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Reed instruments, from small to large amplitude periodic

oscillations and the Helmholtz motion analogy.

Jean-Pierre DALMONT, Joél GILBERT, Jean KERGOMARD
Laboratoire d’Acoustique de 1’Université du Maine (UMR CNRS 6613), Avenue Olivier
Messiaen, 72085 Le Mans Cedex 9, France.

Summary : When studying the oscillations of reed instruments different approaches
and simplifications can be used to understand the behaviour of such instruments. Two
theoretical approaches were successfully used by previous authors. The first one
consists in analysing the small oscillations near the threshold. The second one,
applied until now only on cylindrical resonators, analyses the squared oscillations
with a lossless model of the resonator. The aim of this paper is on one hand to apply
the lossless analysis to conical like instruments and on the other hand to try to
understand how the small oscillations model matches with the lossless model. In this
study the cone is replaced by resonators which are known to be approximately
equivalent and for which the input impedances allow analytical developments.
Differences in behaviour between cylinders and cones are demonstrated. Contrary to
cylindrical instruments, for conical instruments there is a subcritical threshold and no
small amplitude oscillations. Moreover, there is more than one regime at the
fundamental frequency in conical instruments. Two of these, similar to the Helmholtz
motions in bowed string instruments are studied in this paper. Theoretical results are

qualitatively compared with experiments using a blowing machine.

1. Introduction
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The sound in reed instruments is generated by the self-sustained oscillations of a
mechanical oscillator, the reed. It acts as a valve which modulates the flow into the instrument.
The steady-state periodic regimes characterized by their fundamental frequency and harmonic
spectrum depend on both the instrument (the bore, the resonator) and the excitator (the reed and

the coupling flow supplied by the player).

Many papers deal with the physical modelling of reed instruments and most of them study
the clarinet which is, because of its cylindrical bore, easier to model (for a first overview, see for
example [1,2,3,4]). Mainly two different approaches have been used. Firstly linear stability of the
equilibrium position and the small-oscillations behaviour have been investigated, the static reed
being destabilized by one of the acoustical modes of the instrument [5,6,7]. Secondly the use of a
model ignoring losses allows the study of the saturated regime (almost squared oscillations). This
has been applied to the cylindrical case [8,9,3]. The aim of the present study is on one hand to
study how the small oscillations results match with the saturated regime and, on the other hand to
study the specific case of a conical resonator. In this paper, for mathematical convenience, a
conical resonator will be approximated by a lattice of cylinders having harmonic resonance
frequencies [10]. These resonators allow a simple and effective analysis of the oscillations which
appear to be equivalent to the Helmholtz motions wellknown in bowed string instruments

[11,12].

The present paper considers only the internal acoustic pressure (i.e. inside the
mouthpiece) of reed instruments, the external can be approximately deduced through a simple
transfer function calculation [13,14,15,16]. Our study is based on a simplified model of the
instrument which is divided into two parts : the resonator which is assumed to be linear and the
source in which the flow entering into the instrument is assumed to be determined by the pressure
drop according to the Bernoulli law. The reed is assumed to be a pure stiffness, its position being
assumed to be determined by the pressure difference between its in and outside area. After this
introduction, the simple model is detailed and discussed in section 2. Models of the resonators are
presented in section 2.1 and a model of the source in section 2.2. An analysis of the model near

the threshold, based on previous work, is summarized in section 3.1. Lossless oscillations for a



Dalmont

cylindrical resonator and for a conical like resonator are studied in section 3.2. In section 3.3 we
try to understand how the two different approaches can match. For this study the analytical and

numerical harmonic balance technique is used.

The proposed model leaves out some secondary aspects: reed damping, reed resonance,
anharmonicity of tube resonances, radiation losses, etc. These effects are actually not negligible
but our aim here is to try to find a general though schematized description for reed instruments
which may not be so much affected by the omissions. To validate the newly found results,
experiments using an artificial blowing machine with a real clarinet or saxophone mouthpiece
have been carried out and are presented in section 4. These experiments consist in measuring the
pressure signal in the mouthpiece versus the blowing pressure in the mouth. The experiments

have been made for different resonators.

2. Elementary physical model
2.1. Resonators

Most resonators used in reed instruments are close to cylindrical or conical tubes which
are known for having harmonically related frequencies. Cylinders are used for clarinets and
cones are used for saxophone, basson and oboe. In practice the cone is truncated because a reed
has to take place at the top. This may introduce trouble when the cone is short because the
harmonicity of the resonance frequencies becomes poor. It has been shown [17,4,18,19] that, in
order to achieve a better harmonicity of the resonance frequencies, the cone must be terminated

by a mouthpiece of a volume V, close to the volume of the missing part of the cone: V, =S,¢/3
where S, is the input section of the cone and / the distance from the input to the apex of the
cone (see Figure 1.a). The impedance of a cone including an equivalent volume V, =S,¢/3 of

the mouthpiece is , ignoring losses, given by:

4
Z= JZ¢ with Z,.= pe (p density of air and ¢ speed of sound) (1)
1/ kl—kl/3+cotkL S,
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This compensation leads to a large anharmonicity when &/ is not small compared to unity. A
higher order improvement can be attained by changing the conicity of the top part of the
truncated cone [19] or by optimizing the mouthpiece [20].

Cylinders and cones belong to a larger family of resonators having harmonically related
resonance frequencies [10]. Resonators of this family consist in a succession of N cylinders, all of

the same length, the nth cylinder having a cross sections area S,,, given by the following relation:

S, = n(n+1)
2

NP where §; is the cross section of the first cylinder (2)

N equal to one is corresponding to the case of the single cylinder: the clarinet, N equal to infinity
is corresponding to the cone. Resonators with N in the range of 3 to 5 find limited use in folk
instruments. To our knowledge the only instruments made with this shape are bamboo
saxophones build by the instrument maker Angel Sampedro del Rio (Argentina). The input
impedance Z of such resonators is, ignoring losses and additional masses at the discontinuities,

given by (for notation see Figure 1.b):

- e i oz,=P¢ (3)
cot k/ +cot kL S
where L=N/ is the total physical length of the instrument and ¢ the length of one cylinder (for a

single cylinder L=/). This impedance, including losses, is plotted on Figure 2.a and 2b for N=2
and N=3 for an input radius of 6 mm and a first resonance frequency of 100 Hz. The impedance

appears to be very close, for k/ << 1, to the one for a truncated cone of the same length L, a
truncation length ¢ and with a mouthpiece of equivalent volume V, =S,¢/3. Only the term
cotk? has to be replaced by 1/k/—kl/3. The two terms are very close for low frequencies
since tank/ = k/ + (kf)3 /3 and then cotkl/=1/kl—k(¢/3. However, resonances are strictly

harmonic only for the lattice of cylinders. Note that this impedance is the impedance of an open-
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open cylindrical tube with a length L+/, the reed being located not at the input of the cylinder but

at a distance /¢ from one open end and L from the other open end [21]. This model shows an
analogy between bowed string instruments and reed instruments. If a clarinet can be regarded as
equivalent to a string bowed in the middle [8], conical woodwinds can be considered as

equivalent to a string bowed at a relative distance ¢/ L from the bridge [21].

For simplicity, the previous discussion ignores losses, radiation, side holes, small bore
changes etc. In practice a conical woodwind has only a finite number of resonances. Because of
the existence of the cut-off frequency the number of significant peaks varies, for a saxophone or
an oboe, from 2 to 8 (somewhat more for a bassoon, see for example [22]). Then the main
difference between a conical and a cylindrical instrument is that a conical instrument has at least
two resonance frequencies, with the second one being close to the octave of the first one. In this
paper we will assume that a set of cylinders is not very different from a truncated cone with an
optimised mouthpiece. This is convenient because the impulse response of such a resonator is
mathematically simple and allows analytical developments in the time domain. Using the open-

open cylindrical tube analogy, such a resonator can be modeled as a double delay line [3, 21].

2.2. Source model

The acoustic source consists in a mechanical oscillator (the reed) acting as a pressure-
controlled valve modulating the flow blown into the pipe of the musical instrument (the air
resonator). Under some conditions the reed can oscillate. Its oscillation is controlled by the
pressure difference on both sides (the mouth pressure and the internal mouthpiece pressure). The

elementary model presented below is the same as the one used e.g. by [3].

The flow through the reed slit is controlled by the aperture between the reed and the
mouthpiece, and by the velocity of the air depending nonlinearly on the pressure difference

(Bernoulli relation). This gives two conditions:
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u(t) =w(H+h)v
1 2 4

M0 = 29 () @

where p is the air density, u is the instantaneous volume flow, v the velocity assumed to be

uniform in the reed channel, H the height of the slit in the absence of flow and w the effective

width of the reed channel, / the deviation of the reed from its rest position in the absence of flow

(see Figure 3).

To obtain the simplest model we assume the reed to be a linear spring. Then / is directly
proportional to the pressure difference. Writing 7 = —HAp / Py, where Py, 1s the limit value of
the static pressure in the mouth P,, above which the reed remains closed, from equations (4) an

instantaneous relationship between flow and pressure is derived:

u(t)=wH(1—£) Msi n(Ap) if P, <P, .
p N p M) T DS with ap =B, ~p. 5)
u(?)=0 if P, >P,

This function is displayed on Figure 4 for different values of P,,.

When the pressure difference is large the reed is blocked against the mouthpiece, the
entering flow is zero. Sufficiently far above the threshold of oscillations, there are large
amplitude oscillations where the so called "beating reed" oscillates between two states : an open
state and a blocked state. Notice that the transition between the two states implies a discontinuity
of the derivative of the velocity at the particular value where the reed begins to beat (Pj,=P/2
in lossless model of a clarinet). In practice this discontinuity does not exist, since the lay is

curved due to which the reed stifhess increases.

The non-linear relationship between flow and pressure depends on the parameters of the
system : the main ones are the rest height A and the mouth pressure P,;, which is the main control

parameter of the dynamical system.
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This elementary model can be summarized in two equations. The first one is a condition
in the frequency domain, it is linear and describes the resonator including the equivalent volume
of the reed (the input impedance relation). The second one is in the time domain and is nonlinear
(equation (5)). The system is often presented as a closed feedback loop [23] used in free
oscillations because the input oscillating variable is zero. In other words the mouth pressure is
assumed to be constant. Fortunately for the player this loop is unstable, so it can generate
periodic oscillations ! The following section summarizes the theoretical results about these

periodic regimes from small to large oscillations.

Many assumptions behind this elementary model require further discussion (for a more
sophisticated model and for discussions about the limit of each assumption see [2]). For example
the dynamic model of the reed is the simplest one: damping has been ignored even if it is
essential to avoid the reed to oscillate in its own resonance frequency (the wellknown squeaking,
regime "in tempo" in Bouasse terminology [24]), as shown by [6]. Since this mechanical
resonance of the reed is not taken into account this regime does not exist in the model. To take
this into account a third variable as the reed tip position would be needed which complicates
drastically the study of the equivalent dynamical system (see for exemple [25] who takes into
account the effect of the reed resonance in the pressure spectrum). As explained before, the
beating-reed model is crude: in reality the reed is coiling up the lay of the mouthpiece which
means that the equivalent mechanical parameters are not independent of the reed position. Subtle
hydrodynamic effects in the reed channel exist in static regimes [26] but these effects have not
been observed in dynamical regimes. The mouth cavity could be taken into account as a second
resonator in series with the instrument [27,28]. The model does not consider the volume velocity
induced by the motion of the reed. This effect can be included in the input impedance as an

equivalent volume at the input of the instrument [29, 18, 19].

3. Theoretical results : periodic oscillations, from small to large oscillations

3.1. Small oscillations near threshold
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A trivial solution can be easily found from equation (5). This solution corresponds to a
steady-state, non-oscillating regime of the acoustical variables, and then to an equilibrium
position of the reed. Another trivial solution is obtained when the static mouth pressure P, is
larger than the particular value P, the reed is blocked on the mouthpiece and thus the flow into
the resonator is zero. These equilibrium positions are not always stable, allowing other permanent
regimes like the periodic one. The question is whether or not the equilibrium is stable (linear or
local stability of the trivial solution of the problem). Using the feedback loop analogy, it is
known as the free oscillation linear stability problem in a closed loop obtained when the
nonlinear component of the loop is linearized around the trivial solution. Then the linear stability
of the reed can be studied with respect to each resonance of the impedance curve. Wilson and
Beavers [6] have published a nice study illustrated by a set of experimental results obtained by
using an artificial mouth with cylindrical tubes of variable length and different single reeds. For
each acoustic resonance of the tube, a threshold of instability can be defined by two values : a
threshold frequency and a threshold mouth pressure Pyj. The linear stability of a single reed
coupled with an acoustical resonator has been studied for example in [30, 31, 32, 33]. If the

resonator has no losses the threshold mouth pressure Py, is exactly equal to Py/3 (see e.g. [3]).

The behaviour of this self-sustained oscillator near the threshold has been studied in [7].
The study is based on a Fourier expansion of the periodic internal pressure. The resonator is
represented in the frequency domain by an impedance (or admittance) relation applied for each
corresponding component of the two Fourier series of the acoustic velocity and pressure; the
excitator is represented by a third order Taylor series expansion of the nonlinear relation in the

vicinity of the threshold:

U=u,, +Ap+Bp2 +Cp3 (6)
where u,, is the flow when there is no oscillation and 4,B,C are the three coefficients of the

series expansion.

The balance between the harmonic components gives an infinite number of equations. To
solve this set of equations, some aditional hypotheses are needed. In the small oscillations

analysis, it is assumed that the fundamental component of the pressure signal P; is not vanishing
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and this coefficient is considered as a first order quantity, P; is small compared to the mouth
pressure Py, the other Fourier components P, are at most of the same order as P;. In addition, it
is assumed that the admitance Y; corresponding to the fundamental frequency is different from
all the other Y;'s (admittance corresponding to the nth harmonic). After careful inspection of the
order of magnitude of each term (see Section 3 of [7]) it can be shown that all second and higher
order of P, with n>1 can be neglected. After the suppression of these higher order terms, the

equations for the first three components are then found to be :

Y,P, = AP +2BP, P, +3CP>
Y, P, = AP, + BP (7
Y, Py = AP, +2BPP, + CP?>

where the impedance is assumed to be zero at zero frequency ; Pj, Py and P3 are the first three
complex amplitudes of the acoustic pressure defined by its Fourier expansion. Y;, Y, Y3 are the
first three admittances corresponding to the first three resonance frequencies.

From these equations, P; is found from:

_ (-4 - 4)

p2 =1 . ®)
2B” +3C(Y, — A)
and the expressions for P» and P3 as functions of P; are:
BP, ’
Py=-— 9)
Y, -4
and
3 2
Py= A C+ B . (10)
35— 4 Y, -4

These results are characteristic for small oscillations when they exist (right member of (8)
positive). The nth harmonic increases as the nth power of the amplitude of the first one (equation

(9) and (10)), as reported earlier in [S]. P, is assumed to be real because the phase of the

10
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fundamental frequency component can be assumed to be zero, there is no other zero phase
reference in such a self-sustained oscillator. In order to simplify the discussion, only the non
dispersive case is discussed: the first two resonances of the resonator are assumed to be perfectly
harmonic: if F, is the resonance frequency with Z, real, Z, at the frequency F,=2F, is real as

well.

Assuming, at the frequency F=F- the right hand side of equation (8) to be purely real,
only its sign needs to be discussed. Assuming A is slightly increasing on both sides of the
threshold value Ay, (41 1s the particular value of 4 equal to Y| defining the threshold mouth
pressure Py 1), the criterion for a "direct" bifurcation is (see [7]) : infinitely small oscillations
exist for values of the control parameter 4>A41 (or P,,>Pyj,1 5 A is an increasing function of
Py, for which the trivial solution is not stable. If, on the opposite, the trivial solution is stable
(case A<Am, or P,,<Pu), the bifurcation is called "inverse". The criterion defining the
bifurcation state is depending on both the characteristics of the resonator, via the value of (Y7 -
Y1) and the excitator, via the parameters 4, B and C of the Taylor expansion, equation (8). The

condition for a direct bifurcation is given in [7]:

_2B?

_— 11
S35, 1) (n

The results can be summarized in a plane picture, axes being defined by (Y,-Y,) and C,
where lines separate the direct and inverse bifurcation behaviour areas (see Figure 5). For the
simplified excitator model used here, it can be shown that A4 is an increasing function of the
mouth pressure Py, and that C is always negative. For a cylindrical resonator (clarinet case), Y,-
Y>>0 because of the anti-resonance at £ ,=2F, so the behaviour is this of a direct bifurcation.
Notice that when Y, and Y, are of the same order of magnitude (i.e. for a conical like resonator),
results depend on the sign of (¥,-Y)). It will be shown in section 3.3 that, in that case, linear

analysis near the threshold is not sufficient.

The general properties of the Hopf bifurcation [34,35] imply that small oscillations are

stable for the direct bifurcation case. They are instable for the inverse bifurcation case ; this does

11
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not mean that stable oscillations are never possible, but, if they exist, they necessarily occur for
larger values (not infinitely small and not quasiharmonic) of the oscillation amplitude: the
oscillation may jump discontinuously to a finite amplitude in the vicinity of the instability
threshold of the equilibrium reed position, for mouth pressures slightly smaller than Py 1. In that
case the subcritical threshold of oscillation Py is lower than the threshold of linear instability of
the equilibrium position Pyj1. It implies that an "hysteresis phenomenon" is present: the
threshold of oscillation may occur for different values of the control parameter depending on

whether the mouth pressure is decreasing or increasing.

These results can be applied for the lattice of cylinders defined in section 2.1. for N=1, 2
and 3. When N=1 (a cylindrical resonator, a clarinet), ¥,>> ¥; and the third coefficient C of the
Taylor expansion (equation (6)) is always negative (assuming the source model presented in
section 2.1.), the bifurcation is direct (see Figure 5.). When N=2 (a lattice of 2 cylinders), the
impedance peak at the first resonance frequency Fj is higher than the second one at Fy (see
Figure 2.a.) but of the same order of magnitude (Y, - Y, positive but close to 0), the bifurcation is
inverse (see Figure 5.). In that case the solutions given by the small oscillations theory are
instable periodic regimes corresponding to values of the mouth pressure P, smaller than the
threshold pressure Py, 7. To get stable periodic regimes we need another kind of calculation: it
will be presented in a following section (§3.3.1.). Notice that we could do the same analysis
around the threshold corresponding to the second resonance frequency : the bifurcation
corresponding to the octave regime is direct. When N >3 (a lattice of 3 or more cylinders), the
impedance peak at the first resonance frequency F; is lower than the second one at F) (see
Figure 2.b.), knowing that the parameter C is always negative the bifurcation is direct (see Figure
5.). But Y><Y; implies as well that the linear threshold P> corresponding to the second
resonance is lower than the threshold Pyj,; corresponding to the first one. Moreover, the direct
bifurcation originating from Pyj,; corresponds to another solution as for Y»>Y; because the sign
of P> is different. In the following sections, it will be shown that this corresponds to an inverted

Helmholtz motion.

12
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3.2. Large amplitude oscillations : the lossless resonator approximation

Results of section 3.1. are valid for any kind of resonator but only for small oscillations.
They do not give information about the behaviour at large amplitude. Another approximate
approach is to ignore losses in the instrument. Even if that is not very realistic (e.g. the spectrum
is independent of the amplitude) this approach can give basic informations on the behaviour of
real instruments. Ignoring losses means that the impedance becomes infinite at resonance.
Assuming harmonic resonances and a periodic solution of which the fundamental frequency is
equal to a resonance frequency of the resonator, all the volume velocity a.c. components are then
equal to zero. Thus the flow through the reed aperture is constant. Therefore, the pressure can
have only two different values. There are a large number of solutions (see [12]). The Helmholtz
motions are the solutions for which the pressure is equal to a value for one part of the period and
to another value during the other part. The signal then is a square signal. Assuming that the input
impedance at zero frequency is equal to zero, the mean value of the pressure signal is zero too. A
consequence is that the ratio between the absolute values of the two pressure values is equal to
the ratio of the durations of the two parts of the signal. This ratio is determined by the resonator.
For a resonator whith an impedance given by equation (3), a ratio equal to N is a possible
solution [36, 12]. For N=1 (clarinet) the signal is symmetrical, for N>1 it is asymmetrical. In that
case two solutions are possible namely the longer part of the signal is positive (open reed) or
negative (closed reed). The first one is the standard Helmholtz motion and the second one the
inverted Helmholtz motion (see Figure 6). The spectrum of these idealised periodic oscillations is
fixed for a given value of N, i.e. for every n, P,,/P does not depend on the mouth pressure. The

coefficients P,, of the corresponding Fourier series are given by the following formula :

sin(X,)

P, =—sign[(-p)™ ] with X, = . (12)

n
" N+1
where p is the value of the longest part of the signal; p is positive for the standard Helmholtz
motion and negative for the inverted Helmholtz motion. All harmonic components are real, the

first one being defined as real and positive. Coefficients of even harmonics are negative for the

standard Helmholtz motion and positive for the inverted Helmholtz motion. In particular

13
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coefficient P, is negative for the standard Helmholtz motion and positive for the inverted one.
Amplitudes of harmonics N, 2N, 3N... are equal to zero. In a cylindrical case, N=1, amplitudes of
even harmonics of the internal pressure are equal to zero. As emphasized by Kergomard [3], in
the limit case of a beating reed, when P, > P), / (N +1), the permanent zero value of the flow
entering into the mouthpiece is a paradox : during one part of the period the reed is blocked,
during the second part the pressure is the same on both sides of the reed. This is due to the fact
that losses are ignored. In fact this model does not give information on the flow entering through

the reed in a real instrument.

Starting from the work of McIntyre & al [8], Maganza & al [9] developed an attractive
graphical method to find the periodic regimes (squared oscillations). More recently Kergomard
[3] proposed to describe the dynamical behavior of such a system characterized with only two
dimensionless parameters. The periodic oscillations of the resonators based on a lattice of
cylindrical tubes without losses have been studied as well [37]. This motion is analysed in studies

dealing with the bowed strings (see for example, [8, 38, 36]).

The solutions for p can be found by solving the equation :

u(p) = u(—Np) (13)

where u is given by equation (5). We obtain the following two solutions:

P (N =1)2Py =3B) +y[(N =Py 1 + (Pys = B3Py — Pyy) for P, <M
+ 2AN? = N+1) oo
Py

_, for P, >
p. =P, TN +1
(14)
_(N=D@Py =3B [N =DPy P +(Py = B)CP = Pap) ., NPy
) 2N N4 "N +1

14
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NPy,
N +1

p_=-F,/N for P, >

The corresponding solutions are plotted for N=1 to 4 in Figure 7. Positive solutions
correspond to standard Helmholtz motions and negative solutions correspond to inverse
Helmholtz motions. For a non-beating reed, p(Py,) are elliptic curves. For a beating reed, the
amplitude of the pressure signal is proportional to the mouth pressure. For the standard
Helmholtz motion (positive values of p) the slope is equal to unity whereas it is equal to 1/N for
the inverted one (negative values of p). Then the level is much lower for the inverted motion : the
mouth pressure must be N times higher for the same level. The beating reed regime occurs for

P, > Py /(N +1)for the standard Helmholtz motion and for P, > NPy, /(N +1) for the

inverted one.

According to this lossless approximation, an inverse bifurcation occurs for N >1 and for
the standard Helmholtz motion. In that case, there are no infinitely small stable oscillations and
the lower values for the pressure level are 0.192, 0.189, 0.166 P, i.e 68, 84, 89% of the mouth
pressure P,, for respectively N=2,3 and 4. The non-beating reed regime occurs between the
(subcritical) threshold of oscillation and the beginning of the beating reed regime. The threshold
of oscillation is obtained by solving the equation p, = p_. It is equal to 0.282, 0.226 and

0.186 B, / Py, for N=2,3 and 4 respectively. The begining of the beating reed regime is given by
B,/ Py =1/(N+1) ie 0333, 0.25, 0.2 B, / Py, for respectively N=2,3 and 4. It appears that

for N>1 the non-beating reed regime range is very small and probably difficult to observe
experimentally. Furthermore, it must be pointed out that there is no theoretical limit in this model
for the amplitude of the pressure signal, in particular there is no reason why the oscillation should

be unstable when the mouth pressure is higher, during a part of the period, than the pressure P, .

For the inverted Helmholtz motion, the bifurcation is always direct but only from a

stability analysis it could be concluded if small oscillations are possible or not.

15
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3.3. From small to large oscillations, approximated calculations

The two extreme situations for a cylindrical resonator case appear to be well understood:

(1) for very small oscillations, in the direct bifurcation case, when the excitation
pressure level increases, the amplitude of the harmonics increases as the n™ power of the
amplitude of the first one [5]. The amplitude is also a function of the value of the input
impedance value for a given harmonic.

(i1) For a non-dissipative cylindrical resonator the spectrum is that of a squared
signal, independent of the excitation pressure level. The amplitudes of the odd harmonics are
proportional to 1/n and the amplitudes of the even harmonics are zero.

Strictly speaking these results are not compatible: near the threshold there should exist a
range of P; for which P;> P,> P3;> 0. Then even harmonics amplitudes cannot be strictly equal
to zero. Actually the range for which P, > P; is very small and probably not measurable.
Consequently, the approximation P,=0 remains very good for the spectrum of the internal
pressure (see the experimental results in Section 4). This kind of approximation is part of a
fruitful one to get realistic results on the internal spectrum of the clarinet for a large range of
mouth pressures (see the companion paper [39]). What are the intermediate situations between
these extreme cases ? To answer this question one needs to know the relationship between the
spectrum and both the excitation level and the dissipation factor. The answer is partially given in
[39] and summarized in section 3.3.2. Another question is the understanding of how the two
different approaches can match when the number N of cylinders of the lattice is larger than unity:
from the small oscillations analysis, there is one branch originating from the linear threshold, but
from the lossless analysis, there are two solutions (giving the standard and the inverse
Helhmholtz motions). In the following section (3.3.1) is shown how the matching between one

branch towards the two Helmholtz motions can be understood ?

3.3.1. Inverse bifurcation for a two-harmonic system

16
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In section 3.1.2. a set of equations based on the harmonic balance technique and on the
small oscillations approximation is given (see equations 7). To extend the calculation to finite
oscillations, a system with only two resonances is now studied (we could say that it is the
simplest nontrivial resonator). Above the second resonance the input impedance is assumed to be
negligible. This approximation may correspond to the higher notes of the first register of the
saxophone or the oboe for which only two resonance frequencies remain under the cutoff
frequency. For simplicity these two resonances are assumed to be harmonic (the second one
being exactly the octave of the first one, F)=2F). The amplitudes of harmonics number n are
equal to zero for n>2, and the infinite number of equations obtained by the harmonic balance

technique leads to only two equations for the two harmonics of non zero amplitude P; and P;:

{YlPl = AP, +2BP P, +3CP (P2 +2P?) as)

Y, Py = APy + BP? +3CP, (2P + P5?)

Because the two resonances are harmonic these components are real, P; being positive and P)
either positive or negative. This set is different from the one of section 3.3.1 obtained for the
small oscillations (7) because P; is equal to zero and no terms have been ignored in the expansion

of the harmonic balance applied to the first two harmonics.

From first equation of (15) P ]2 1s expressed as a function of P), and substituted in the

second equation of (15) to obtain the following 3rd degree equation in P) :

2
P23+£P22+L (Yz—A)—Z(Yl—A)+2B P - b (h-4)=0, (16)
3C 27¢?

3C 9C
P; being deduced from the following equation (derived from the second equation of (15)) when

its right member is positive:
2 _ 1 2
R = o[04~ 4)-28R] -2, (17)

Equation (16) has one, two or three real solutions depending on the sign of the discriminant
(negative, zero, positive). On figure 8.a are plotted the P) solutions for the two-harmonic

resonator of which the amplitudes of the peaks are taken equal to those of the first two peaks of
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the lattice of two cylindrical tubes presented before (see the corresponding impedance curve in
Figure 2). Firstly, the P» solutions corresponding to unrealistic solutions are rejected (values of
P> having an order of magnitude equal to two times the minimum closing reed pressure Py).

Secondly, one of the remaining two solutions is rejected for a particular range of P,, because it
leads to negative values of P 12 (see first solution for P* for which P,, < P, / P, < P,, in Figure

8.a). This range is limited by the linear threshold of oscillation Py, for the fundamental regime

and a value a little bit larger than the linear threshold of oscillation P for the octave.

The bifurcation diagram (Figure 8.b) shows two branches :

- First branch is originating from the linear threshold (P,;,=Pyj, 1) according to an
inverse bifurcation as predicted by the small oscillations analysis and corresponding to a standard
Helmholtz motion. In this case, the system now has a threshold (subcritical mouth pressure Py,
1.e. the minimum value of the mouthpressure for which there is an oscillation) which is actually
smaller than the threshold value Py, corresponding to the first resonance (frequency Fj). At this
value, the oscillation amplitude may jump discontinuously towards a finite level, there is no
infinitely small (quasi-harmonic) stable oscillation. An extensive study should be done to show
how the subcritical threshold mouth pressure is depending on the nonlinearity and resonances
parameters.

- Second branch does not link up the P, axis (no infinitely small oscillations) and
corresponds to an inverted Helmholtz motion. It can be seen that P; tends to 0 when Py, is
decreasing along this second branch (see Figures 8.a and 8.b). The branch "seems" to come from
the second threshold value Py (threshold corresponding to the second resonance, frequency
F»). There is no infinitely small oscillation at the fundamental frequency for the inverted
Helmholtz motion but strictly speaking, it doesn't correspond to an inverse bifurcation. When the
control parameter Py, is decreasing, Py is tending towards 0 while Py is tending towards a finite
value : the branch is matching the octave regime branch coming from the second threshold value
Pspo and corresponding, here, to a direct bifurcation. This phenomenon reminisces a period

doubling bifurcation coming from the octave regime.
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The lattice of two cylindrical tubes is know studied extensively by numerical harmonic
balance [40], and the bifurcation diagram is displayed in Figure 9. Dissipation in the resonator is
taken into account, but not dispersion. There are two linear thresholds corresponding to the first
two resonances of the resonator : first one corresponds to the fundamental regime and second one
to the octave regime. The first one is lower than the second one because the first resonance peak
is higher in amplitude than the second one. The behaviour of the small periodic oscillations in the
vicinity of the two linear thresholds are those predicted by the theory : an inverse Hopf
bifurcation for the fundamental regime, a direct one for the octave regime. The other fundamental
regime corresponds to an inverse Helmholtz motion for the large amplitude oscillations. When
the mouth pressure is decreasing, this second fundamental regime tends towards the octave
regime for a finite amplitude: there are no infinitely small oscillations corresponding to this
second fundamental regime. So there is no contradiction with the linear analysis near the
threshold of oscillations. Furthermore, the second harmonics in inverse and standard Helmholtz
motions haven't the same sign as it is the case for the lossless model. These results are well
matching with the two theoretical well-known cases : the small oscillations case with one
unstable branch originating from the linear threshold (inverse Hopf bifurcation), the lossless
oscillations approximation with two limit branches, the inverse and standard Helmholz motions,
the first one continuing the small oscillations branch, the second one being linked with the small
oscillations octave branch without infinitely small amplitude solutions. It was verified that the
bifurcation diagram of the lattice of cylinders (N=2) obtained by numerical harmonic balance
(figure 9) is qualitatively similar to the one obtained analytically with the "two peaks resonator"
(in the last case, the impedance is 0 for frequencies greater than F ; the non-linear relation is

approximated by its 3rd order Taylor's expansion ; the beating reed is not considered).

The bifurcation diagrams studied in the previous part of this section correspond to
resonators for which Z1>Z as it is the case for a lattice of two cylindrical tubes (N=2). For N
greater than 3, Z,>Z; (see Figure 2.b) and then the threshold Py, is higher than Pyj». But we
already know that according to the small oscillations analysis there is a modification of the
behaviour near the threshold : the bifurcation becomes again direct when Y»>-Y; becomes
negative, i.e. when Z»>>Z; (see Figure 5). Then, the matching of this small oscillations behaviour

with the two Helmholtz motions is different from the previous cases. The two peaks resonator
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with Z»>Z is studied similarly according to equations (16) and (17). The solutions are displayed
Figures 10.a and 10.b in the same way than those displayed Figures 8.a and 8.b.

In accordance with the small oscillations analysis, the branch originating from the
threshold associated to the first resonance (P, =Pyj, 1) is corresponding to the inverted Helmholtz
motions with a direct bifurcation (case where (Y»-Y;) and C are negative in Figure 5.). The
branch coming from the second threshold (P, =P;;,2<Py}, 1) corresponding to the octave regime
is a direct bifurcation as well (Y4-Y> is positive and infinite because we have assumed that
Z4=0). The second branch corresponding to the standard Helmholtz motion is linked with the
small oscillations octave branch. There is no infinitely small amplitude solutions for this branch.
Then it is very similar to an inverse bifurcation with a threshold of oscillation Py, smaller than
Pspo. The nature of this inverse bifurcation is different from the one described before when
Z><Zj: in the first case (Z£)<Zj), the inverse bifurcation is the one predicted by the small
oscillations analysis coming from P,,=Pyj, ], in the second case (Z>>Z]), the inverse bifurcation
is originating from the octave threshold (P,,=P;;2). In that case, the periodic oscillations
existing for the lowest values of P, are far from the linear threshold and then the small
oscillations solutions is valid only for the inverted Helmholtz motion. This shows a limit of small
oscillations analysis near the threshold of instability of the trivial solution: it misses the standard
Helmholtz motion which is certainly the only one played in practice. Experimentally because of
the quasi inverted bifurcation, no small oscillation corresponding to the standard Helmholtz
motion can be observed for N different from unity and then the difference in the bifurcation
diagrams of Figures 9 and 11 may have no consequence in practice. It can be considered that the
bifurcation is inverse for every N larger than 2 even if it is a strict inverse bifurcation only for

N=2.

3.3.2. Harmonic balance technique applied to a cylindrical resonator

In sections 3.1 and 3.2, theoretical results on small and large oscillations have been given.

The first are valid in the vicinity of the threshold, the second are valid for lossless resonators
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(squared oscillations for a cylindrical resonator). But there is, up to now, no theoretical result

about the spectrum in-between these two extreme situations.

A companion paper [39] discusses with many details this problem, for a cylinder and
using a model of the excitation mechanism assuming a non beating reed. Using a method called
“variable truncation method”, this paper proposes approximated formulas for the first harmonics,
which are compared to numerical results obtained by the harmonic balance technique. For a
resonator with harmonically related frequencies, assuming that even harmonics are very weak in
the internal spectrum, an expression for the amplitude of the fundamental is obtained:
2_A-1h

P
! 3C

; (18)

where 4 and C are the coefficients of the Taylor expansion (6) and Y; the admittance
corresponding to the first resonance frequency. This equation is equivalent to equation (8) with
Y, assumed to be infinite but it is demonstrated in [39] that it remains a good approximation

beyond the threshold of oscillation.
With the same hypothesis, the following formula is obtained for the third harmonic:

P 1 A-Y
R~ 34-Y+%-}

; (19)

where Y3 is the admittance corresponding to the third resonance frequency. This equation is
compatible with equation (10) when the quantity (4-Y;) is small, i.e. near the threshold of
oscillation and Y, assumed to be infinite. But when (4-Y)) increases and tends to the infinity, the
equation (19) is drastically different from equation (10): the denominator does not vanish and the
ratio tends to the value corresponding to the square signal. Actually (4-Y;) tends to a finite value
when the mouth pressure increases to the beating threshold and then the ratio P3/P; tends to a

value slightly lower than 1/3.

Results for higher odd harmonics are more intricate but the behaviour is qualitatively the

same as this for the third harmonic.Equation (19) can be rewritten, using (18), as follows:

21



Dalmont

cp?

P3=—
3CP+Y; -1

(20)

This result has been proved to be valid for the full nonlinear model (5) as well as for the Taylor

expansion (6) [39]. It exhibits two different slopes for the asymptotic lines: Pj o< P13 near the

threshold and P; o< P; above. Similar results for the higher order odd components show that

P, < P" near the threshold and P, e P, far above it. In the latter case all the lines

corresponding to the odd harmonics are parallel (see for example experimentals results in Figure
12.c).

Concerning the value of the threshold of oscillation, theory based upon the model
described in section 2.2 [3, 39] shows that it is significantly higher in practice than predicted with
the lossless model. Writting A=Y; and solving equation (37) in [39], the threshold pressure Py, is

approximately given by:

Py Y |2pPy
Py, = 1+ , 21
m=— (=) 21)
where H the height of the slit in the absence of flow and w the effective width of the reed
channel, p the density of air and Py, the minimum closing pressure (see section 2.2, Figure 3).

Typically this leads to Py, =0.4 Py, instead of Py, =1/3 Py, with the lossless model.
4. Experimental results
4.1. Experimental set-up

Many authors have developed artificial mouths for blowing single reed instruments (see
e.g. [6, 30]). The present one, developped by Gazengel [41], consists in a hermetically closed
chamber (volume 1500 cm3) fed by a high-pressure air supply. The mouth pressure in the
chamber is controlled. The "embouchure" is formed by an artificial lip, a latex tube filled with
water, on a metal backing positioned by a screw (see [41]). The water-filled tube appears to be a

noticeable improvement over the foam plastic used in the experiments in the past.
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The static pressure in the mouth is measured with a pressure transducer. The internal
acoustic pressure (in the mouthpiece) is measured with a microphone (an acceleration-
compensated piezo-electrical gauge, type PCB M116B). For the same resonator a lot of different
regimes have been observed and results are very dependent on the "embouchure" i.e. on the lip
shape, position and pressure. Some of these regimes are not periodic (multiphonics), even for the
fundamental frequency different regimes can be seen which can not always be ascribed to a
Helmholtz motion. We have done measurements of the input pressure in a clarinet mouthpiece
with various resonators (lattice of cylinders with N=2, 3, 4 as defined in section 2.1). Results are
shown in Figure 11. In the pure Helmholtz motion a rectangular (square for N=1) signal should
be observed. The ratio between the two parts of the period should be equal to N if N is an integer
[36]. Measured signals looked a little bit "rounded" [21], like those obtained for a violin [42,43],
but the ratio seems to be preserved. When calculated with the method given by Schelleng [42]
these are given by 2.01,3.02 and 4.10 for N=2,3 and 4, respectively (Figure 11).

For a given "embouchure", the periodic permanent regimes are analyzed with a spectrum
analyser. These measurements are carried out from the oscillation threshold up to large amplitude

oscillations.

4.2. Cylindrical resonator

The experiment for a cylindrical resonator has been carried out with a clarinet mouthpiece
on a PVC tube of inner diameter 15mm and length 30cm. The dimensions of this are close to
those of a clarinet playing with about half its holes closed. For a given "embouchure" the
experiment consists in varying the mouth pressure and analysing the pressure signal in the
mouthpiece. The fundamental frequency obtained varies approximately from 190 Hz near the

threshold to 205 Hz for the highest pressure.

The shape of the signal, when increasing the blowing pressure, varies from a sinusoidal
one to a more or less square one. For a certain pressure value Py, the signal vanishes and the

reed closes. When the mouth pressure is slowly decreased the reed remains closed until the
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pressure reaches a certain value for which the reed starts oscillating again. This pressure is the
minimum pressure for which the closed state is stable and is assumed to be the minimum closing

pressure Pyy.

The RMS input pressure is plotted against mouth pressure P,, in Figure 12.a. The
threshold pressure is less than a third of the minimum closing pressure P, The amplitude of the
first harmonic is proportional to the mouth pressure for the main part of the curve, corresponding
to the beating reed regime. This beating reed regime seems to start at a value which is
approximately one half of the minimum closing pressure P, Considering the model presented in
section 3.3.2 all the qualitative behaviour is correctly predicted, but the precise ratios of the
threshold of oscillation to the minimum closing pressure P, is lower in the experiment than in
the model. This discrepancy can be interpreted as a consequence of the bad representation of the
beating phenomenon: the model does not take into accout the curvature of the lay. The slope of
the curve is approximately 0.7 instead of 1 for an ideal Helmholtz motion. It is possible that this

difference is due to losses.

The ratio of the third and fifth harmonic to the first harmonic as presented Figure 12.b
indicates that the spectrum tends to a saturated regime for which the spectrum becomes
independent of the amplitude as predicted by equation (19). This may correspond more or less to
the square signal analysis despite that relative amplitudes of the harmonics are lower than that for
a true square signal. An interesting feature is that the saturation of the spectrum of the lowest odd

harmonics begins below the beating threshold and is prolonged above this threshold.

Near the threshold the evolution of the signal indicates that the bifurcation is a direct one.
The growing of the harmonics 3 and 5 is according to the law stated by Worman (Figure 12.c).
Figure 12.c is very similar to the one obtained for the external pressure and also to that obtained
with a professional musician by Benade [18]: up to a certain pressure, called change of feel in

[18], a constant spectrum is observed.

4.3. Lattices of cylinders and saxophone
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The procedure for these resonators is the same as for a cylindrical resonator : the blowing
pressure is increased until the reed closes and then decreased to find the minimum closing
pressure P. For these resonators the oscillations start for a given mouth pressure but persist
when decreasing the mouth pressure below this value: a hysteresis is observed (Figure 13.a).
Moreover, no harmonic oscillations can be observed and the spectrum does not vary much with
the mouthpressure (Figure 13.b). All this indicates that it correspond to an inverse bifurcation.
The first regime obtained can be interpreted as the standard Helmholtz motion because the main
part of the pressure signal is positive (see Figure 11). Above a given blowing pressure, close to
the minimum closing pressure Py, another signal is obtained which can be interpreted more or
less as an inverted Helmholtz motion. Between these two regimes an intermediate regime can be
observed (Figure 14). For this intermediate regime the second harmonic tends to become zero

and, as expected, change its sign.

In the main part of the curve the amplitude is found to be approximately proportional to
the mouth pressure, indicating a beating reed regime. The non-beating range seems to be very
small (Figure 13.a). This corresponds to experimental observations on conical reed instruments
where the reed closes a short time and remains open the rest of the time [44]. The slopes are, as in
the cylindrical case, lower than the theoretical ones: 0.85 instead of unity for the ideal Helmholtz
motion for the RMS pressure in the case of N=2 (Figure 13.a). For the inverse Helmholtz motion
the proportionality is not so clear. However, the slope can be compared to the theoretical one: 0.4
instead of 0.41 for N=4 (Figure 14). It is rather surprising that in that case the slope is not very
different from the theoretical one for square signal. This, as well as the fact that the spectrum is
not rigourously the same for the inverted and standard Helmholtz motions, indicates that the
theoretical scheme is not perfectly confirmed. As for the cylindrical case the ratio between the
upper harmonics and the first one is lower than that for the ideal square signal. It must be noticed
too, that results can differ slightly with the embouchure. For some embouchures the octave can

be observed between the two Helmholtz motion.

As a verification, experiments have also been carried out with an alto saxophone (Figure

15). The behaviour is very similar to the one for a lattice of 4 cylindrical tubes: the bifurcation
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appears to be inverse and the range of the non-beating reed regime is small. In some cases

inverted Helmholtz motion have also been observed.

5. Conclusion

The aim of this paper is to show how small and large amplitude analysis with very simple
models can be used for the understanding of reed instrument operation. For the clarinet the non
saturated regime is reasonably well described by the small oscillation analysis and the saturated
regime by the large amplitude analysis. Moreover using a series expansion technique with a new
method of approximation, the spectrum can be theoretically derived for a large range of
mouthpressures [39]. Our study has shown that large and small analysis match rather well for
cylindrical and conical resonators. The set of lattices of cylinders described in [10] is particularly
useful to understand the difference between a cylinder and a cone from the oscillation's behaviour
point of view (bifurcation diagrams). It has been shown in particular, for conical instruments,
how the two Helmholtz motions join the single solution of the small oscillation analysis in the
case of a two peaks resonator. One of the Helmholtz motions is originating from the small
oscillations solution, the other one can be interpreted as a period doubling bifurcation originating
from the octave regime. It is shown that the bifurcation types are well predicted by large
amplitude analysis : bifurcation is direct for cylindrical instruments and inverse for conical
instruments. On the contrary small oscillations analysis does not give sufficient information to
find the bifurcation type of non cylindrical resonator: it analyses only one regime which can be
either the standard or the inverted Helmholtz motion. This study confirms a musician’s

experience: it is much more difficult to play pianissimo with a saxophone than with a clarinet.

Experiments have been made for different resonators and it was found that most of the
theoretical results are qualitatively correct under normal playing condition showing that our
simplified approach is helpful to understand the basic behaviour of reed instruments from small
to large oscillations. It may be noticed that experimental results are depending much on the
embouchure and especially on the reed damping including the added damping due to the
instrumentalist's lip on the reed. With a very tight embouchure a direct bifurcation can be

observed with a saxophone: this may have a relation with the “subtone” playing technique which
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allows to play pianissimo on a saxophone. This gives the limit of this kind of study in which
different phenomena are ignored. The influence of damping on the spectrum should also be
studied as well as the effect of anharmonicity on spectrum and playing frequency. Effect of reed
resonance has also been neglected. Wilson & Beavers [6] have shown that reed damping is
crucial to avoid the reed regime in a clarinet, a similar study could be done for conical
instruments especially for double reed instruments [2]. However, analysis on a simplified model
can be very useful. As the model is general, some results can probably be applied to bowed string
instruments. As the input pressure signal in the mouthpiece of a lip reed instrument is very
similar to that in conical reed instruments, some results can probably also be applied to lip reed
instruments. Many aspects of reed oscillation remain to be studied: the stability of different

regimes, the modelling of the reed especially when beating, the influence of the damping etc.
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FIGURE CAPTIONS

FIGURE 1la:

Schematic view of a conical resonator with an added volume at the top.

FIGURE 1b:

Schematic view of a lattice of 4 cylindrical tubes having harmonically related eigenfrequencies.

FIGURE 2. :
Calculated input impedance (magnitude in dB) versus frequency of a lattice of N cylindrical
tubes having harmonically related eigenfrequencies. Input radius is =6 mm and L+ / =1.65m,

with viscothermal losses.

a) N=2 b) N=3

FIGURE 3. :

Schematized view of a single reed instrument mouthpiece.

FIGURE 4. :
Non linear curves u(t) as a function of p(¢) for three differents values of P,,.

from the right to the left P,/Py~=1/6; 1/3; 1/2.

FIGURE 5. :

Diagram showing the regions where the bifurcation is direct as well as those regions where it is
inverse (equation (11)). The horizontal axis shows the values of the coefficient C (cubic term in
the Taylor expansion of the non linear function between u and p (6)), the vertical axis the
difference Y»-Y| between the admittance at Fp=2F| and the admittance at F.

The hatched region is for a direct bifurcation and the unhatched region for an inverse bifurcation.
Three typical cases are pointed out:

N=1: single cylinder (case of the clarinet)
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N=2: lattice of two cylinders with harmonically related resonance frequencies. In that
case the analysis correspond to a standard Helmholtz motion (standard HM)
N >3: lattice of three or more cylinders with harmonically related resonance

frequencies. In that case the analysis correspond to an inverted Helmholtz motion (inverted HM).

FIGURE 6. :
Schematic plot of the input pressure signal p, as a function of time, corresponding to an ideal
standard (p>0) and inverted (p<0) Helmholtz motion, both for the same mouthpressure P,,.

a) Standard Helmholtz motion b) Inverted Nelmholtz motion.

FIGURE 7. :
Pressure of the longest episode p as a function of the mouth pressure P, for, from the right to
the left N=1 to 4 (equation (14)). The pressures are divided by the minimum closing pressure Pj,.

* beating reed limit. o linear threshold Py, =P/3 and minimum closing pressure Py .

FIGURE 8.a:

Bifurcation diagrams corresponding to the two peaks resonator where Z1>2>.

Second harmonic P, solution of equation (17) as a function of the control parameter P,

and first harmonic squared P12 solution of equation (16) as a function of the control parameter
Py,

All quantities are divided by the minimum closing pressure Py, .

00 0 o first solution for P,, ++ ++ second solution for P»,

— — —— first solution for P2, --------- second solution for P,>.

FIGURE 8b. :

Bifurcation diagrams corresponding to the two peaks resonator where Z1>Z5.

The RMS acoustical pressure is displayed as function of the mouth pressure Py, (results deduced
from (17)).

All quantities are divided by the minimum closing pressure Py; .

0000 first solution  ++++ second solution _______ octave.
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FIGURE 9. :
Bifurcation diagrams corresponding to the lattice of two cylindrical tubes.
The RMS acoustical pressure is displayed as function of the mouth pressure Py, (results obtained

by numerical harmonic balance technique).

All quantities are divided by the minimum closing pressure Py .

0000 first solution  ++++ second solution octave.

FIGURE 10a:

Bifurcation diagrams corresponding to the two-harmonics resonator where Z1<Z».

Second harmonic P2 solution of equation (17) as a function of the control parameter P,

and first harmonic squared P12 solution of equation (16) as a function of the control parameter
P

All quantities are divided by the minimum closing pressure Py .

00 0 o first solution for P,, ++ ++ second solution for P»,

— — —— first solution for P12, --------- second solution for P;2.

FIGURE 10b :

Bifurcation diagrams corresponding to the two peaks resonator where Z1<Z».

The RMS acoustical pressure is displayed as function of the mouth pressure Py, (results deduced
from (17)).

All quantities are divided by the minimum closing pressure Py .

0000 first solution  ++++ second solution octave.

FIGURE 11: Typical experimental input signals for N=1, 2, 3, 4 and a soprano saxophone.

dotted lines: corresponding idealized Helmholtz motion.

FIGURE 12. : Cylindrical resonator (clarinet case) blown with an artificial mouth, internal
acoustical pressure experimental results.

(a) RMS input pressure (in Pa) against mouth pressure (in Pa) ;
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(b) relative amplitude of the third and fifth harmonic to the first harmonic against the mouth
pressure (in Pa) ;

(c) second, third, four and fifth harmonic as a function of the first harmonic (dB scales).

FIGURE 13 : Lattice of cylindrical tubes with N=2 blown with an artificial mouth, internal
acoustical pressure experimental results.
(a) RMS input pressure (in Pa) against mouth pressure (in Pa) ;

(b) second, third and fourth harmonic as a function of the first harmonic (dB scales).

FIGURE 14 : Lattice of cylindrical tubes with N=4 blown with an artificial mouth, internal
acoustical pressure, experimental results.

Amplitude of the first and second harmonics (in Pa) against mouth pressure (in Pa).

* first harmonic, o second harmonic.

Straight lines correspond to the case in which the amplitude of the first harmonic is proportional
to the mouthpressure. Vertical dashed line separate the standard Helmholtz motion range and the

inverted Helmholtz motion range.

FIGURE 15. : Conical resonator (saxophone) blown with an artificial mouth, internal acoustical
pressure experimental results.

Amplitude of the first and second harmonics (in Pa) against mouth pressure (in Pa).

* first harmonic, o second harmonic.

Straight lines correspond to the case in which the amplitude of the first harmonic is proportional
to the mouthpressure. A vertical dashed line separate the standard Helmholtz motion range and

the inverted Helmholtz motion range.
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