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Lattice Boltzmann BGK simulation of non-linear sound waves: The development of a shock front
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The application of the lattice Boltzmann model to simulating non-linear propagative acoustic waves is considered. The lattice Boltzmann model, and its application to the study on non-linear sound propagation, are discussed. Lattice Boltzmann simulations of the development of a shock front are performed when a sound wave is emitted from a high amplitude sinusoidal source. For a number of parameters, representing di erent physical situations, the wave development is compared with inviscid shock theory and with the solution of Burgers' equation for a fully viscous uid. The simulations show good agreement with Burgers' equation and with the inviscid theory when propagation at high Reynolds number is considered. These results suggest that the lattice Boltzmann model is a useful technique for studying a range of problems in non-linear acoustics.

Introduction

The lattice Boltzmann model (LBM) has developed from the lattice gas automata (LGA) 1, 2, 3] which considers the evolution of a number of idealised uid `particles' which move at unit speed on a regular grid subject to particle convection and simpli ed collision rules which conserve the total uid mass and momentum. The main application of the LGA has been to uid dynamics 4, 5, 6], however, sound propagation has also been considered. Frisch et al. 2] showed that the LGA incorporates sound wave propagation in the small perturbation limit. Numerical and theoretical evaluations of this LGA technique were performed by Margolus et al. 7], Chen et al. 8] and Lavall ee 9]. The idea was also employed by Chen et al. 10] who proposed a model to directly simulate a linear sound wave without treating the sound wave as a small perturbation limit. The LGA approach to emulating sound waves was also developed by Sudo and Sparrow 11,12] who considered sound propagation in one and two dimensions and who further developed their model to include dissipation 13]. These developments have lead to a number of successful applications of the LGA to the study of acoustical problems: Numrich et al. 14] considered underwater sound propagation, Stansell and Greated 15] simulated acoustic streaming in a pipe and Rothman 16] and Huang et al. 17] modelled seismic P-waves in a homogeneous and inhomogeneous media respectively.

Despite the successful application of the LGA to many problems, both in uid dynamics and in acoustics, there are a number of di culties associated with LGA simulations. Two particular problems are the statistical noise associated with the simulation due to the small number of `particles' being considered, and the viscosity being limited to relatively high values. These both limited the range of application of the LGA, see for example 9,[START_REF] Numrich | Computational Acoustics[END_REF]. In an attempt to overcome these drawbacks the LGA evolved in a number of stages and developed into the LBM; details of the various steps can be found in, for example 18,19]. The development of the LBM was driven mainly for its use in uid dynamics since the LBM can be shown 18] to mimic the incompressible Navier-Stokes and continuity equations. Recently Buick et al. 20] have applied the technique to simulate linear sound waves when the pressure variations are considered to be a small perturbation. Here we extend the scope of the simulations to consider non-linear waves and show that the LBM method and the incompressible approximation are not limited to the linear regime. In all the simulations the amplitude of the density variation is no greater than 1 % of the ambient density so that the incompressible LBM equations can be applied to a good approximation 20].

The Lattice Boltzmann Model

The LBM considered here evolves on a xed hexagonal lattice. The sites on the lattice are joined by unit vectors e i , where i =1, 2, ..., 6, while e 0 is de ned to be the null Figure 1. The hexagonal grid on which the simulations are performed. The vectors e 1 , ...,e 6 are unit vectors along the directions of the grid and e 0 is the null vector.

vector; see gure 1. The simpli ed, discretised Boltzmann equation 21,22] is given by f i (r + e i ; t + t) f i (r; t) = i (r; t) i = 0; 1; :::; 6;

(1) where f i (r; t) are the distribution functions along the links e i at site r and time t and i (r; t) is the collision operator. The left hand side of equation ( 1) is the convection operator and describes streaming of the distribution functions on the grid. This operator can be seen to be linear in velocity space. The simpli cation of the Boltzmann equation occurs in the form of the collision operator which is taken to be the BGK approximation 23, 21, 24]: i (r; t) = 1 h f i (r; t) f i (r; t) i ;

(2) where f i is the equilibrium distribution function and is the relaxation time. The form of i , given in equation (2), represents a relaxation of the distribution towards its equilibrium value and recovers the non-linear form of the uid, ensuring that the fully non-linear Navier-Stokes equation is satis ed. The equilibrium distribution functions depend only on the uid density, , and velocity, u, at each site which can be calculated from the distribution functions as = X i f i

and u = X i f i e i ;

where the Greek subscripts represent vector components and summation over repeated Greek indices is assumed. Thus the collision process requires only local information to introduce non-linear e ects into the simulation. Up to O(u 2 ), we assume that the equilibrium distribution function has the general form 25], f i (r; t) =

> > < > > :

A + Be i u + C(e i u) 2 + Du 2 ; i = 1; ::; 6 A 0 + D 0 u 2 i = 0:

(5)

This expansion up to second order in u ensures that the simulations have second order accuracy, however the expansion is only valid for small Mach numbers M = u=c s , where c s is the speed of sound in the medium. The constants A, A 0 , ..., D 0 can be found for the speci c lattice being used and the required properties of the uid. Here we require that the collisions conserve mass and momentum, that is = X i f i (6) and u = X i f i e i ; (7) and that the uid is isotropic and exhibits Galilean invariance. These requirements are ful lled by A = 1 d 0 6 ; A 0 = d 0 ; B = 1 3 ; C = 2 3 ; D = 1 6 and D 0 = 1;(8) where d 0 is an arbitrary constant.

The macroscopic equations can be derived from the lattice Boltzmann equations by performing a multiscaling Chapman-Enskog expansion 2] in the time and space derivatives such that @ @t ! @ @t 1 + 2 @ @t 2 (9) and @ @x ! @ @x 1 ; (10) and the distribution function is expanded about the equilibrium value,

f i ! f i + f (1) i + 2 f (2) i ;
(11) where is the Knudsen number which must be small. If we further assume that the lattice spacing, e i , and the time-step, t, are small parameters, and of the same order as , then equation (1) can be Taylor expanded and combined with equation (2). Substituting the expression for the equilibrium distribution functions, equation ( 5), and the Chapman-Enskog expansions, equations ( 9){ (11), and retaining terms up to second order in we obtain 25] the continuity and Navier-Stokes equations for an incompressible, isothermal uid in two-dimensions: @ t + @ u = 0 (12) and @ t u + @ u u = @ 1 d 0 2 ! + @ @ u + @ @ u ;

= 1=2 4 (14) and = 1 2 " 1 2 (1 d 0 ) 2 # ( (13) where 
) 15 
are the kinematic shear and bulk viscosities. The pressure term in equation ( 13) is p = (1 d 0 ) =2 which, for a perfect gas, gives the speed of sound as c s = (1 d 0 )=2] 1=2 .

In deriving equations ( 12) and ( 13) there have been a number of assumptions made which restrict the application of the LBM. In the expansion of the equilibrium distribution function it is assumed that the Mach number M = u=c s is small; in the Taylor expansion of the Boltzmann equation the length and time scales of the simulation, e i and t, are assumed to be small; nally the density variation must also be assumed to be small since the equations of motion are for an incompressible uid. Since we are dealing with a perfect gas where p is proportional to we can write, for a progressive plane wave,

0 0 = u c s = M; ( 16 
)
where 0 is a density variation due to the sound wave and 0 is the ambient density.

Here the low Mach number approximation and the incompressibility condition reduce to the one constraint. The further constraint that e i and t are small requires that the macroscopic scales of the wave are much larger than the microscopic scales of the grid, that is for a wave of wavelength and period T je i j and t T:

(17) This can always be achieved by selecting suitable values of and T.

It is worth noting that while the LBM satis es the incompressible Navier-Stokes equation the simulated uid can experience density variations. These arise from the de nition of , equation (3), which does not constrain to be constant. In many uid dynamics applications, for example pressure driven Poiseuille ow, this is seen as a disadvantage since so called compressibility errors are observed in a LBM simulation 26] and in many cases the pressure gradient is approximated by a body force to remove this e ect 27]. Here we use this feature of the LBM in the limit that we consider only low Mach numbers.

Non-linear Acoustics

In this section we consider acoustic waves where the amplitude is large enough that nonlinear motion is observed, but where the restriction that the Mach number, M = u=c s , is small, as is required for the lattice Boltzmann model to be applicable. Under these conditions non-linear phenomena are locally small (of the order of M), however the e ects are cumulative and increase with the distance of propagation and will, after a su cient propagation distance, signi cantly distort the wave. To consider this we start from the Navier-Stokes and continuity equations and the equation of state of the uid, see for example 28, 29, 30]: @ t + @ u = 0;

@ t u + u @ u ] = @ p + @ @ u + + 1 2 D @ @ u ; (19) and p 0 = c 2 s 0 + ( 1)c 2 s 2 0 02

1 c v 1 c p ! @ u ; ( 20 
)
where D is the number of dimensions, is the coe cient of thermal conductivity, c p and c v are the speci c heats at constant pressure and volume, = c p =c v and the pressure and density (p and ) are respectively de ned as the sum of the ambient (p 0 and 0 ) and the perturbation (p 0 and 0 ). The kinematic shear and bulk viscosities and the speed of sound are , and c s respectively, as before. Substituting the equation of state, equation (20), into the continuity and Navier-Stokes equations ( 18) and ( 19), expressing the pressure and the density as the sum of the ambient value and the perturbation, and neglecting the term 0 u @ u since it is O(M 3 ) we obtain @ 0 @t + ( 0 + 0 ) @u @x + u @ 0 @x = 0 (21) and ( 0 + 0 ) @u @t + 0 u @u @x = c 2 s @ 0 @x 2 c 2 s 0 0 @ 0 @x + 0 b @ 2 u @x 2 ; (22) where b = + (1 + 1 2=D) + (1=c v 1=c p )= 0 , = ( + 1)=2 and we have used one-dimensional notation since we are interested in the propagation of plane waves.

To proceed further it is not possible to consider a classical perturbation expansion of equations ( 21) and ( 22) using linear wave theory as a rst order approximation. This is because linear theory does not give a satisfactory rst approximation, since no matter how small the initial amplitude the long-term behaviour will be non-linear in the absence of dissipation. It is therefore necessary to use a multiple scale method where x, t and X = Mx are considered to be independent variables and @=@x ! @=@x + M@=@X.

This allows a good description of the wave up to distances x = O(1=M). Following this approach and introducing = t x=c s , equations ( 21) and ( 22) can be shown to satisfy Burgers' equation 28] @u @x c 2 s u @u @ = b 2c 3 s @ 2 u @ 2 : (23) Finally, it is convenient to change to dimensionless variables q = u=U, = Mkx and = ! where U, ! and k are the initial velocity, angular frequency and wave number of the source and M has been re-de ned here as M = U=c s . In these co-ordinates Burgers' equation is @q @ q @q @ = @ 2 q @ 2 ;

(24) where = 1 2 1 Re 1 M (25) and Re is the acoustical Reynolds number given by Re = c s bk : (26) The dimensionless propagation parameter, , describes the development of the shock wave for 0 1. The shock formation distance for a sinusoidal sound wave with amplitude unity is = 1. That is, = 1 determines the distance at which a sinusoidal wave in an inviscid uid is transformed into a discontinuous wave of sawtooth shape. In a viscous uid the wave is transformed into an almost sawtooth shape, however, the action of viscous damping prevents a total discontinuity forming. Note that the multiple scale method used in the derivation of Burgers' equation is valid for distances up to x = O(1=M), that is distances of the order of the shock formation distance = 1.

Solution of Burgers' equation

Here we consider the solution of Burgers' equation for two cases, rstly the analytic solution for the special case for an inviscid medium where = 0, and secondly the numerical solution of the full Burgers' equation.

Inviscid Fluid

We wish to solve the inviscid Burgers' equation @q @ q @q @ = 0; (27) for the initial condition q( ; )j =0 = f( ): (28) Following Crighton et al. 29] we consider a curve in the ( ; ) plane for which is some de nite function of . On this curve we have dq d = @q @ + d d ! @q @ = 0 if d d = q: (29) Let be one such curve where q is constant, then is the straight line = q + . The point where this line cuts the -axis occurs when = 0, which gives = or q = f( ); (30) where is de ned through = + q : (31) Now, equation (27) preserves the parity and periodicity of the initial function. Thus, if we now consider the special case of a sinusoidal source, f( ) = sin , the solution of equation ( 27) must have the form q

( ; ) = 1 X n=1 a n ( ) sin(n ); (32) 
where a n ( ) = 2 Z 0 q( ; ) sin n d : (33) Substituting in equations ( 30) and [START_REF] Landau | Fluid Mechanics[END_REF] and changing the variable of integration from to , equation ( 33) can be expressed as a n ( ) = 2 n J n (n ); (34) where J n is the Bessel function of order n. This gives the Fubini-Ghiron solution for the development of a shock in an inviscid uid:

q = 1 X n=1 2 n J n (n ) sin(n ): (35) 
This solution holds for 0 1 since for > 1 the relationship in not 1-1 and the change of integration variable in not possible.

Numerical Solution

We now turn our attention to the numerical solution of equation ( 24) 31]. To do this we consider a travelling wave of the form q = 1 X n=1 a n ( ) sin n :

(36)

Considering rst the non-linear term:

q @q @ = " 1 X n=1 a n ( ) sin n # " 1 X m=1 mb m ( ) cos m # : ( 37 
)
Collecting together terms with the same frequency this can be re-written as q @q @ = 1 2

1 X m=1 2 4 m sin m 0 @ m 1 X p=1 a p a m p 2 1 X p=m+1 a p m a p 1 A 3 5 : (38)
Calculating the other derivatives the solution of Burgers' equation reduces to solving the following set of rst-order partial di erential equations @a n @ = n

0 @ n 1 X p=1 a p a n p 2 1 X p=n+1 a p n a p 1 A n 2 a n ; ( 39 
)
where a 1 j =0 = 1 and a n j =0 = 0 for n 2. This can be solved by truncating the series to N harmonics and solving the N equations using a variable-order variable-step Adams method [START_REF] Menguy | Submitted to Acustica -Acta Acustica[END_REF][START_REF] Hall | Modern Numerical Methods for Ordinary Di erential Equations[END_REF]. The solutions presented here were truncated at N = 20, although only the rst six harmonics are plotted.

Numerical Simulations

The development of the shock wave was simulated using the lattice Boltzmann model described in section 2. This was done using a grid consisting of sites in the x-direction and m sites in the y-direction, where is the wavelength of the sound wave being simulated and m is an arbitrary number. Periodic boundary conditions were applied at each of the grid edges. Since plane waves are being simulated the value of the pressure and the velocity, and hence the distribution functions, f i , are the same on each column (x constant) and so the value of m is totally arbitrary. Here m = 4 was used. A sinusoidal source was mimicked by initialising the grid with a sinusoidal pressure (density) and velocity variation. That is, the velocity and density were speci ed according to = 0 + a sin 2 x (40) and u = ac s 0 sin 2 x : (41)

The initial values of f i at t = 0 were then calculated by substituting these values into equation (5). The constant d 0 in equation ( 8) can in general be varied to change the ratio of the shear and bulk viscosities; here is was xed at d 0 = 1=2. The value of the amplitude parameter a in equations ( 40) and (41) and the ambient density 0 determine the Mach number: M = a= 0 . Here we choose a = 0:1 and 0 = 10 giving M = 0:01 which satis es the lattice Boltzmann constraint that M 1. It is usual to express the intensity of a sound wave in terms of the sound pressure level rather than the Mach number. Comparing the simulations to a sound wave in air at atmospheric pressure, M = 0:01 corresponds to a pressure variation of 1 10 3 Pa which gives a sound pressure level 20] of 20 log(1 10 3 =2 10 5 ) = 154 dB SPL. The simulation is then allowed to evolve and the density and velocity measured at position x = =2 giving a time series record of the wave. The lattice exhibits periodicity and hence all other positions, for a particular phase, are equivalent. This di ers from a typical experimental setup and the theory in section 3 where a source is positioned in a medium and measurements are made at di erent positions giving a spatial record of the sound wave. Complete information for a particular phase can be obtained by measurements at di erent distances from the source at a single arbitrary time. The constant dispersion relation of our simulation ensures complete space-time ergodicity and these two situations become completely equivalent . That is to say, measurements at time t and t + t from our simulations can equally be thought of as measurements at positions x and x + x where x = c s t and x = c s t.

The LBM described in section 2 has equation of state p = c 2 s which corresponds to a uid with = 1, with no thermal energy dissipation. This arises from the term @ (1 d 0 ) =2 in equation ( 13) being equated to the term @ p in the Navier-Stokes equation, with c s = (1 d 0 )=2] 1=2 . We note that a di erent choice for the equilibrium distribution function, equation (5), could change the equation of state of the simulated uid 34]. The dissipative term b is now expressed as b = + (since we are considering two-dimensions) and the constant = 1. Thermal dissipation e ects can, however, be simulated using an e ective viscosity which incorporates both viscous and thermal losses. This was not done here.

Simulation Results

A typical set of results is shown in gure 2 which shows the variation in the normalised pressure with time during the formation of the shock wave. Initially the variation is approximately sinusoidal, however this can be see to change as the wave evolves. This distortion of the initial sine wave can be seen more clearly in gure 3 which shows a stack pro le representing the normalised pressure of the wave plotted against the wave phase at di erent times. The change in the form of the oscillation can be clearly seen Figure 4. A typical example of the Fourier transform of a three wavelength segment of the signal at selected times during the evolution of the shock wave. (a) represents the initial segment at x = 3 =2 and shows most of the wave energy concentrated in the fundamental harmonic with the amplitude of the second and third harmonic starting to increase. (b) and (c) show the spectrum at later times and show the increasing prominence of the higher harmonics and the decrease of the fundamental harmonic as increases.

Figure 5. The variation in the relative amplitude of the rst six harmonics for an initially sinusoidal non-linear wave during the development of the shock front for three di erent Reynolds numbers, the Mach number is M = 0:01. In each case the numerical solution of Burgers' equation ( 24) is represented by a solid line. Also shown for comparison is the Fubini-Ghiron solution, equation ( 35), for each of the harmonics.

in gure 3.

In order to compare these results with the theoretical analysis we need to look at the growth and decay of the fundamental and higher harmonics within the waves. This was done by dividing the results into segments with length 3T in such a way that segment l contains (l 1)T + 1 < t < (l + 2)T. Each of these segments was then Fourier transformed and the resulting spectrum considered to represent the wave at x = (l + 1=2) . Typical results of such a procedure are shown in gure 4 which shows the change in the spectrum at selected distances from the source. As expected the amplitude of the higher harmonics is seen to increase with propagation distance, this is due to energy being transferred to these harmonics from the fundamental harmonic which is seen to decrease in amplitude. The change in the magnitude of each frequency component was extracted from the Fourier transform for waves with three di erent Reynolds numbers, Re ' 1; 600, 1,100 and 160. This was achieved using a xed wavelength = 500 and varying the uid viscosity using = 0:55, 0.57 and 0.95 respectively. In each case the Mach number was xed at M = 0:01. These are shown in gure 5 for the rst six harmonics along with the numerical solution of Burgers' equation and the inviscid Fubini-Ghiron solution for comparison. In general the simulation results show excellent agreement with the numerical solution of Burgers' equation. There are, however, some regions where there is a small deviation. One source of error in the analysis is that we are performing the Fourier transform over three wavelengths during which there is a change in the amplitudes of the harmonics, both due to energy transfer between the harmonics and due to viscous damping. Therefore the Fourier transform will not only contain peaks at the frequency of the harmonics, but also contributions due to the change in these amplitudes over the sample. This can be seen in gures 4 (a) and (b) where the values between n = 1 and n = 2 and between n = 2 and n = 3 are not zero. These gures represent the early stages in the development of the shock wave where there is the largest change in the amplitude of the harmonics. At later times, see gure 4 (c), the change in the harmonic amplitudes is smaller and so is the value of the Fourier transform between the harmonics. In general these additional contributions are small and, combined with numerical error, account for the small deviations observed, particularly when the harmonic amplitude is small; see for example gure 5 (d){(f) at small . As expected the results approach the inviscid Fubini-Ghiron solution as the Reynolds number increases.

Conclusion

The use of a BGK lattice Boltzmann model for simulating non-linear propagative acoustic waves has been considered. It has been seen that a range of problems in non-linear acoustics are within the dynamic range of the lattice Boltzmann model and the application of the technique has been demonstrated. This was done by simulating the development of a shock front from an initially sinusoidal non-linear wave. The results of the simulation agreed well with theory, suggesting that the lattice Boltzmann model is indeed a useful approach to simulating non-linear acoustical phenomena.

The simulations presented here have been limited to considering progressive waves in an unbound media. This is not a fundamental restriction of the technique which should be equally applicable to studying standing waves and propagation in a pipe where the action of the walls signi cantly in uences the acoustics; indeed the ability of the LBM to model complex boundary situations is well established. An investigation of this and the steady state acoustic streaming ows setup by the attenuation of a sound eld in the boundary layer is currently in progress.

Figure 2 .

 2 Figure 2. The measured pressure variation as a function of time for the rst 16 periods of oscillation. This corresponds to the development of the shock front.

Figure 3 .

 3 Figure 3. A stacked pro le of the pressure variation as a function of the wave phase at selected times during the development of the shock front. The distortion of the initial sinusoidal variation to the `N'-shaped shock wave is clearly visible.
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