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Lattice Boltzmann BGK simulation of non-linearsound waves: The development of a shock frontJ. M. Buickz, C. L. Buckley, C. A. GreatedDepartment of Physics and Astronomy, The University of EdinburghMay�eld Road, Edinburgh EH9 3JZ, UK.J. GilbertLaboratoire d'Acoustique de l'Universit�e du MaineUMR CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, FRANCE.Abstract. The application of the lattice Boltzmann model to simulating non-linearpropagative acoustic waves is considered. The lattice Boltzmann model, and itsapplication to the study on non-linear sound propagation, are discussed. LatticeBoltzmann simulations of the development of a shock front are performed when a soundwave is emitted from a high amplitude sinusoidal source. For a number of parameters,representing di�erent physical situations, the wave development is compared withinviscid shock theory and with the solution of Burgers' equation for a fully viscous
uid. The simulations show good agreement with Burgers' equation and with theinviscid theory when propagation at high Reynolds number is considered. These resultssuggest that the lattice Boltzmann model is a useful technique for studying a range ofproblems in non-linear acoustics.PACS numbers: 02.70.-c,43.25.+ySubmitted to: J. Phys. A: Math. Gen.
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Lattice Boltzmann BGK simulation of non-linear sound waves 21. IntroductionThe lattice Boltzmannmodel (LBM) has developed from the lattice gas automata (LGA)[1, 2, 3] which considers the evolution of a number of idealised 
uid `particles' whichmove at unit speed on a regular grid subject to particle convection and simpli�ed col-lision rules which conserve the total 
uid mass and momentum. The main applicationof the LGA has been to 
uid dynamics [4, 5, 6], however, sound propagation has alsobeen considered. Frisch et al. [2] showed that the LGA incorporates sound wave prop-agation in the small perturbation limit. Numerical and theoretical evaluations of thisLGA technique were performed by Margolus et al. [7], Chen et al. [8] and Lavall�ee[9]. The idea was also employed by Chen et al. [10] who proposed a model to directlysimulate a linear sound wave without treating the sound wave as a small perturba-tion limit. The LGA approach to emulating sound waves was also developed by Sudoand Sparrow [11, 12] who considered sound propagation in one and two dimensionsand who further developed their model to include dissipation [13]. These developmentshave lead to a number of successful applications of the LGA to the study of acousticalproblems: Numrich et al. [14] considered underwater sound propagation, Stansell andGreated [15] simulated acoustic streaming in a pipe and Rothman [16] and Huang et al.[17] modelled seismic P -waves in a homogeneous and inhomogeneous media respectively.Despite the successful application of the LGA to many problems, both in 
uiddynamics and in acoustics, there are a number of di�culties associated with LGA simu-lations. Two particular problems are the statistical noise associated with the simulationdue to the small number of `particles' being considered, and the viscosity being limitedto relatively high values. These both limited the range of application of the LGA, seefor example [9, 15]. In an attempt to overcome these drawbacks the LGA evolved in anumber of stages and developed into the LBM; details of the various steps can be foundin, for example [18, 19]. The development of the LBM was driven mainly for its use in
uid dynamics since the LBM can be shown [18] to mimic the incompressible Navier-Stokes and continuity equations. Recently Buick et al. [20] have applied the techniqueto simulate linear sound waves when the pressure variations are considered to be a smallperturbation. Here we extend the scope of the simulations to consider non-linear wavesand show that the LBM method and the incompressible approximation are not limitedto the linear regime. In all the simulations the amplitude of the density variation is nogreater than 1 % of the ambient density so that the incompressible LBM equations canbe applied to a good approximation [20].2. The Lattice Boltzmann ModelThe LBM considered here evolves on a �xed hexagonal lattice. The sites on the latticeare joined by unit vectors ei, where i =1, 2, ..., 6, while e0 is de�ned to be the null



Lattice Boltzmann BGK simulation of non-linear sound waves 3Figure 1. The hexagonal grid on which the simulations are performed. The vectorse1, ...,e6 are unit vectors along the directions of the grid and e0 is the null vector.vector; see �gure 1. The simpli�ed, discretised Boltzmann equation [21, 22] is given byfi(r + ei; t+�t)� fi(r; t) = 
i(r; t) i = 0; 1; :::; 6; (1)where fi(r; t) are the distribution functions along the links ei at site r and time t and
i(r; t) is the collision operator. The left hand side of equation (1) is the convectionoperator and describes streaming of the distribution functions on the grid. This operatorcan be seen to be linear in velocity space. The simpli�cation of the Boltzmann equationoccurs in the form of the collision operator which is taken to be the BGK approximation[23, 21, 24]: 
i(r; t) = �1� hfi(r; t)� f i(r; t)i; (2)where f i is the equilibrium distribution function and � is the relaxation time. Theform of 
i, given in equation (2), represents a relaxation of the distribution towards itsequilibrium value and recovers the non-linear form of the 
uid, ensuring that the fullynon-linear Navier-Stokes equation is satis�ed. The equilibrium distribution functionsdepend only on the 
uid density, �, and velocity, u, at each site which can be calculatedfrom the distribution functions as� =Xi fi (3)and �u� =Xi fiei�; (4)where the Greek subscripts represent vector components and summation over repeatedGreek indices is assumed. Thus the collision process requires only local informationto introduce non-linear e�ects into the simulation. Up to O(u2), we assume that theequilibrium distribution function has the general form [25],f i(r; t) = 8>><>>: � �A+Bei � u+ C(ei � u)2 +Du2� ; i = 1; ::; 6� �A0 +D0u2� i = 0: (5)This expansion up to second order in u ensures that the simulations have second orderaccuracy, however the expansion is only valid for small Mach numbersM = u=cs, wherecs is the speed of sound in the medium. The constants A, A0, ..., D0 can be found forthe speci�c lattice being used and the required properties of the 
uid. Here we requirethat the collisions conserve mass and momentum, that is� =Xi f i (6)and �u� =Xi f iei�; (7)



Lattice Boltzmann BGK simulation of non-linear sound waves 4and that the 
uid is isotropic and exhibits Galilean invariance. These requirements areful�lled by A = 1� d06 ; A0 = d0; B = 13 ; C = 23 ; D = �16 and D0 = �1;(8)where d0 is an arbitrary constant.The macroscopic equations can be derived from the lattice Boltzmann equationsby performing a multiscaling Chapman-Enskog expansion [2] in the time and spacederivatives such that@@t ! � @@t1 + �2 @@t2 (9)and @@x ! � @@x1 ; (10)and the distribution function is expanded about the equilibrium value,fi ! f i + �f (1)i + �2f (2)i ; (11)where � is the Knudsen number which must be small. If we further assume that thelattice spacing, ei, and the time-step, �t, are small parameters, and of the same orderas �, then equation (1) can be Taylor expanded and combined with equation (2).Substituting the expression for the equilibrium distribution functions, equation (5),and the Chapman-Enskog expansions, equations (9){(11), and retaining terms up tosecond order in � we obtain [25] the continuity and Navier-Stokes equations for anincompressible, isothermal 
uid in two-dimensions:@t� + @��u� = 0 (12)and @t�u� + @��u�u� = �@�  1 � d02 ! �+ �@�@��u� + �@�@��u�; (13)where � = � � 1=24 (14)and � = �� � 12�"12 � (1 � d0)2 # (15)are the kinematic shear and bulk viscosities. The pressure term in equation (13) isp = (1�d0)�=2 which, for a perfect gas, gives the speed of sound as cs = [(1�d0)=2]1=2.In deriving equations (12) and (13) there have been a number of assumptionsmade which restrict the application of the LBM. In the expansion of the equilibriumdistribution function it is assumed that the Mach number M = u=cs is small; in theTaylor expansion of the Boltzmann equation the length and time scales of the simulation,



Lattice Boltzmann BGK simulation of non-linear sound waves 5ei and �t, are assumed to be small; �nally the density variation must also be assumedto be small since the equations of motion are for an incompressible 
uid. Since we aredealing with a perfect gas where p is proportional to � we can write, for a progressiveplane wave, �0�0 = ucs =M; (16)where �0 is a density variation due to the sound wave and �0 is the ambient density.Here the low Mach number approximation and the incompressibility condition reduceto the one constraint. The further constraint that ei and �t are small requires that themacroscopic scales of the wave are much larger than the microscopic scales of the grid,that is for a wave of wavelength � and period Tjeij � � and �t� T: (17)This can always be achieved by selecting suitable values of � and T .It is worth noting that while the LBM satis�es the incompressible Navier-Stokesequation the simulated 
uid can experience density variations. These arise from thede�nition of �, equation (3), which does not constrain � to be constant. In many 
uiddynamics applications, for example pressure driven Poiseuille 
ow, this is seen as adisadvantage since so called compressibility errors are observed in a LBM simulation[26] and in many cases the pressure gradient is approximated by a body force to removethis e�ect [27]. Here we use this feature of the LBM in the limit that we consider onlylow Mach numbers.3. Non-linear AcousticsIn this section we consider acoustic waves where the amplitude is large enough that non-linear motion is observed, but where the restriction that the Mach number, M = u=cs,is small, as is required for the lattice Boltzmann model to be applicable. Under theseconditions non-linear phenomena are locally small (of the order of M), however thee�ects are cumulative and increase with the distance of propagation and will, after asu�cient propagation distance, signi�cantly distort the wave. To consider this we startfrom the Navier-Stokes and continuity equations and the equation of state of the 
uid,see for example [28, 29, 30]:@t� + @��u� = 0; (18)� [@tu� + u�@�u�] = �@�p+ ��@�@�u� + � �� + � �1 � 2D�� @�@�u�; (19)and p0 = c2s�0 + (
 � 1)c2s2�0 �02 � � 1cv � 1cp! @�u�; (20)where D is the number of dimensions, � is the coe�cient of thermal conductivity, cp andcv are the speci�c heats at constant pressure and volume, 
 = cp=cv and the pressure and



Lattice Boltzmann BGK simulation of non-linear sound waves 6density (p and �) are respectively de�ned as the sum of the ambient (p0 and �0) and theperturbation (p0 and �0). The kinematic shear and bulk viscosities and the speed of soundare �, � and cs respectively, as before. Substituting the equation of state, equation (20),into the continuity and Navier-Stokes equations (18) and (19), expressing the pressureand the density as the sum of the ambient value and the perturbation, and neglectingthe term �0u�@�u� since it is O(M3) we obtain@�0@t + (�0 + �0)@u@x + u@�0@x = 0 (21)and (�0 + �0)@u@t + �0u@u@x = �c2s @�0@x � 2�c2s�0�0 @�0@x + �0b@2u@x2 ; (22)where b = � + (1 + 1 � 2=D)� + �(1=cv � 1=cp)=�0, � = (
 + 1)=2 and we have usedone-dimensional notation since we are interested in the propagation of plane waves.To proceed further it is not possible to consider a classical perturbation expansionof equations (21) and (22) using linear wave theory as a �rst order approximation. Thisis because linear theory does not give a satisfactory �rst approximation, since no matterhow small the initial amplitude the long-term behaviour will be non-linear in the absenceof dissipation. It is therefore necessary to use a multiple scale method where x, t andX = Mx are considered to be independent variables and @=@x ! @=@x + M@=@X.This allows a good description of the wave up to distances x = O(1=M). Following thisapproach and introducing � = t�x=cs, equations (21) and (22) can be shown to satisfyBurgers' equation [28]@u@x � �c2s u@u@� = b2c3s @2u@� 2 : (23)Finally, it is convenient to change to dimensionless variables q = u=U , � = �Mkx and� = !� where U , ! and k are the initial velocity, angular frequency and wave number ofthe source and M has been re-de�ned here as M = U=cs. In these co-ordinates Burgers'equation is @q@� � q@q@� = �@2q@�2 ; (24)where � = 12� 1Re 1M (25)and Re is the acoustical Reynolds number given byRe = csbk : (26)The dimensionless propagation parameter, �, describes the development of theshock wave for 0 � � � 1. The shock formation distance for a sinusoidal sound wave withamplitude unity is � = 1. That is, � = 1 determines the distance at which a sinusoidalwave in an inviscid 
uid is transformed into a discontinuous wave of sawtooth shape.In a viscous 
uid the wave is transformed into an almost sawtooth shape, however,



Lattice Boltzmann BGK simulation of non-linear sound waves 7the action of viscous damping prevents a total discontinuity forming. Note that themultiple scale method used in the derivation of Burgers' equation is valid for distancesup to x = O(1=M), that is distances of the order of the shock formation distance � = 1.3.1. Solution of Burgers' equationHere we consider the solution of Burgers' equation for two cases, �rstly the analyticsolution for the special case for an inviscid medium where � = 0, and secondly thenumerical solution of the full Burgers' equation.3.1.1. Inviscid Fluid We wish to solve the inviscid Burgers' equation@q@� � q@q@� = 0; (27)for the initial conditionq(�; �)j�=0 = f(�): (28)Following Crighton et al. [29] we consider a curve in the (�; �) plane for which � is somede�nite function of �. On this curve we havedqd� = @q@� +  d�d�! @q@� = 0 if d�d� = �q: (29)Let � be one such curve where q is constant, then � is the straight line � = �q� + �.The point where this line cuts the �-axis occurs when � = 0, which gives � = � orq = f(�); (30)where � is de�ned through� = � + q�: (31)Now, equation (27) preserves the parity and periodicity of the initial function. Thus,if we now consider the special case of a sinusoidal source, f(�) = sin �, the solution ofequation (27) must have the formq(�; �) = 1Xn=1 an(�) sin(n�); (32)where an(�) = 2� Z �0 q(�; �) sinn�d�: (33)Substituting in equations (30) and (31) and changing the variable of integration from �to �, equation (33) can be expressed asan(�) = 2n�Jn(n�); (34)where Jn is the Bessel function of order n. This gives the Fubini-Ghiron solution forthe development of a shock in an inviscid 
uid:q = 1Xn=1 2n�Jn(n�) sin(n�): (35)This solution holds for 0 � � � 1 since for � > 1 the � � � relationship in not 1-1 andthe change of integration variable in not possible.



Lattice Boltzmann BGK simulation of non-linear sound waves 83.1.2. Numerical Solution We now turn our attention to the numerical solution ofequation (24) [31]. To do this we consider a travelling wave of the formq = 1Xn=1 an(�) sinn�: (36)Considering �rst the non-linear term:q@q@� = " 1Xn=1 an(�) sinn�# " 1Xm=1mbm(�) cosm�# : (37)Collecting together terms with the same frequency this can be re-written asq@q@� = 12 1Xm=1 24m sinm�0@m�1Xp=1 apam�p2 � 1Xp=m+1 ap�map1A35 : (38)Calculating the other derivatives the solution of Burgers' equation reduces to solvingthe following set of �rst-order partial di�erential equations@an@� = n0@n�1Xp=1 apan�p2 � 1Xp=n+1 ap�nap1A� �n2an; (39)where a1j�=0 = 1 and anj�=0 = 0 for n � 2. This can be solved by truncating the seriesto N harmonics and solving the N equations using a variable-order variable-step Adamsmethod [32, 33]. The solutions presented here were truncated at N = 20, although onlythe �rst six harmonics are plotted.4. Numerical SimulationsThe development of the shock wave was simulated using the lattice Boltzmann modeldescribed in section 2. This was done using a grid consisting of � sites in the x-directionand m sites in the y-direction, where � is the wavelength of the sound wave beingsimulated and m is an arbitrary number. Periodic boundary conditions were applied ateach of the grid edges. Since plane waves are being simulated the value of the pressureand the velocity, and hence the distribution functions, fi, are the same on each column (xconstant) and so the value of m is totally arbitrary. Here m = 4 was used. A sinusoidalsource was mimicked by initialising the grid with a sinusoidal pressure (density) andvelocity variation. That is, the velocity and density were speci�ed according to� = �0 + a sin�2�x� � (40)and u = acs�0 sin�2�x� � : (41)The initial values of fi at t = 0 were then calculated by substituting these values intoequation (5). The constant d0 in equation (8) can in general be varied to change theratio of the shear and bulk viscosities; here is was �xed at d0 = 1=2. The value of theamplitude parameter a in equations (40) and (41) and the ambient density �0 determinethe Mach number: M = a=�0. Here we choose a = 0:1 and �0 = 10 giving M = 0:01



Lattice Boltzmann BGK simulation of non-linear sound waves 9Figure 2. The measured pressure variation as a function of time for the �rst 16periods of oscillation. This corresponds to the development of the shock front.Figure 3. A stacked pro�le of the pressure variation as a function of the wave phaseat selected times during the development of the shock front. The distortion of theinitial sinusoidal variation to the `N'-shaped shock wave is clearly visible.which satis�es the lattice Boltzmann constraint that M � 1. It is usual to express theintensity of a sound wave in terms of the sound pressure level rather than the Machnumber. Comparing the simulations to a sound wave in air at atmospheric pressure,M = 0:01 corresponds to a pressure variation of 1�103 Pa which gives a sound pressurelevel [20] of 20 log(1� 103=2 � 10�5) = 154 dB SPL. The simulation is then allowed toevolve and the density and velocity measured at position x = �=2 giving a time seriesrecord of the wave. The lattice exhibits periodicity and hence all other positions, fora particular phase, are equivalent. This di�ers from a typical experimental setup andthe theory in section 3 where a source is positioned in a medium and measurementsare made at di�erent positions giving a spatial record of the sound wave. Completeinformation for a particular phase can be obtained by measurements at di�erent dis-tances from the source at a single arbitrary time. The constant dispersion relation ofour simulation ensures complete space-time ergodicity and these two situations becomecompletely equivalent . That is to say, measurements at time t and t + �t from oursimulations can equally be thought of as measurements at positions x and x+ �x wherex = cst and �x = cs�t.The LBM described in section 2 has equation of state p = c2s� which correspondsto a 
uid with 
 = 1, with no thermal energy dissipation. This arises from the term@�(1 � d0)�=2 in equation (13) being equated to the term @�p in the Navier-Stokesequation, with cs = [(1� d0)=2]1=2. We note that a di�erent choice for the equilibriumdistribution function, equation (5), could change the equation of state of the simulated
uid [34]. The dissipative term b is now expressed as b = �+ � (since we are consideringtwo-dimensions) and the constant � = 1. Thermal dissipation e�ects can, however,be simulated using an e�ective viscosity which incorporates both viscous and thermallosses. This was not done here.5. Simulation ResultsA typical set of results is shown in �gure 2 which shows the variation in the normalisedpressure with time during the formation of the shock wave. Initially the variation isapproximately sinusoidal, however this can be see to change as the wave evolves. Thisdistortion of the initial sine wave can be seen more clearly in �gure 3 which shows astack pro�le representing the normalised pressure of the wave plotted against the wavephase at di�erent times. The change in the form of the oscillation can be clearly seen



Lattice Boltzmann BGK simulation of non-linear sound waves 10Figure 4. A typical example of the Fourier transform of a three wavelength segmentof the signal at selected times during the evolution of the shock wave. (a) representsthe initial segment at x = 3�=2 and shows most of the wave energy concentrated in thefundamental harmonic with the amplitude of the second and third harmonic startingto increase. (b) and (c) show the spectrum at later times and show the increasingprominence of the higher harmonics and the decrease of the fundamental harmonic as� increases.Figure 5. The variation in the relative amplitude of the �rst six harmonics foran initially sinusoidal non-linear wave during the development of the shock front forthree di�erent Reynolds numbers, the Mach number is M = 0:01. In each case thenumerical solution of Burgers' equation (24) is represented by a solid line. Also shownfor comparison is the Fubini-Ghiron solution, equation (35), for each of the harmonics.in �gure 3.In order to compare these results with the theoretical analysis we need to lookat the growth and decay of the fundamental and higher harmonics within the waves.This was done by dividing the results into segments with length 3T in such a way thatsegment l contains (l � 1)T + 1 < t < (l + 2)T . Each of these segments was thenFourier transformed and the resulting spectrum considered to represent the wave atx = (l + 1=2)�. Typical results of such a procedure are shown in �gure 4 which showsthe change in the spectrum at selected distances from the source. As expected theamplitude of the higher harmonics is seen to increase with propagation distance, thisis due to energy being transferred to these harmonics from the fundamental harmonicwhich is seen to decrease in amplitude. The change in the magnitude of each frequencycomponent was extracted from the Fourier transform for waves with three di�erentReynolds numbers, Re ' 1; 600, 1,100 and 160. This was achieved using a �xedwavelength � = 500 and varying the 
uid viscosity using � = 0:55, 0.57 and 0.95respectively. In each case the Mach number was �xed at M = 0:01. These are shown in�gure 5 for the �rst six harmonics along with the numerical solution of Burgers' equationand the inviscid Fubini-Ghiron solution for comparison. In general the simulation resultsshow excellent agreement with the numerical solution of Burgers' equation. There are,however, some regions where there is a small deviation. One source of error in theanalysis is that we are performing the Fourier transform over three wavelengths duringwhich there is a change in the amplitudes of the harmonics, both due to energy transferbetween the harmonics and due to viscous damping. Therefore the Fourier transformwill not only contain peaks at the frequency of the harmonics, but also contributionsdue to the change in these amplitudes over the sample. This can be seen in �gures 4 (a)and (b) where the values between n = 1 and n = 2 and between n = 2 and n = 3 arenot zero. These �gures represent the early stages in the development of the shock wavewhere there is the largest change in the amplitude of the harmonics. At later times, see�gure 4 (c), the change in the harmonic amplitudes is smaller and so is the value of the



Lattice Boltzmann BGK simulation of non-linear sound waves 11Fourier transform between the harmonics. In general these additional contributions aresmall and, combined with numerical error, account for the small deviations observed,particularly when the harmonic amplitude is small; see for example �gure 5 (d){(f) atsmall �. As expected the results approach the inviscid Fubini-Ghiron solution as theReynolds number increases.6. ConclusionThe use of a BGK lattice Boltzmann model for simulating non-linear propagative acous-tic waves has been considered. It has been seen that a range of problems in non-linearacoustics are within the dynamic range of the lattice Boltzmann model and the ap-plication of the technique has been demonstrated. This was done by simulating thedevelopment of a shock front from an initially sinusoidal non-linear wave. The resultsof the simulation agreed well with theory, suggesting that the lattice Boltzmann modelis indeed a useful approach to simulating non-linear acoustical phenomena.The simulations presented here have been limited to considering progressive wavesin an unbound media. This is not a fundamental restriction of the technique whichshould be equally applicable to studying standing waves and propagation in a pipewhere the action of the walls signi�cantly in
uences the acoustics; indeed the ability ofthe LBM to model complex boundary situations is well established. An investigation ofthis and the steady state acoustic streaming 
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