Exact Sparse Matrix-Vector Multiplication on GPU's and Multicore Architectures - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

Exact Sparse Matrix-Vector Multiplication on GPU's and Multicore Architectures

Abstract

We propose different implementations of the sparse matrix--dense vector multiplication (\spmv{}) for finite fields and rings $\Zb/m\Zb$. We take advantage of graphic card processors (GPU) and multi-core architectures. Our aim is to improve the speed of \spmv{} in the \linbox library, and henceforth the speed of its black box algorithms. Besides, we use this and a new parallelization of the sigma-basis algorithm in a parallel block Wiedemann rank implementation over finite fields.
Fichier principal
Vignette du fichier
ffspmv.pdf (294.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00475185 , version 1 (21-04-2010)

Identifiers

Cite

Brice Boyer, Jean-Guillaume Dumas, Pascal Giorgi. Exact Sparse Matrix-Vector Multiplication on GPU's and Multicore Architectures. PASCO'10: 4th International Symposium on Parallel Symbolic Computation, Jul 2010, Grenoble, France. pp.80-88, ⟨10.1145/1837210.1837224⟩. ⟨hal-00475185⟩
560 View
516 Download

Altmetric

Share

Gmail Facebook X LinkedIn More