the algorithm PM-Basis of [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF]. This algorithm mainly reduces to polynomial matrix multiplication. Therefore a first parallelization approach is to parallelize the polynomial multiplication.

Parallel polynomial matrix multiplication

Let A, B ∈ F n×n [x] be two polynomial matrices of degree d. One can multiply A and B in O(n 3 d + n 2 d log d) operations in F assuming F has a d-th primitive root of unity [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. Assuming one has k processors such that k n 2 , one can perform this multiplication with a parallel complexity of O(

n 3 d k + n 2 d log d k
) operation in F. Let us now see the sequential fast polynomial matrix multiplication algorithm and how it achieves such a parallel complexity:

Fast Polynomial Matrix Multiplication:

Inputs: A, B ∈ F n×n [x] of degree d, ω a d-th primitive root of unity inf F. Outputs: A × B 1. Ā := DF T (A, [1, ω, ω 2 , ..., ω 2d ]) 2. B := DF T (B, [1, ω, ω 2 , ..., ω 2d ]) 3. C := Ā ⊗ B 4. C := 1 2d DF T ( C, [1, ω -1 , ω -2 , ..., ω -2d ]) return C.
Here, DF T (P, L) means the multi-points evaluation of the polynomial P on each points of L, while ⊗ means the point-wise product.

• step 1,2 and 4 can be accomplished by using Fast Fourier Transform on each matrix entries which gives n 2 × O(d log d) operations (see [START_REF] Gathen | Modern Computer Algebra[END_REF]Theorem 8.15]). This clearly can be distributed on k processors such that each processor achieves in parallel the FFT on n We report in figure 8 the performance of the implementation of this parallel algorithm in the LinBox 5 library. Our choice of using this parallel algorithm rather than another one, achieving a possible better parallel complexity, has been driven by the re-usability of efficient sequential components of the library (e.g. matrix multiplication) and the ease of use within the library itself (i.e. mostly the same code as sequential one, only some OpenMP pragmas have been added).

One can see on figure 8 that our coder does not completely match the theoretical parallel speedup. The best we can achieved with 16 processors is a speedup of 5.5, which is only one third of the theoretical optimality. Nevertheless, one can see that with less processors (e.g. less than 4) the speedup factor is closer to 75% of the optimality, which is quite fair. We think this phenomenon can be explained by the underlying many multi-core architecture (Quad-Core AMD Opteron), which may clearly suffers from cache effect if computation are done on same chip or not.

As expected, we can also point out from figure 8 that our implementation benefits at most from parallelism when matrices are larger. Since workload on each core is more important, this allows to hide the penalty from memory operations and threads management of OpenMP. This remarks also applies on the degree but the impact is less important.

Parallel σ-basis implementation

According to the reduction of PM-Basis to polynomial matrix multiplication, one can achieve a parallel complexity of O˜(

n 3 d k + n 2 d log d k
) operations in F with k processors for σ-basis calculation, assuming k n 2 . Therefore, it suffices to directly plug in our parallel polynomial matrix multiplication into the original code of the LinBox library to get a parallel σ-basis implementation.

We report in figure 9 the performance of the parallel version of PM-Basis algorithm within LinBox. Here again, the speedup factor of parallelism is quite low when compared to the theoretical optimality. At most we were able to obtain a speedup of 3 with 16 processors. However, this timings are consistent with the previous ones in figure 8 where the best speedup was 5.

One may notice that reduction to polynomial matrix multiplication of the PM-Basis algorithm relies on a divide a conquer approach on the degree of the approximation (see [11, theorem 2.4]). Therefore, the recursion calls are made with smaller and smaller approximation's degrees, which leads to use less efficient parallel multiplications. Moreover, when the degree is too small the use of the M-Basis algorithm of [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF] should be prefered since it becomes more efficient in practice. We have not yet implemented a parallel implementation of this algorithm in LinBox and this clearly affects the performance of our implementation.

Parallel determinant co-degree

Here we just launch in parallel the evaluations of the matrix polynomial at different points, and the computation of the determinant of the obtained matrix at the given point, and gather the results sequentially with the Poly1CRT class of Givaro. 

Parallel block Wiedemann performance

In table 2 we show the overall performance of our algorithm on an octo-processor Xeon E5345 CPU, 8 × 2.33GHz. *-LB shows the timings of the current LinBox implementation, where *-SpMV presents our new improvement, both in sequential and in parallel. The speed-up for SpMV between 1 and 8 processors is slightly larger than 5 for all the matrices where the speed-up for LinBox ranges from 4 to 4.9. Furthermore, the speed-up obtained with SpMV versus LinBox on the sequence generation seems scalable as it even improves when used in a parallel setting.

Conclusion

We have proposed a new SpMV library providing good results on Z /m Z rings.

To attain this efficiency it has been mandatory to augment the complexity of the SpMV algorithms, since OpenMP, Cuda et al. all manage differently the parallelization. Nonetheless, we provide new hybrid formats that improve the performance. Moreover we have also specialized it to the computation of a sequence of matrix-vector products together with a new parallelization of the As seen in 3.2.2, a first parallelization of the σ-basis computation has been achieved. Its efficiency is not matching the expected scalability and lot of work needs to be done to circumvent this problem. First, a deeper study on the parallelization of σ-basis computation has to be done. Beside the parallelization of PM-Basis and M-Basis algorithms themselves, we need to design new algorithms to avoid the numerous task dependencies, inherent to the existing methods. This will also enable an easier parallelization of early termination strategies (requiring to interleave the generation sequence and the σ-basis computation).

Another important task is to extend the sigma-basis algorithm to work on polynomial matrices over extension fields. Indeed the use of random projections U and V over extension fields might improve the probabilities to get the full minimal polynomial of the matrix [START_REF] Kaltofen | Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems[END_REF][START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF][START_REF] Chen | Efficient matrix preconditioners for black box linear algebra[END_REF]. As shown in this paper and in [START_REF] Dumas | Parallel computation of the rank of large sparse matrices from algebraic k-theory[END_REF], σ-basis needs only a polynomial matrix multiplication implementation to work. In order to current LinBox's implementation to extension field, we will use the same technique as [START_REF] Dumas | Finite field linear algebra subroutines[END_REF]: first use Kronecker substitution to transform the extension field polynomial representation to an integer representation ; then use a Chinese remaindered version of the polynomial matrix multiplication to recover the resulting matrix polynomial over Z ; and finally convert back the integers using e.g. the REDQ inverse operation of [START_REF] Dumas | Q-adic transform revisited[END_REF].

The SpMV implementation also needs further work and other directions to be explored. For instance, we need to have dedicated implementations in Z /2 Z where x and y can be compressed. More formats, including dense submatrices, have yet to be explored, which is linked to spending some more time on pre-processing the matrix: for instance the use of Metis6 for partitioning and reordering A would also improve the performance. It will be interesting to deal with matrices such that A and ⊤ A cannot be simultaneously stored ( [START_REF] Buluç | Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks[END_REF]). This problem indeed occurs on GPU's where on-chip memory is very limited. Finally, we will also provide multi-GPU and hybrid GPU/CPU implementations.
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 1 Figure 1: float-double trade-off for different sizes of m, on the CPU and GPU
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 5 Figure 5: Matrix-multivector multiplication speed on one 3.2GHz Intel Xeon CPU (left) and a Nvidia GTX280 GPU (right) for column-major multi-vectors, with 1, 4, 8 and 16 vectors.
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 1 matrix entries. This gives a parallel complexity of O( n 2 d log d k ) operations in F. • step 3 requires the computation of 2d independent matrix multiplications of dimension n, which gives O(n 3 d) operations in F. One can easily see how to distribute this work on k processors such that each processor has a workload of O( n 3 d k ) operations.
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 8 Figure 8: Scalability of parallel polynomial matrix multiplication with LinBox and OpenMP on a 16 core machine (based on Quad-Core AMD Opteron). n is the matrix dimension.

Figure 9 :

 9 Figure 9: Scalability of parallel σ-basis computation with LinBox and OpenMP on a 16 core machine (based on a Quad-Core AMD Opteron). n is the matrix dimension of the series.

Table 1 :

 1 presented in table 1. Matrices overview

	name mat1916 bibd_81_3 EX5	GL7d15 mpolyout2
	row 1916	3240	6545	460261	2410560
	col 1916	85320	6545	171375	2086560
	nbnz 195985	255960	295680 6080381 15707520
	rank 1916	3240	4740	132043	1352011

Table 2 :

 2 Rank modulo 65521 with OpenMP Parallel block Wiedemann on a Xeon E5345, 8 × 2.33GHz sigma-basis algorithm in order to enhance e.g. rank computations of very large sparse matrices.

	Matrix	mat1916		bibd_81_3	EX5	
	Cores	1	8	1	8	1	8
	Seq-LB	15.09 3.08 47.73	12.41	84.21	20.22
	Seq-SpMV	5.02 0.91 41.28	7.56	49.66	7.36
	σ-basis	9.02 1.64 18.45	3.63	37.45	8.39
	Interpolation	0.37 0.29	1.07	0.82	2.29	1.75
	Total-LB	24.48 5.01 67.25	16.86 123.95	30.36
	Total-SpMV	14.41 2.84 60.80 12.01	89.40 17.50

https://ljkforge.imag.fr/projects/ffspmvgpu/

http://linalg.org

matrices available at http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc. html

www.netlib.org/blas/blast-forum/chapter3.pdf

www.linalg.org

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

computation of the sequence A i x i∈ 0,m that are used in many of the black box methods.

On figure 6, we illustrate this differences, mostly reusing or not the data on the GPU, by comparing the performance of the following two pseudo-codes: We confirm on figure 6 that it is highly desirable to not move data on the GPU when avoidable.