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Abstract

We propose different implementations of the sparse matrix–dense vec-
tor multiplication (SpMV) for finite fields and rings Z /mZ. We take
advantage of graphic card processors (GPU) and multi-core architectures.
Our aim is to improve the speed of SpMV in the LinBox library, and
henceforth the speed of its black box algorithms. Besides, we use this
and a new parallelization of the sigma-basis algorithm in a parallel block
Wiedemann rank implementation over finite fields.

1 Introduction

Nowadays, personal computers and laptops are often equipped with multicore
architectures, as well as with more and more powerful graphic cards. The latter
ones can be easily programmable for a general purpose computing usage (Nvidia
Cuda, Ati Stream, OpenCL). Graphic processors offer nowadays quite frequently
superior performance on a same budget as their CPU counterparts. However,
programmers can also efficiently use many-core CPUs for parallelization e.g.
with the OpenMP standard.

On the numerical side, several libraries automatically tune the sparse ma-
trix kernels [19, 20, 16] and recently some kernels have been proposed e.g. for
GPU’s [17, 2, 1]. In this paper we want to adapt those techniques for exact
computations and we first mostly focused on Z /mZ rings, with m smaller that
a machine word.

The first idea is to use the numerical methods in an exact way as has been
done for dense matrix operations [7]. For sparse matrices, however, the extrac-
tion of sparse matrices is slightly different. Also, over small fields some more

∗\{Brice.Boyer,Jean-Guillaume.Dumas\}@imag.fr, Université de Grenoble, Laboratoire

Jean Kuntzmann, UMR CNRS 5224. 51, rue des Mathématiques, BP 53X, 38041 Grenoble,

France.
†Part of this work was done while the second author was visiting the Claude Shannon

Institute and the University College Dublin, Ireland, under a CNRS grant.
‡Pascal.Giorgi@lirmm.fr, Université Montpellier 2, Laboratoire LIRMM, UMR CNRS

5506. F34095 Montpellier cedex 5, France.

1



dedicated optimizations (such as a separate format for ones and minus ones)
can be useful. Finally, we want to be able to use both multi-cores and GPU’s at
the same time and the best format for a given matrix depends on the underlying
architecture.

Therefore, we propose an architecture with hybrid data formats, user-specified
or heuristically discovered dynamically. The idea is that a given matrix will have
different parts in different formats adapted to its data or the resources. Also we
present a “just-in-time” technique that allows to compile on the fly some parts
of the matrix vector product directly with the values of the matrix.

We have efficiently implemented1 “Sparse Matrix-Vector multiplication” (SpMV)
on finite rings, together with the transpose product and iterative process to com-
pute the power of a matrix times a vector, or a sequence of matrix products.

We also make use of this library to improve the efficiency of the block Wiede-
mann algorithm’s of the LinBox2 library. Indeed, this kind of algorithm uses
block “black box” [13] techniques: the core operation is a matrix-vector mul-
tiplication and the matrix is never modified. We use the new matrix-vector
multiplication library, together with a new parallel version of the sigma-basis
algorithm, used to compute minimal polynomials [11, 8].

In section 2 we present different approaches to the parallelization of the
SpMV operation, with the adaptation of numerical libraries (section 2.3), new
formats adapted to small finite rings (section 2.4) together with our new hybrid
strategy and their iterative versions (section 2.5). Then in section 3 we pro-
pose a new parallelization of the block Wiedemann rank algorithm in LinBox,
via the parallelization of the matrix-sequence generation (section 3.1) and the
parallelization of the matrix minimal polynomial computation (section 3.2).

2 Sparse-Vector Matrix multiplication

We begin with introducing some notations. In this section, we will consider a
matrix A; the element at row i, column j is A[i, j]. The number nbnz is the
number of non zeros elements in matrix A, it has row lines and col columns.
If x and y are vectors, then we perform here the operation y ← Ax+y. The
general operation y ← αAx+β y can then be done by pre-multiplying x and
y by α and β respectively. The apply operation in black box algorithms, or
y ← Ax, is performed by first setting y elements to zero. For further use in
block methods, we also provide the operation Y ← αAX+βY where X and
Y are sets of vectors.

2.1 Sparse Matrix Formats and Multiplication

Sparse matrices arise form various domains and their shapes can be very specific.
Taking into consideration the structure of a sparse matrix can dramatically

1https://ljkforge.imag.fr/projects/ffspmvgpu/
2http://linalg.org
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improve the performance of SpMV. However, there is no general storage format
that is efficient for all kind of sparse matrices.

Among the most important storage formats is the COO (coordinate) format
which stores triples. It consists of three vectors of size nbnz, named data, colid
and rowid, such that data[k]= A [rowid[k],colid[k]].

The CSR (compressed storage row) stores more efficiently the previous repre-
sentation: the rowid field is replaced by a (row+1) long start vector such that
if start[i] 6 k < start[i + 1], then data[k]= A[i,colid[k]]. In other
words, start indicates where a line starts and ends in the other two ordered
fields.

The ELL (ELLpack) format stores data in a denser way: it has data and
colid fields such that data[i, j0]= A[i,colid[i, j0]], where j0 varies between
0 and the maximum number of non zero elements on a line of A. One notices
that these fields can be stored in row-major or column-major order. A variant
is the ELL_R format that adds a row long rownb vector that indicates how many
non zero entries there are per line.

The DIA (DIAgonal) is used to store matrices with non zero elements grouped
along diagonals. It stores these diagonals in an array along with offsets where
they start. We refer to [1],[17] for more details on these formats.

This very schematic description of a few well-known formats shows that each
of them has pros and cons. Our aim is to produce a more efficient implemen-
tation of the SpMV operation on finite fields than the one present in LinBox,
taking first advantage of this variety of formats.

2.2 Finite field representation

We present now how the data is stored. We use data types such as float, int.
Firstly, when doing modular linear algebra, we try to minimize the number of
costly fmod (reduction) operation calls. For instance, we prefer if possible the
left loop to the right one in the next figure:

for (i=0 ; i<n ; ++i){

y += a[i] * b[i] ;

}

y = fmod(y,m);

for (i=0 ; i<n ; ++i){

y += a[i] * b[i] ;

y = fmod(y,m);

}

In this case, suppose y = 0 and a[i], b[i] are reduced modulo m at first, and
M is the largest representable integer. Say that on Z /mZ, we represent the
ring on J0,m− 1K. Then we can do at most M/m2 such accumulations before
reducing. We can also represent the ring on

q
−
⌊

m−1
2

⌋

,
⌈

m−1
2

⌉y
. The latter rep-

resentation enables us to perform twice more operations before a reduction, but
this reduction is slightly more expensive. Another trade-off consists in choosing
a float representation instead of double (on the architectures that support
double). Indeed, operations can be much faster on float that on double but
the double representation lets us do more operations before reduction. This is
particularly true on some GPU’s.
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Figure 1: float–double trade-off for different sizes of m, on the CPU and GPU

In figure 1, we present variations in efficiency due to the storage data type
and the size of m on one core of a 3.2GHz Intel Xeon CPU and a Nvidia GTX280
GPU. The timings correspond to the average of 50 SpMV operations, where
x and y are randomly generated on the CPU (which also takes into account
every data transfer between the CPU and GPU). The measures corresponds to
the number of million floating point operations per seconds (flops); a SpMV

operation requires 2∗nbnz such operations. The performance correspond to the
best ones achieved on the matrices3 presented in table 1.

name mat1916 bibd_81_3 EX5 GL7d15 mpolyout2

row 1916 3240 6545 460261 2410560
col 1916 85320 6545 171375 2086560
nbnz 195985 255960 295680 6080381 15707520
rank 1916 3240 4740 132043 1352011

Table 1: Matrices overview

For further information about these techniques on these rings and fast arith-
metic in Galois extensions, see e.g. [7].

3matrices available at http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.

html
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2.3 Adapting numerical libraries

Another speed-up consists in using existing numerical libraries. The ideas be-
hind using them on the rings Z /mZ, is twofold. Firstly, we delay the modular
reduction, secondly we can use highly optimized popular libraries and get instant
speed-ups as compared to more naive self-written routines.

Just like BLAS libraries can be used to speed up modular linear algebra [9],
we can use numerical libraries for our purposes, or get inspiration for our al-
gorithms from their techniques. For instance, there is the Oski library [19] for
sequential numerical SpMV, or the GPU implementation of SpMV by Nathan
Bell et al. in [1]. The BLAS specifications include sparse BLAS4 but they are
seldom fully implemented on free BLAS implementations.

Unfortunately, they usually cannot be used as-is. We need to extract sub-
matrices from the sparse matrices, which is more complicated than for its dense
counterpart when the use of strides and dimensions suffices. For instance, if one
can do b accumulations on y[i] before reducing and the line i of A has ri non
zero elements. Then we want to split this line between ⌈ri/b⌉ matrices. Finally,
we can use the numerical libraries on these submatrices we have created. The
general algorithm reads like follows:

spmv(y,A,x){

foreach submatrix Ai in A do{

spmv_num(y,Ai,x);

reduce(y,m);

}

}

Figure 2: Using numerical routines

2.4 New formats

Most of the formats implemented show a row-level parallelism, except COO that
has element-wise parallelism. The COO case is not obvious to implement and
generally much slower. The parallel efficiency of other formats will depend
then on the length of the rows as well as the data regularity. Unbalanced
rows on a GPU architecture will produce many idle threads. Two solutions
exist: the vector approach of Bell (they split the rows into shorter chunks) or
the rearranging of rows with permutations to sort the row according to their
length. The latter will not work in e.g. a power distribution of the row lengths.
The ELL format answers very well this problem because each row has the same
length.

An other way to parallelize the SpMV operation is to split the matrix A
along rows to get smaller submatrices and treat them in parallel. We took this
approach on the CPU COO algorithm.

4www.netlib.org/blas/blast-forum/chapter3.pdf
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Also, we are dealing with large matrices, used many times as black-boxes.
Therefore there is a trade-off between the time spent on optimizing the matrix
and how much faster these optimizations will make SpMV run.

Things to consider during preprocessing may include for instance: reordering
row-columns to create denser parts, choosing best-fitting formats, cutting the
matrix into efficient sub-matrices ([20],[16]). . . The preprocessing approach is
taken by Oski: if the expected number of SpMV is very high, optimizing the
matrix deeper will prove efficient.

2.4.1 Base case: JIT

One idea to improve SpMV on a given matrix is to hard code this operation in
a static library. We read the matrix file and create a library that will apply this
matrix to input vectors. For instance the y← y+Ax operation on the matrix
(

2 1
0 3

)

would be translated to (if m = 27)

void spmv(float * y, const float * x) {

y[0] += 2*x[0] ;

y[0] += x[1] ;

y[0] = fmod(y[0],27);

y[1] += 3*x[1] ;

y[1] = fmod(y[1],27);

}

Then we compile this generated file a as static library and use dlopen to ac-
cess its functions. As we can see in this example, one can implement various
optimizations: rearranging the rows so that the work is more even (non im-
plemented yet), replacing the occurrences of ±1 in the matrix by less costly
additions or subtractions. We have better control on what the compiler will
produce. However, large matrices take extremely long to compile. gcc cannot
compile the library if the source holds in one huge file, so we divide the matrix
into parts of 1000 non zero elements and compile them. Only then for instance,
we could compile bibd_81_3 but it takes 63s on the same Xeon machine. Once
it is compiled, the CPU version runs at 620 Mflops, which is reasonably fast.

2.4.2 Taking into account the ±1

The example of JIT and the observation that many matrices arising from dif-
ferent applications have a lot of ±1F tends to draw our attention to this special
case. Moreover, many matrices on a small fields also share this property. Thus
we can extract two submatrices corresponding to the 1 and −1 from the rest
of the matrix and replace multiplications by usually less expensive additions.
Besides, the data field in most formats (except ELL, DIA) can be forgotten as
we know they only consist of 1 or −1: this reduces the memory usage. Doing
only additions as opposed to axpy also hugely delays reduction.

6



��������� 	
� �
����

�

���

����

����

����

����

����

���������

��������

���������

��������

��������

 
!�
"
#
�

Figure 3: Speed improvement on one 3.2GHz Intel Xeon CPU and a Nvidia
GTX280 GPU when segregating or not the ±1

Figure 3 shows a maximum 20% improvement on a matrix with only 1s and
15% on matrix with 50% of ±1.

2.4.3 Basic Formats

As evoked earlier, the matrix A can be split into smaller submatrices. These
submatrices can have a format adapted to them and/or can be treated differ-
ently. For instance, we can split row-wise and distribute these matrices for
parallelism, or split them column-wise as in the delaying case (figure 2. This
makes (possibly) many matrices that we each want to optimize individually so
we get better overall performance.

We start with some observations. The COO format is slow due to the many
fmod calls, it is best used when the matrix is extremely sparse. The CSR format
is denser and can let delayed reduction occur, but one has to ensure the row
lengths are well balanced when parallelizing. The ELL formats are very efficient
on matrices that have roughly the same number of non zeros per line. The
ELL_R format ([17]) is better for uneven rows lengths. One difference in the
CPU and GPU architecture makes the ELL row-major on the CPU (for better
cache use) and column-major on the GPU (for better coalescing). The following
figure shows on one example (bibd_81_3) the variation of efficiency. The data
is normalized so that CSR is 1 on the CPU or GPU.

7
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Figure 4: Speed-ups for various formats on matrix bibd_81_3 both on one
3.2GHz Intel Xeon CPU and a Nvidia GTX280 GPU; reference is CSR on each
architecture

2.4.4 Hybridization

The previous remarks lead us to combine these formats to take advantage of
them. A hybrid format such as ELL(R)+COO or ELL(R)+CRS leads to good per-
formance on the GPU. When the ELL part is taken out of a matrix, many rows
can be left empty. Then, we use a format called COO_S that is a CSR format with
pointers only to the non empty rows. It has data, colid same as in CSR and
COO. The number rowid[k] corresponds to the kth non empty row that starts
in data and colid at start[k]. This format could be avoided if we used row
permutations and ordered the lines according to their weight.

2.4.5 Heuristic format chooser

The previous remarks show a great complexity in the formats and the cutting
of the matrix. We have implemented a user-helped heuristic format chooser.
For instance, the user can indicate if she wants to try and make use of ±1. If
so, for each submatrix, the program tries to find an a priori efficient format for
them or if it fails, does not separate the 1 or the −1 from the rest. She can also
indicate what is the format she wants to fill in priority.

The hybridization of the matrix is usually done as follows. If the matrix
is large enough and most of the lines are filled, it will try to fit a part of the
matrix in an ELL or ELL_R format. This choice is supported by the observation
that many matrices have a c + r row distribution where c is some constant
and r ∈ Z varies and the fact that ELL is generally much faster that other
formats for matrices with even row weight. The rest of the matrix will be put
in a CSR, COO or COO_S format, according to the number of empty lines and the
number of residual non zero elements. Parameters that decide when segregating

8



the 1s, that choose the best length for ELL matrix, etc., vary according to the
architecture of the computer and need some specific tuning. This tuning is not
yet provided at compile time but some of it could be automatically performed
at install time.

Experiments show that this heuristic often gives equal or better results that
simple formats on the CPU and the GPU.

2.5 Block and iterative versions

2.5.1 Using multi-vectors

We have described the SpMV operation y← Ax where x and y are vectors. We
also need x and y to be multi-vectors, for they may be used for block algorithms.
There are at least two ways of representing them : row or column-major order.
In the row-major order, we can use the standard SpMV many times (and align
the vectors). In the column-major order, we can write dedicated versions that
try and make use of the cache. Indeed, in this case, we traverse the matrix only
once and x and y are read/written contiguously.
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Figure 5: Matrix-multivector multiplication speed on one 3.2GHz Intel Xeon
CPU (left) and a Nvidia GTX280 GPU (right) for column-major multi-vectors,
with 1, 4, 8 and 16 vectors.

On figure 5, we note that on the CPU, using column-major multivectors is a
non negligible gain of speed. On the contrary, the GPU implementation fails to
sustain good efficiency for blocks of more than 8 vectors and some large matrices
start to reach the memory limit.

2.5.2 Performance issues

The GPU operation on a single SpMV call from the host point of view is very
slow because we need to move the vectors between the host and the device. It
is therefore only usable on operations that need no data moving between the
host and the device. Examples include the computation y ← An x or the

9



computation of the sequence
{

Aix
}

i∈J0,mK
that are used in many of the black

box methods.
On figure 6, we illustrate this differences, mostly reusing or not the data on

the GPU, by comparing the performance of the following two pseudo-codes:

void smpv_n(y,A,x,n){

y_d = copy_on_gpu(y);

x_d = copy_on_gpu(x);

A_d = copy_on_gpu(A);

for (i=0 ; i<n ;++i) {

y_d = A_d * x_d ; // spmv on GPU

x_d = y_d; // copy

}

}

void n_spmv(y,A,x,n){

A_d = copy_on_gpu(A);

for (i=0 ; i<n ;++i) {

y_d = copy_on_gpu(y_i);

x_d = copy_on_gpu(x_i);

y_d = A_d * x_d ; // spmv on GPU

}

}

We confirm on figure 6 that it is highly desirable to not move data on the GPU
when avoidable.
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Figure 6: Nvidia GTX280 GPU speed up of y ← Anx compared to n times
y ← Ax, with n = 5, 10, 20
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3 Parallel block Wiedemann algorithm

Some of the most representative applications requiring efficient sparse matrix-
vector product are blackbox methods based on the Lanczos/Krylov approach.
In particular, the method proposed by Wiedemann [21] and its block version
proposed by Coppersmith [5] are well suited to highlight efficiency of sparse
matrix-vector product since the latter is quite often their bottleneck.

As an application, we propose to improve the implementation of the Block
Wiedemann rank algorithm presented in [8]. Let us first briefly recall the outline
of this algorithm, we let the reader refer to e.g. [15] for further details.

Let A ∈ F
n×n be a matrix satisfying the preconditions of [14]. Then the

algorithm can be decomposed in three steps:

1. Compute the matrix sequence Si = Y TAiY for i = 0..2n/s+ O(1), with
Y ∈ F

n×s chosen at random

2. Compute the minimal matrix generator FA
Y ∈ F

s×s[x] of the matrix series
S(x) =

∑

i Six
i

3. Return the rank r = deg(det(FA
Y ))− codeg det(FA

Y).

Our approach is to separate the parallelization of each step. The first step
is clearly related to sparse matrix-vector product and we will re-use our tools
presented in previous sections. The second step needs the computation of a
minimal matrix generator. This can be achieved by a σ-basis computation as
explained in [8, section 2.2]. Finally, the last step reduces to computing the
co-degree of the determinant of the σ-basis . The degree of the determinant
being directly computed as the sum of the row degrees of FA

Y since, due to the
σ-basis properties, the matrix is already in Popov form.

3.1 Parallelization of the matrix sequence generation

The parallelization proposed in [8] was to ship independent set of vector blocks
of V to different cores and apply them in parallel. Then gather the results to
compute the dense dot products by UT .

An alternative is to use the SpMV library and let it take care of the iteration
with the algorithm of the preceding section.

In figure 7 we compare both approaches:

11



��������� 	
� �
�����

�

���

�

���

�

���

�

���

�
������

�
�
�
�
�
��
�

Figure 7: Speed up from the new SpMV library compared to the native LinBox

implementation in the generation of the matrix sequence (2n iterations) on one
core of a 2.33GHz Intel Xeon E5345 CPU

3.2 Parallelization of the σ-basis computation

One can efficiently compute σ-basis using the algorithm PM-Basis of [11]. This
algorithm mainly reduces to polynomial matrix multiplication. Therefore a first
parallelization approach is to parallelize the polynomial multiplication.

3.2.1 Parallel polynomial matrix multiplication

Let A,B ∈ F
n×n[x] be two polynomial matrices of degree d. One can multiply

A and B in O(n3d+n2d log d) operations in F assuming F has a d-th primitive
root of unity [3]. Assuming one has k processors such that k 6 n2, one can

perform this multiplication with a parallel complexity of O(n
3d
k

+ n2d log d
k

) oper-
ation in F. Let us now see the sequential fast polynomial matrix multiplication
algorithm and how it achieves such a parallel complexity:

Fast Polynomial Matrix Multiplication:
Inputs: A,B ∈ F

n×n[x] of degree d, ω a d-th primitive root of unity inf F.
Outputs: A×B

1. Ā := DFT (A, [1, ω, ω2, ..., ω2d])
2. B̄ := DFT (B, [1, ω, ω2, ..., ω2d])
3. C̄ := Ā⊗ B̄
4. C := 1

2d
DFT (C̄, [1, ω−1, ω−2, ..., ω−2d])

return C.

12



Here, DFT (P,L) means the multi-points evaluation of the polynomial P on
each points of L, while ⊗ means the point-wise product.

• step 1,2 and 4 can be accomplished by using Fast Fourier Transform on
each matrix entries which gives n2 ×O(d log d) operations (see [10, Theo-
rem 8.15]). This clearly can be distributed on k processors such that each

processor achieves in parallel the FFT on n2

k
+O(1) matrix entries. This

gives a parallel complexity of O(n
2d log d

k
) operations in F.

• step 3 requires the computation of 2d independent matrix multiplications
of dimension n, which gives O(n3d) operations in F. One can easily see
how to distribute this work on k processors such that each processor has

a workload of O(n
3d
k
) operations.

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 256

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p 

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 512

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p 

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

polynomial degree = 2048

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p 

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 1024

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p 

fa
ct

or

Figure 8: Scalability of parallel polynomial matrix multiplication with LinBox
and OpenMP on a 16 core machine (based on Quad-Core AMD Opteron). n is
the matrix dimension.

We report in figure 8 the performance of the implementation of this parallel
algorithm in the LinBox5 library. Our choice of using this parallel algorithm
rather than another one, achieving a possible better parallel complexity, has
been driven by the re-usability of efficient sequential components of the library
(e.g. matrix multiplication) and the ease of use within the library itself (i.e.
mostly the same code as sequential one, only some OpenMP pragmas have been

5www.linalg.org
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added).

One can see on figure 8 that our coder does not completely match the the-
oretical parallel speedup. The best we can achieved with 16 processors is a
speedup of 5.5, which is only one third of the theoretical optimality. Neverthe-
less, one can see that with less processors (e.g. less than 4) the speedup factor is
closer to 75% of the optimality, which is quite fair. We think this phenomenon
can be explained by the underlying many multi-core architecture (Quad-Core
AMD Opteron), which may clearly suffers from cache effect if computation are
done on same chip or not.

As expected, we can also point out from figure 8 that our implementation
benefits at most from parallelism when matrices are larger. Since workload
on each core is more important, this allows to hide the penalty from memory
operations and threads management of OpenMP. This remarks also applies on
the degree but the impact is less important.

3.2.2 Parallel σ-basis implementation

According to the reduction of PM-Basis to polynomial matrix multiplication,

one can achieve a parallel complexity of O (̃n
3d
k

+ n2d log d

k
) operations in F with

k processors for σ-basis calculation, assuming k 6 n2. Therefore, it suffices to
directly plug in our parallel polynomial matrix multiplication into the original
code of the LinBox library to get a parallel σ-basis implementation.

We report in figure 9 the performance of the parallel version of PM-Basis

algorithm within LinBox. Here again, the speedup factor of parallelism is quite
low when compared to the theoretical optimality. At most we were able to
obtain a speedup of 3 with 16 processors. However, this timings are consistent
with the previous ones in figure 8 where the best speedup was 5.

One may notice that reduction to polynomial matrix multiplication of the
PM-Basis algorithm relies on a divide a conquer approach on the degree of
the approximation (see [11, theorem 2.4]). Therefore, the recursion calls are
made with smaller and smaller approximation’s degrees, which leads to use less
efficient parallel multiplications. Moreover, when the degree is too small the
use of the M-Basis algorithm of [11] should be prefered since it becomes more
efficient in practice. We have not yet implemented a parallel implementation
of this algorithm in LinBox and this clearly affects the performance of our
implementation.

3.3 Parallel determinant co-degree

Here we just launch in parallel the evaluations of the matrix polynomial at
different points, and the computation of the determinant of the obtained matrix
at the given point, and gather the results sequentially with the Poly1CRT class
of Givaro.
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Figure 9: Scalability of parallel σ-basis computation with LinBox and OpenMP
on a 16 core machine (based on a Quad-Core AMD Opteron). n is the matrix
dimension of the series.

3.4 Parallel block Wiedemann performance

In table 2 we show the overall performance of our algorithm on an octo-processor
Xeon E5345 CPU, 8 × 2.33GHz. *-LB shows the timings of the current LinBox

implementation, where *-SpMV presents our new improvement, both in sequen-
tial and in parallel. The speed-up for SpMV between 1 and 8 processors is
slightly larger than 5 for all the matrices where the speed-up for LinBox ranges
from 4 to 4.9. Furthermore, the speed-up obtained with SpMV versus LinBox

on the sequence generation seems scalable as it even improves when used in a
parallel setting.

4 Conclusion

We have proposed a new SpMV library providing good results on Z /mZ rings.
To attain this efficiency it has been mandatory to augment the complexity of
the SpMV algorithms, since OpenMP, Cuda et al. all manage differently the
parallelization. Nonetheless, we provide new hybrid formats that improve the
performance. Moreover we have also specialized it to the computation of a
sequence of matrix-vector products together with a new parallelization of the
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Matrix mat1916 bibd_81_3 EX5
Cores 1 8 1 8 1 8
Seq-LB 15.09 3.08 47.73 12.41 84.21 20.22
Seq-SpMV 5.02 0.91 41.28 7.56 49.66 7.36
σ-basis 9.02 1.64 18.45 3.63 37.45 8.39
Interpolation 0.37 0.29 1.07 0.82 2.29 1.75

Total-LB 24.48 5.01 67.25 16.86 123.95 30.36
Total-SpMV 14.41 2.84 60.80 12.01 89.40 17.50

Table 2: Rank modulo 65521 with OpenMP Parallel block Wiedemann on a
Xeon E5345, 8 × 2.33GHz

sigma-basis algorithm in order to enhance e.g. rank computations of very large
sparse matrices.

As seen in 3.2.2, a first parallelization of the σ-basis computation has been
achieved. Its efficiency is not matching the expected scalability and lot of work
needs to be done to circumvent this problem. First, a deeper study on the par-
allelization of σ-basis computation has to be done. Beside the parallelization of
PM-Basis and M-Basis algorithms themselves, we need to design new algorithms
to avoid the numerous task dependencies, inherent to the existing methods.
This will also enable an easier parallelization of early termination strategies
(requiring to interleave the generation sequence and the σ-basis computation).

Another important task is to extend the sigma-basis algorithm to work on
polynomial matrices over extension fields. Indeed the use of random projections
U and V over extension fields might improve the probabilities to get the full
minimal polynomial of the matrix [12, 18, 4]. As shown in this paper and in
[8], σ-basis needs only a polynomial matrix multiplication implementation to
work. In order to adapt current LinBox’s implementation to extension field, we
will use the same technique as [7]: first use Kronecker substitution to transform
the extension field polynomial representation to an integer representation ; then
use a Chinese remaindered version of the polynomial matrix multiplication to
recover the resulting matrix polynomial over Z ; and finally convert back the
integers using e.g. the REDQ inverse operation of [6].

The SpMV implementation also needs further work and other directions to
be explored. For instance, we need to have dedicated implementations in Z /2Z
where x and y can be compressed. More formats, including dense submatri-
ces, have yet to be explored, which is linked to spending some more time on
pre-processing the matrix: for instance the use of Metis6 for partitioning and
reordering A would also improve the performance. It will be interesting to deal
with matrices such that A and ⊤A cannot be simultaneously stored ([2]). This
problem indeed occurs on GPU’s where on-chip memory is very limited. Finally,
we will also provide multi-GPU and hybrid GPU/CPU implementations.

6http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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