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Abstract

The self-sustained oscillation of a brass wind musical instrument involves a complex aerodynamic coupling
between a multimode mechanical vibratory system (the lips of the player) and a multimode acoustical
vibratory system (the air column of the instrument). In this paper the behaviour of the coupled system near
the threshold of oscillation is investigated using a simplified model in which a single mechanical lip mode is
coupled to a single mode of the acoustical resonator. Linear stability analysis is used to study the theoretical
variation of threshold blowing pressure and threshold playing frequency as functions of lip and air column
parameters. The theoretical results are compared with experimental results obtained from a systematic
study of the near threshold behaviour of a trombone sounded by an artificial lip mechanism. Comparability
between theory and experiment is ensured by using model parameter values derived from mechanical response
measurements on the artificial lips and input impedance measurements on the trombone.

The measured mechanical response curve for the artificial lips exhibits several resonance peaks, each of
which can be classified unambiguously as either “inward striking” or “outward striking”. For each of these
resonance peaks, parameters have been extracted and used in numerical simulation of threshold behaviour
as a function of trombone slide extension. However, the experimentally observed threshold frequencies of
the coupled system suggest a behaviour which passes smoothly from “inward striking” to “outward striking”
character as the trombone slide is extended or the embouchure parameters changed. It seems unlikely that
this type of behaviour can be explained using a lip model with only a single degree of freedom.



I INTRODUCTION

I.A  General introduction and literature review

Sound production in the brass wind musical instrument family is a result of self-sustained lip oscillation. The
mechanical oscillator (the lips of the player), acts as a valve which modulates the air flow through the lips.
The destabilization of the mechanical element is the result of a complex aeroelastic coupling between (1) the
lips, (2) the air flow entering the instrument due to the static overpressure in the mouth of the musician,
and (3) the resonant acoustic field in the instrument itself. The phenomenon thus belongs to the class of
flow-induced vibrations, which has been extensively studied both theoretically and experimentally (see, for
example, Blevins [1]).

The first global study modelling the behaviour of a ‘simplified’ player coupled to a brass instrument was
proposed by Elliot and Bowsher [2]. Applying the small oscillation hypothesis, they compared experimental
measurements obtained using a trombone player with behaviour predicted by their theory. This pioneering
work has already been extensively discussed by Campbell and Greated [3]. In the present study Elliot
and Bowsher’s work is revisited and extended to take into account some flow-induced vibration effects. As
pointed out by Elliot and Bowsher, major obstacles in achieving a comprehensive study of the characteristics
of brass instrument tone are the number of lip and instrument parameters which can influence the note
and the considerable range of values which some of these parameters can take. In order to avoid the
difficulty of experimental study on human vibrating lips, an artificial mouth with artificial buzzing lips was
developed [4] [5], in which the ‘embouchure’ is controlled by only a small number of parameters.

The global modelling of brass instruments requires the description of the instrument itself (the acoustic
resonator), the mechanical valve (the lips), and the aeroelastic coupling between the valve and the air flow
into the instrument. One reasonable model relies on a fairly simple representation of the aeroelastic coupling.
Following Elliot and Bowsher, the lips are modelled by one mode of flexural vibration; the description ‘one
mass motion’ or ‘one mass model’ recalls the single mechanical degree of freedom of this model. The air
flow entering the instrument, through the channel between the lips, is assumed to be quasi-stationary,
incompressible and frictionless. The coupling to the resonator is obtained by using conservation of volume
flow and assuming non-recovery of pressure at the entrance to the mouthpiece due to the creation of a region
of turbulent mixing slightly downstream of the flow-separation at the end of the lip channel.

The acoustical behaviour of the mouthpiece and air column of a brass instrument has been extensively
studied, with convincing theoretical and experimental results [6] [7] [8] [9]; in comparison, understanding
of the behaviour of the buzzing lips is less advanced. Some published observations of human lip oscilla-
tions [10] [11] [12] [13] show that the one mass model is not sufficient to describe the lip vibration and
a more complex model, analogous to the two mass-model developed for the human vocal folds, must be
adopted. However, convincing time-domain simulations based on simple one mass models have been devel-
oped [14] [15] [16] [17]. A large portion of the dynamic behaviour of real instruments is already described
by these simplified models, which give very realistic sound synthesis. To further improve the synthesis, large
amplitude effects such as non-linear behaviour of the lips and lip collisions must be taken into account. In
addition, for rasping sounds, nonlinear acoustic propagation in the instrument must be considered [18] [4] [19].

Following the pioneering work of Helmholtz [20] and Bouasse [21], several theoretical and experimental
studies have been carried out on the oscillation threshold behaviour of a basic one-mass model coupled
with acoustical resonators. Reed woodwind and brass instruments are conventionally separated into two
categories: ‘inward striking reeds’ (the valve closes as the supply pressure increases) and the ‘outward
striking reeds’ (the valve opens as the supply pressure increases). These two categories have very distinct
vibrational and acoustic behaviour [22] [23] [24]. From frequency measurements the reed can be classified as
‘inward striking’ if the threshold playing frequency is lower than both the mechanical and acoustical resonance
frequencies or ‘outward striking’ if the threshold playing frequency is greater than both the mechanical and
acoustical resonance frequencies. It has been clearly established that single reed wind instruments exhibit
‘inward striking’ behaviour [25] [26] [27] [28] [29]. However experimental studies to categorize the lip reed in
brass instrument excitation have not produced any definitive conclusions [24] [30] [31] [4] [5].



I.B Aim and contents of this paper

The aim of this study is to contribute to a better understanding of sound regeneration in brass instruments
at the threshold of oscillation, and to investigate the flow induced vibrations of the lips. Linear stability
analysis of finite dynamical systems provides the main theoretical background. The experimental results
were obtained using an artificial mouth. The present paper is divided into three sections. After this brief
introduction, the theoretical background is presented in section II. The theoretical discussion makes use of
experimental results to be presented in full in section III.

In section II.A the simplified physical model is derived and linearized around the equilibrium position of
the lips. These linearized equations are presented in the time domain as two coupled oscillators, equivalent
to a finite dynamical system of degree four. The theory of linear stability analysis is briefly reviewed
in section I1.B; some classic results in the theory of elastic stability are presented, including the flutter
effect. Linear stability analysis is then applied to the two coupled oscillator problem; threshold pressure and
frequency values predicted by the simple model are presented and discussed in section I1.B. That section also
investigates the variation in threshold values as a function of various acoustical and mechanical parameters.

The theoretical results presented in section IT are not based on new theoretical insight: one mass models
of the lips have previously been proposed by several other researchers and, for woodwind instruments, the-
oretical investigations of threshold values have also been carried out. However the linear stability analysis
representation provides an interesting comparison between ‘flow induced vibrations’ in two aerodynamically
coupled mechanical oscillators, and acoustic oscillations in the case of one acoustical oscillator aerodynam-
ically coupled to one mechanical oscillator. Furthermore this paper presents results of simulations which
were run using lip parameters and acoustical parameters based entirely on systematic experimental mea-
surements. These measurements are described in section ITI. Section ITI.A is devoted to the presentation
of the experimental procedures used to measure the acoustical input impedance, the mechanical response
of the artificial lips and the oscillation threshold. The experimental results are compared to the theoretical
ones in section II1.B. Mechanical response measurements are presented for a range of static mouth overpres-
sures from zero (no aeroelastic coupling) to a value slightly below the oscillation threshold. These response
measurements were carried out with the artificial lips coupled only to a mouthpiece rim (with the cup re-
moved), and also to a complete mouthpiece. Threshold measurements performed using a trombone coupled
to artificial lips are compared to threshold behaviour predicted by the theoretical model. The qualitative
features recovered by the simplified one-mass model are extensively discussed and the limits of this approach
are considered. The results lead to a discussion of the possibility of including a second mechanical mode in
the lip model. Finally the perspectives of this work are discussed in the conclusions.

I THEORY

II.A Brass instruments coupled to lips by air flow: A basic physical model
The basic one mass model

Before studying the linear stability of the lips, the selection of a relatively simple model which provides a
reasonable reproduction of the behaviour observed in some limited domain (small oscillations hypothesis)
is required. The lips are flexible, continuous structures submitted to aerodynamic forces depending on the
pressure field around them (see figure la). In this paper the lip motion is approximated by a ‘one mass
model’: each lip is allowed to oscillate with a 1-dimensional motion along an axis defined by the unit vector
¢, making an angle § with the vertical z axis (see figure 1b). This angle is determined by the aerodynamic
forces acting on the lip. The pair of lips acts as a valve, controlling the air flow into the mouthpiece. It is
assumed that the flow control depends only on the vertical component of the motion of the lips, and that
the longitudinal component of the lip motion does not generate a significant additional volume flow.

If it is assumed that the two lips are identical, and are placed symmetrically on the mouthpiece, then
the dynamics of each lip can be represented by the simple second order oscillator equation

F
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where X () is the instantaneous distance of each lip from the axis of symmetry at time ¢. Each lip has natural
(angular) frequency wr, quality factor @1, mass m and is acted on by a force with vertical component F.
The dynamics of the entire system (lower lip plus upper lip) can be represented by a single second order
oscillator described by the equation
d’H  wp dH 9 F )
W+EE+MLH—m—L (2)
where H(t) = 2X(t) is the instantaneous distance between the lips at time ¢ and the effective mass of the
system is my, = m/2.
The channel between the lips is assumed to have constant width 4. The flow through this channel
is assumed to be quasi-stationary, frictionless and incompressible; the velocity field in the lip channel is
therefore uniform, and its magnitude Uy, is determined by the Bernoulli relation

1
Pm:PL+§pU£ (3)

where P, is the instantanecous overpressure in the mouth and Py, is the instantaneous overpressure in the
lip channel. The velocity in the mouth is not included in equation 3 because the large cross-sectional area
of the mouth relative to the area of the lip channel implies that the velocity in the mouth 1s negligible.

It is assumed that the air flow separates precisely at the exit of the lip channel, forming a thin jet. The
velocity of this jet is equal to the velocity in the lip channel; the pressure at the exit of the lip channel is
thus equal to the pressure in the lip channel. After the jet has travelled a short distance, it expands rapidly,
producing a region of turbulent mixing. Downstream of this region the velocity field can be considered
uniform across the entire cross-section of the mouthpiece. Although the velocity decreases as the flow
expands, the turbulent dissipation of kinetic energy implies that there will be no pressure recovery across
the turbulent region. The pressure in the lip channel, Py, can therefore be considered to be equal to the
pressure at the input of the instrument mouthpiece, P.

If the overpressure, lip separation, velocity, or volume velocity in a region r is A, then A, can be written
as the sum of the mean (time averaged) value of A,, ‘A, and the alternating component of A, a,:

A, = Zr + a,. (4)

The time averaged overpressure will subsequently be referred to as static pressure.

The alternating pressure in the mouth, p,,, is assumed to be negligible relative to the alternating pressure
in the mouthpiece, p, which is equivalent to assuming that the input impedance of the mouth cavity is zero.
In this case Py, &~ P,,. In the current model it is assumed that the static overpressure in the mouthpiece, P,
is negligible relative to the static overpressure in the mouth, P,,, and therefore Py, & P a p. This assumption
has been questioned [32] for the analogous case of a double woodwind reed. In that case the cross-sectional
area of the reed opening can exceed that of the neck of the reed, and it seems likely that the pressure drop
through the neck would then be of the same order as that across the reed opening. A similar situation
could arise in the case of a loudly blown note on a brass instrument, for which the lip opening area could
be comparable to the mouthpiece throat. The present study was confined to near-threshold oscillations, for
which the lip opening area was considerably smaller than the mouthpiece throat diameter, and the pressure
gradient in the throat was neglected.

The pressure field assumed in the model can be summarised as follows: the internal faces of the lips
are subjected to a purely static pressure, P,,, whereas the channel and external faces are subjected to the
purely alternating input mouthpiece pressure, p. By applying this simplified pressure field, equation 3 may
be expressed in the form

I 1 —
P =p+ 5p(UL + ur,)? (5)
where Uy, is the mean velocity in the lip channel and uy, is the alternating velocity in the lip channel.
Downstream of the turbulent mixing region the velocity field may be considered uniform across the entire

cross-section of the mouthpiece. Conservation of volume flow implies that the volume flow at the entrance
to the mouthpiece, V', is equal to the volume flow through the lip channel:

V4 v=>0b(H+h)(Ur + ur) (6)



where V' and H are the mean values of V and H, respectively and v and h denote small fluctuations in V'
and H, respectively, about their mean values.

The total aerodynamic force, F', acting on the lips is often separated into two forces, Fp and Fp, which
have opposite effects on the aperture. One of the forces is proportional to the pressure difference between
mouth and mouthpiece i.e. Fp/mp = (Pn — p)/pp, where pp is the effective mass of the lips, my,, divided
by the effective area of the internal face of the lips; this force implies an ‘outward striking reed behaviour’.
The second force is proportional to the pressure in the lip channel, i.e. Fg/my = p/up where pg is the
effective mass in the lip channel divided by the effective area of the channel faces of the lips; this force
implies an ‘inward striking reed behaviour’. In musical acoustic literature Fp is often named the ‘Bernoulli
force’. From the above discussion it is clear that the total alternating force per unit mass exerted on the
lips is equal to p/(1/pup — 1/pp). Substituting this expression for the right hand side of equation 2, and
replacing H with the alternating component of lip separation, h, yields the following expression describing

the dynamics of the lip motion:
d’h  wy dh 9 < 1 1 )
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Equations 5, 6 and 7 form a simple model for the volume flow control by the movement of the lips of
the brass player. Many supplementary non-stationary terms neglected here are suggested in the literature,
representing, for example, a secondary volume source due to the motion of the lips, the inertial effect of air in
the channel and a moving point of flow separation in the neck of the lip channel. The effect of each of these
terms can easily be estimated theoretically but it is difficult to choose realistic values for the parameters
involved. In the crude model defined above, as there is no a priori evidence that either of the forces Fp or
Fp 1s dominant, the assignment of the lip reed to one of the pressure controlled valve categories initially
defined by Helmholtz is not obvious. This problem has been discussed at length in several papers [4] [22] [23]
[24] [30] [31] and will be revisited in section IIT of this paper.

Linearized equations and the two coupled oscillators representation

In order to carry out linear stability analysis equations 5 and 6 must be linearized about the lips’ equilibrium
position. The linearization is performed by neglecting any terms containing the product of two alternating
variables and by neglecting all steady variables which are not multiplied by a single alternating term. This
leads to the linearized Bernoulli relation

0=p+pULug (8)

and the linearized volume flow equation
v=">bHuy + bULh. (9)

A suitably simplified mathematical model of the acoustic oscillation of the air column is also required.
The acoustic input impedance of a brass instrument is defined as 7(w) = p(w)/v(w), where p(w) and v(w)
are the complex pressure and velocity amplitudes, respectively, at the input end of the mouthpiece. A typical
input impedance curve for a trombone is shown in figure 8; each of the air column resonances is represented
by a well defined peak. In the present study of near-threshold coupled oscillations of the lip-air column
system, it is assumed that only a single air column mode participates significantly in a given oscillation
regime of the coupled system. If this air column mode has resonance frequency w4, peak impedance Z 4, and
quality factor @ 4, the input impedance in the frequency region close to w4 can be represented approximately

by the equation
Za

e (#522)

(10)

(see Chang[33], equation 3).
Equation 10 forms the basis of a curve fitting routine used in the present study to extract acoustical
parameters from input impedance measurements; the equation will be discussed again in section III. To



incorporate the acoustic resonance into the coupled oscillators formalism we require a time domain represen-
tation of equation 10. Making use of the approximation w?
as

—w? ~ 2w(w—wa), equation 10 can be rewritten

— ZA
- 1_|_ jQA(w2_wi)

ww 4

Z(w) (11)

which has the equivalent time domain representation

d21/) WA dl/) 9 <ZA(.¢)A>U
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where dy/dt = p.

Equation 7 describes the mechanical oscillator and equation 12 describes one mode of the acoustical
oscillator. The v variables in equation 12 can be eliminated by application of the linearized Bernoulli and
volume flow equations (8 and 9 respectively). This leads to the following expression for two coupled second
order oscillators as a function of A and ¢

d’ [ h d [ h h
@[w]“ﬁ“]“‘h]—o (13)
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The 2 x 2 matrices K and C are the ‘stiffness matrix’ and ‘damping matrix’ respectively.
Equation 13 can easily be arranged into a set of 4 simultaneous first order ordinary differential equa-
tions [34] which have matrix representation

h o 17[ A
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dt dt

where 0 is the 2 x 2 zero matrix and I is the 2 x 2 identity matrix.

The interaction of a reed and a resonant air column has been modelled by two coupled simple harmonic
oscillators in several previous studies, but only Weinreich [35] and Chang [33] have used a 4 x 4 matrix
representation.

II.B Linear stability analysis, flutter effect and destabilization of the lips
Threshold of instability, flutter effect

Solving problems of vibrations and stability almost inevitably involves solving eigenvalue problems [36].
Many systems with two coupled modes can be modelled by linearizing equations for the system about a
‘fixed point’ and then writing the linearized equations in the general form
dx

—~ =M 16
7 X (16)
where x, the vector transpose of (21, 29, 1, #2), describes the state of the system and M is the 4 x 4 matrix
of equation 15. The elements of K and C depend on the particular system under consideration.

Each of the four solutions to equation 16 takes the form

x = wet (17)

where w 1s a four dimensional vector and A is a complex valued constant. The system is unstable when the
real part of A is greater than zero. Substitution of equation 17 into equation 16 yields the eigenvalue problem

(M — Al)w =0 (18)



for the eigenvalues A; and eigenvectors w;, i = 1 to 4. The eigenvalues can be found by solving the equation
IM — AI| = 0. (19)

Figure 2 demonstrates how the eigenvalues can evolve as a function of a control parameter, a. The four
eigenvalues are in the form of two complex conjugate pairs but only the eigenvalues with positive imaginary
parts are displayed in the figure. Linear stability is preserved provided the real parts of all eigenvalues
remain negative but the system becomes unstable when the real part of one of the complex eigenvalue pairs
becomes positive. A bifurcation is said to occur when there is a marked qualitative change in the system
behaviour [36]. A Hopf bifurcation, which creates periodic oscillations out of equilibriums, occurs when one
pair of eigenvalues has purely imaginary parts, A = +jw;, while the other pair of eigenvalues has negative
real parts. Provided the eigenvalue pair does not cross the imaginary axis at the origin, an imaginary axis
crossing, induced by a change in «, is accompanied by a Hopf bifurcation, indicating loss of stability and
transition to a periodic regime. The threshold (angular) frequency of oscillation is the magnitude of the
imaginary axis intercept, wy, and the threshold value of the control parameter, ay, is the value of the control
parameter, a at the imaginary axis.

When the fixed point is destabilized and a permanent oscillatory regime is sustained the state variables
oscillate with a finite amplitude. The equations describing the system cannot be applied in their linearized
form to this situation; information about the permanent oscillatory regimes can only be extracted using the
equations in their original nonlinear form. However it is reasonable to assume that the theoretical threshold
frequency is approximately equal to the fundamental frequency of a very small amplitude quasi-sinusoidal
oscillation. This point will be discussed at the end of section II.

Holmes [34] carried out extensive stability and dynamical studies applied to a fourth order dynamical
system representing a coupled two mode model of a pipe conveying fluid. In Holmes’ paper, two different
generic kinds of stability are defined: flutter and divergence. Flutter is said to occur if the eigenvalues form
complex conjugate pairs and at least one complex conjugate pair has positive real parts; divergence occurs
if at least one of the eigenvalues is real and positive.

One established example of the flutter effect in flow-induced vibrations is the destabilization of an aircraft
wing. Some of the basic conclusions obtained from such aircraft wing studies are briefly reviewed here as
they can be applied to the buzzing lips problem. Destabilization of the wings is a result of the flutter effect
produced by aerodynamic coupling between two elastic modes; a bending mode and a torsional mode [37].
The flow coupling is modelled by a non-diagonal element in the ‘stiffness matrix’ which makes the matrix
unsymmetric. The introduction of the coupling term causes the natural angular frequencies of the two modes
(i.e. the magnitudes of the imaginary parts of the eigenvalues) to move towards each other as the air flow
speed (the control parameter) increases. This coalescence effect is illustrated in figure 3 for the analogous
case of two mechanical modes of the lips coupled by airflow. Rocard [37] pointed out that destabilization
does not require the intervention of ‘negative resistance’ to compensate for structural damping. In fact the
destabilization resulting from the coalescence of the mode frequencies can be aided by structural damping,
provided the damping remains small: in figure 3 a; is lower in the damped case than in the undamped case.

The dual mechanical mode approach has already been used to model the vocal folds [38] [39] [40] and,
in studies of snoring, has also been applied to the soft palate [41]. Subtle effects in the model can have
significant consequences on the flutter behaviour, defining which of the two mechanical modes is destabilized.
For example, in Auregan and Depollier’s [41] snoring model the first mechanical mode is destabilized if flow
induced damping is neglected but the second mechanical mode 1s destabilized if the flow induced damping
resulting from non-stationary flow around the soft palate is included.

Application to the one-mass model

In this section linear stability analysis is applied to the excitation of brass instruments using the simplified
model derived in section II.A. In this particular case the control parameter of the flow-induced vibrations
is Pp, and the “fixed point’ is H(Py,) = H(Py), UL(Pn) = UL(Pn) and P(P,,) = 0. Recall that, in order
to derive equation 15, the Bernoulli and volume flow equations were linearized about the fixed point. It is
interesting to note how the ‘damping’ and ‘stiffness’ matrices defined in equation 14 describe flow coupling.

The inclusion of flow coupling in the model introduces non-zero terms for the bottom left element of the



stiffness matrix, K, and the top right element of the damping matrix, C. The bottom right element of C is
also modified by the addition of a second flow induced damping term.

Linear stability analysis was performed on the simplified model by numerically solving the equations of
the model (equations 14 and 15) to find the eigenvalues. Each of the simulations presented in section IT makes
use of realistic parameters obtained from input impedance measurements on a trombone and dynamic and
static mechanical response measurements (described in section TIT.A). To simplify notation the parameter
1/pr = (1/up — 1/pp) is used. For a lip reed with dominant outward behaviour 1/puz > 0 but for a lip
reed with dominant inward behaviour 1/u;, < 0. For each case considered in this section Hy = 0.44mm,
b= 11 mm and the control parameter P,, was varied between 0 and 100 mbar.

The eigenvalue evolution as a function of P,, is displayed in figures 4 and 5 for several different sets of
mechanical and acoustical parameters. The two mechanical modes of the systems discussed in Section I1.B
can be characterised by (angular) resonance frequencies wy and ws and quality factors @1 and Q3. For such
systems, when « = 0, the eigenvalues are equal to —w1/(2Q1) & jw; and —ws/(2Q2) £ jws. However, for the
model considered in this section, as P, — 0 (and therefore U — 0) one eigenvalue pair = —wr, /(2Q1) tjwr
while the other two eigenvalues — —oo because the c¢s5 element — oo. The system studied here does
not exhibit the strong coalescence of eigenfrequencies, due to the ‘flutter effect’, which was illustrated in
section I1.B. However figures 4 and 5 do show eigenvalue crossings of the imaginary axis. The eigenvalue
crossing, the point at which the equilibrium position becomes linearly unstable, defines what is known as
the threshold of stability. The value of the mouth pressure at this point is known as the threshold pressure,
P;; the threshold frequency, f, is defined to be the imaginary axis intercept divided by 27. Figures 4 and 5
indicate that the threshold values are effected by the resonance frequencies and quality factors of the lips and
the resonator. They also demonstrate that either of the modes may be destabilized. If the acoustic resonance
frequency, fa, is significantly higher than the lip resonance frequency, fr, then the acoustical mode, whose
eigenvalue increases from -co, is destabilized; an example of this is shown by the highest curve in figure
5. If fa is only slightly greater than fr, or indeed if f4 < fr, then it is the the mechanical mode, whose
eigenvalue curve starts from one of the points represented by a black circle in figure 5, which is destabilized.

It was noted earlier that numerical evaluation of eigenvalues is not the only method which has been
applied to the study of the threshold of stability. Chang [33] carried out a systematic study of reed stability
using the Routh test; he produced stability maps in terms of threshold pressure and the ratio of resonance
frequencies. Several systematic studies of linear stability have also been carried out using the closed loop
transfer analogy [22] [24]; in this method the open loop transfer function condition defines the threshold
of stability. Wilson and Beavers [28] investigated the linear stability of a single reed coupled to cylindrical
tubes. Their threshold results were presented as a function of one parameter of the tube: its length. A
similar presentation is adopted here (in figure 6), where the representative parameter of the resonator, a
trombone, is the slide extension.

As there are several acoustical modes and several mechanical modes of the lips (see section TIT.A),
acoustical parameters are distinguished when necessary by the subscript ‘An’, where n is the acoustic mode
number to which the parameter belongs; similarly, lip parameters are given the subscript ‘Lm’, where m is
the mechanical mode number to which the parameter belongs.

The outward reed case of figure 6 was produced using mechanical parameters fr,1, @11 and pr1 deduced
from experimental results to be discussed in section III. The threshold behaviour was investigated by re-
peatedly calculating eigenvalue evolutions with the same mechanical parameters but with different acoustical
parameters. For each value of slide extension, x, the acoustical resonance frequencies, quality factors, and
magnitudes of input impedance peaks were obtained from a measured impedance curve for the 4th, 5th and
6th acoustical modes. The eigenvalue evolution was then calculated for each mode and used to deduce a
total of three pairs of threshold values (P, fi); however only the pair of threshold values with the lowest
value of P; was plotted in figure 6 as that represents the true threshold. This process was repeated for each
value of slide extension. The mechanical parameters were then changed to values corresponding to an inward
striking reed, and the entire process was repeated.

The P;(z) curve can be viewed as a prediction of the minimum mouth pressure required by a trombone
player to sustain a note with a fixed embouchure characterized by the parameters used in the model and the
slide extended to position z. The f;(z) curve represents the frequency of the note played with slide extension
x and mouth pressure P;.

The inwards striking reed threshold behaviour illustrated in figure 6 was produced using mechanical



parameters fro, @r2 and pr- deduced from experimental results to be discussed in section III. In the case of
the inward striking reed, f; is divided into two distinct regimes corresponding, respectively, to the 5th and 6th
acoustical modes of the resonator. When the slide extension is at 0 cm, f; is slightly less than the lip resonance
frequency, frs, and much lower than the resonance frequency of mode 5, fa5, the nearest acoustical mode.
As the slide is slowly extended both f45 and f; decrease, and the difference between fa5 and f; decreases.
After the slide has been extended by more than 30cm f; jumps up in frequency to slightly below frs. At
this point the oscillation is supported by acoustical mode 6 rather than mode 5. This pattern is repeated
for higher modes. Distinct regimes are also apparent from the threshold pressure measurements, although
the transitions between regimes are less clear cut than in the case of the frequency curves. The transitions
theoretically occur at the intersections of the threshold pressure curves of adjacent regimes. However, P, has
been calculated only at the discrete values of slide extension for which experimentally derived parameters
were available, so that the transition points can be deduced from figure 6 only by extrapolation of the
pressure curves for adjacent regimes.

In the case of the outward striking reed, f; is divided into three distinct regimes corresponding, respec-
tively to the 4th, 5th and 6th acoustical modes of the resonator. The threshold behaviour of the outward
striking reed 1s very different to that of the inward striking reed. For a particular regime in the outward strik-
ing reed case, as the slide is extended, f; moves from being slightly above an acoustical resonance frequency
(e.g. fas) to being slightly above the lip resonance frequency, fr1. Figure 6 confirms that with the outward
striking reed model the playing frequency must always lie above both the lip resonance frequency and the
acoustic resonance frequency; with the inward striking reed model the playing frequency must lie below both
the lip resonance frequency and the acoustic resonance frequency. In the outward striking reed case the
regimes are not so apparent in the threshold pressure curve because the curve does not vary smoothly. This
reflects the fact that the curve was calculated using experimentally measured acoustical parameters: as the
slide extension is varied the quality factor and shape of the acoustical resonances vary in addition to the
acoustic frequency. In section III figure 6 will be compared with playing tests conducted using the artificial
mouth.

It is also possible to fix the acoustical parameters and vary the lip parameters. In figure 7 the threshold
results are displayed as a function of the frequency and as a function of the lip quality factor. This is a
somewhat artificial representation of the lip behaviour as the resonance frequency and quality factor do not
vary independently of each other, or the other lip parameters (see section TIT). However this figure does
illustrate several important points. In figure 7 the lip resonance frequency and quality factor vary over a
range of values which were observed experimentally using the artificial lips. The other mechanical parameters
were held constant in both cases and are typical of the values measured using the artificial lips.

Figure Ta can be viewed as a prediction of the variation of threshold values as a trombone player tightens
the embouchure. The note which is produced depends on both the acoustical parameters of the lips and
the acoustical parameters of the instrument. With a lip frequency fr = 182 Hz the third acoustical mode of
the trombone is excited. In this case fr lies well above the acoustical resonance frequency, fas, so it is the
mechanical mode which is destabilized, resulting in a threshold frequency, f;, which is strongly related to fr,.
As fr increases f; continues to increase. The model predicts that the threshold pressure, P, also increases as
the oscillation receives less and less support from the acoustical resonance. Eventually the fourth acoustical
mode can be excited with a lower value of P, than would be required for the third mode. Since the resonance
frequency of the fourth mode, fa4, lies well above fr, it is the acoustical mode which is destabilized, so f; is
strongly related to fa4. As fr is increased further the lip resonance is better able to support the oscillation
and so P, decreases; f; moves away from fa4, towards fr, and it is the mechanical mode which is again
destabilized. Eventually P, increases with fr as the pattern begins to repeat for the higher mode. The
P:(fr) curve has a local minimum at fr = 228 Hz. The value of f; corresponding to this value of P; would
probably be perceived by the trombone player to be the frequency of ‘the most comfortable note’ around
mode f44. The ‘outward striking reed” model predicts that it is possible for the player to lip the note above
and below the most comfortable note, but not below the acoustical resonance frequency. According to this
model, when the player attempts to lip the note below the acoustical resonance frequency a frequency gap
is encountered before f; jumps down to a value well above the lower resonance frequency.

The relative values of the acoustic and lip quality factors determine how strongly the instrument influences
the frequency of the note produced. This is illustrated in figure 7b: as @Qr is increased from a low value, f;
continues to lie slightly above fa4 until a critical value of @, is reached when f; jumps down to lie slightly



above fr. The critical value of ()7, required for this transition depends on the acoustical parameters and
on the other mechanical parameters. When @ 4 is reduced the variation of P, with f4 is reduced. In this
case the ‘most comfortable note’ is not clearly defined, the instrument does not strongly influence f; and the
player is able to lip the notes over a large frequency range. That partially explains why the serpent is more
difficult to play in tune than the trombone since the quality factor of the serpent resonances are generally
lower than those of the trombone.

In section IIT measured threshold values will be compared with the theoretical threshold values predicted
using linear stability analysis. The measured threshold pressure will be assumed to be the static mouth
pressure required to obtain the permanent periodic regimes with as small an amplitude as is possible; the
measured threshold frequency will be assumed to be the fundamental acoustic frequency at that value of
mouth pressure. These assumptions are valid only if the characteristic variables of the permanent periodic
regime (static mouth pressure and fundamental frequency) tend towards the characteristic variables of the
linear threshold (threshold pressure and threshold frequency) as the amplitude of the permanent periodic
regime tends to zero. This is true in the case of a direct bifurcation but not in the case of an inverse bifurca-
tion. With an inverse bifurcation the threshold mouth pressure of the permanent periodic regime is actually
below the linear threshold (see for example the study by Dalmont et [42], applied to reed instruments). In
the present study it is necessary to assume that, in the case of the trombone, each bifurcation is a direct
bifurcation. The experiments did not provide any evidence of inverse bifurcations.

IIT EXPERIMENTAL RESULTS
ITII.A Experimental Methods

Input impedance measurements

The instrument studied was a King tenor trombone, made around 1960. In order to characterize the acoustical
response of the instrument its input impedance amplitude was measured as a function of frequency using
a standard technique [43]. Input impedance measurements were made at 1 Hz intervals over the frequency
range 50-1000Hz for each of 22 slide positions at 3 cm intervals corresponding to pitch intervals of around 30
cents. The first acoustical mode was not within the range of measurement, but the parameters of this mode
were not required because the first mode was not excited in the threshold measurements. The acoustical
parameters are listed in table A of the appendix.

From equation 10, the magnitude of the input impedance near the resonance frequency, wa, can be

approximated as
Z 4 :
|17 (w)| ~ (20)
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At each slide position the acoustical parameters;, Z4, Q4 and fa = wa /27 were estimated for modes 2 to 6
by numerically fitting equation 20 around local maxima, using an 11 point least squares fit routine. A typical
input impedance magnitude curve is displayed in figure 8 along with the least squares fit to the peaks. The
acoustical parameters used in the one mass model threshold simulations of section II.B were extracted from
such input impedance curves.

Artificial mouth

Both the mechanical response measurements and the threshold response measurements were performed using
an artificial mouth. The use of an artificial lip mechanism to replace the human player offers great advantages
in long term stability, ease of instrumentation and the ability to make small and reproducible adjustments to
the embouchure. The present study used an artificial mouth which is a development of the design introduced
by Gilbert and Petiot [44]. The artificial mouth consists of a hermetically sealed box encapsulating a pair of
water filled latex rubber lips (figure 9) which are clamped between the instrument mouthpiece and plastic
“teeth” (a rectangular piece of perspex with a 2cm diameter hole in the centre).

Gilbert and Petiot’s prototype design was modified to provide means of adjusting the volume of water in
the lips while the lips are in situ within the mouth cavity, thus achieving a greater control of the embouchure.



In the prototype design the teeth were in fixed relation with the mouth cavity and the principal embouchure
control mechanism adjusted the position of the mouthpiece so as to increase or decrease the pressure of the
mouthpiece against the lips. However in the artificial mouth of the present study the mouthpiece is in fixed
relation with the mouth cavity and the principal embouchure control mechanism moves the teeth. This new
arrangement has the advantage that only the rim of the mouthpiece need be contained within the artificial
mouth. Translational displacement of the “teeth” is affected by rotating a screw type control device at the
rear of the apparatus. In common with the prototype design, a secondary control mechanism can be used to
adjust the tension of the lips, but in this investigation the “teeth” position was the only control parameter
varied.

An air pump was employed to maintain the static mouth overpressure, which was measured by a piezoce-
ramic manometer. The alternating pressure in the mouth was measured using a small Knowles microphone
positioned immediately behind the teeth. For mechanical response measurements a loudspeaker, mounted
on the artificial mouth, was used to generate the alternating pressure in the mouth. Throughout the present
series of measurements the artificial mouth was used with a specially constructed mouthpiece with a re-
movable cup section. The mouthpiece, when complete, has a total internal volume of 12.7ml, a Helmholtz
resonance of 518 Hz and a quality factor of 7.1. The mouthpiece dimensions are indicated in figure 10.

Mechanical response measurements

The mechanical response of the lips to forcing at frequency w is defined as

Cw) = . (21)

Recall that h(w) is the complex amplitude of the alternating component of the distance between the lips
and py, (w) is the complex amplitude of the alternating component of pressure in the mouth. For mechanical
response measurements this pressure was produced by the loudspeaker. The lip parameters wy,, @7, and ur,
can all be deduced from mechanical response measurements [4].

The apparatus used for measuring the mechanical response is shown in figure 11. A laser beam was
expanded, passed through the lip aperture in the artificial mouth and brought to focus on a light sensitive
diode. Obviously it would be impossible to use this experimental arrangement with a human player. The
position of the upstream lens was adjusted until the beam diameter was slightly larger than the mean distance
between the lip, H, but smaller than the width of the lip channel, b. With this arrangement the diode voltage
was considered to be directly proportional to the distance between the lips, H. Neutral density filters were
inserted in the path of the laser beam to reduce the beam intensity, avoiding saturation of the diode. To
optimize the response measurements it was important to select carefully the attenuation of the neutral
density filters. The diode was calibrated by replacing the lips of the artificial mouth with a variable width
single slit and measuring the diode voltage as a function of slit width. A graph of diode voltage, Sq, versus
slit width was plotted; the best fit straight line through the data points had gradient m = 10.8 £ 0.2V/mm
and Sy axis intercept Sgo = 0.46 & 0.06V. The lip separation, H, can therefore be deduced from the diode
voltage, Sq using the relation

Sqs=mH + Sy (22)

However in the measurement of mechanical response it is the alternating component of lips displacement, A,
which is of interest. Inspection of equation 22 reveals

Sd oe
h= — (23)
where sq4 1s the alternating component of the diode signal.

The P.C. supplied a sine wave signal to the loudspeaker, enabling mechanical response measurements to
be made at 5 Hz intervals over the frequency range 100-600Hz. Each sinusoidal frequency burst was of 1s
duration so a complete sweep was obtained in 101s. The signals from the diode and the Knowles microphone
were passed through identical 60-900 Hz bandpass filters before they were sampled with a 4096 Hz sample
frequency. Identical filters were used to ensure the filtering process did not introduce an additional phase
difference between the two signals. Further filtering was applied in the digital signal processing: for each
of the 101 frequency bursts, both signals were windowed and Fast Fourier Transformed and the amplitude
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and phase of the Fourier series components at the excitation frequency, w, were extracted. The phase angle
of the mechanical response, £C(w), was calculated using the relation /C(w) = £Sq(w) — £Sp, (w), where
£S4(w) and £Sy, (w) are the phase angles of the diode and microphone signals, respectively. The amplitude
of the mechanical response, |C(w)|, was calculated using the relation |C'(w)| = k|Sq(w)|/(m|Sm (w)]), where
|Si(w)| and | Sy, (w)| are the amplitudes of the diode and microphone signals respectively, m is the gradient
of the diode calibration curve and k is the Knowles microphone calibration factor over the frequency range
considered. A typical mechanical response curve of the lips is shown in figure 12.

For mechanical response measurements the dynamics of the lip motion, near a resonance frequency, wy,
are described by equation 24 (recall 1/ur, = (1/up — 1/pB)).

ch wpdh . pm
_ 2h = 24
az T a T (24)

From this equation the following expression for the frequency response of the lips can easily be derived

- Qr 1
h(w) ~Jowr B
) Pmlw) oy 22eimed) (25)

A mechanical mode can be categorized as ‘inward striking’ or ‘outward striking’ purely from £C(wp),
the phase of the mechanical response evaluated at the resonance frequency. From equation 25 it is clear that
(C(wr) = —n/2 for dominant outward striking reed behaviour (pr > 0) but £C(wr) = 7/2 for dominant
inward striking reed behaviour (ur < 0). Elliot and Bowsher [2] and Adachi and Sato [16] used different
definitions of mechanical response; in their models the phase angle of the mechanical response is +m/2 for
an outward striking reed and —m/2 for an inward striking reed.

From equation 25 it is clear that near the resonance frequency, wr, the magnitude of the mechanical

response can be approximated as
1
lprl

Jreaes ()

— w% R 2w(w —wr) and wwy, & w% are made. For each mechanical response
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(26)

provided the substitutions w?

curve measured the lip parameters |uz,|, @1, and f;, = wyr /27 were estimated for each mode by numerically
fitting equation 26 around local maxima, using a 5 point least squares fit routine. This approach to estimating
the lip parameters is similar to that applied to the extraction of acoustic parameters from input impedance
magnitude curves. It was not possible to produce an accurate fit to strongly unsymmetrical or indistinct
peaks.

The mechanical response curve in figure 12 shows 3 distinct modes with resonance frequencies fr1 =
223 Hz, fro = 260Hz and fr3 = 393Hz. From the phase curve it is clear that the fr; mode has dominant
outward reed behaviour whereas modes frs and fr3 have dominant inward reed behaviour. There is no
evidence of a strong response near the Helmholtz resonance frequency of the mouthpiece (517 Hz).

Mechanical response measurements were carried out for a variety of embouchures with a large range
of sub-threshold static mouth pressure values. All response measurements were performed without the
trombone but with the mouthpiece, or only the mouthpiece rim, fitted to the artificial lips. Experiments
were carried out to investigate whether changing the Helmholtz resonance of the mouth had any effect on
the mechanical response of the lips.

Threshold measurements

The apparatus used to produce the threshold measurements is displayed in figure 13. To determine the
threshold value for a particular embouchure setting and particular position of the trombone slide, the mouth
pressure was slowly increased until a stable sound was obtained.

To remove any inconsistencies in the determination of the threshold, a miniature Knowles microphone
was positioned just inside the bell of the trombone; the experimental threshold pressure was defined as the
mouth pressure required to produce a microphone signal with a predefined (small) amplitude. The threshold
frequency was measured by a digital frequency meter connected to the microphone.
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Two different situations were investigated: (1) variation of threshold values as a function of slide extension,
with fixed embouchure, and (2) variation of threshold values as a function of embouchure, with slide in a fixed
position. Situation (1) corresponds to continuous variation of acoustical parameters with fixed mechanical
parameters while situation (2) corresponds to continuous variation of mechanical parameters with fixed
acoustical parameters. The embouchure was varied by rotating the teeth control in steps of 1/8 rotations
and was always moved from tightest position to slackest position.

ITII.B Comparison with theoretical results obtained from the linear stability
analysis

Static mechanical response measurements

The results of a brief investigation into the response of the lips to a purely static mouth pressure are
presented before the dynamic mechanical response measurements (described in section TT1.A) are discussed.
Measurements with purely static pressure were used to determine the lip parameters b and Hy, and to test
the assumptions regarding the pressure field surrounding the lips, which were made in section I1.A.

By setting all of the alternating components to zero in the Bernoulli and volume flow relations (equations 5
and 6 respectively) and combining these equations to eliminate Uy, the following relationship between static
mouth pressure and volume flow was obtained.

()%

A simple flow meter with a rotary float was inserted in the air supply pipe, between the valve and the artificial
mouth. With a fixed embouchure, the volume flow was increased from 6 L min~" in intervals of 2 L min~1;
for each value of volume flow the pressure in the mouth was read off from the manometer. Measurements

made with 3 different embouchures are displayed in figure 14. In each case the plot of \/ﬁ versus V is a
straight line graph, indicating that the variation of H with V is much less significant than the variation of
P, with V, i.e. H ~ Hg, where Hy is the distance between the lips when the alternating and static mouth
pressure is zero. Using equation 27, estimates of the lip opening area, bHj, were made from the gradients of
the straight line graphs of figure 14.

The electronic filters were removed from the experimental set-up, allowing the (constant) distance between
the lips to be deduced from the D.C. diode signal. Initial measurements, with P,, = 0, were carried out to
determine Hy for each of the three embouchures, ‘tight’, ‘medium’, and ‘slack’, considered above.

This experimental arrangement was also used to study the variation of H with P, (figure 15). Notice
that when the rest of the mouthpiece is added to the rim section the measured values of H are systematically
reduced by about 5%. The discrepancy is due to a slight misalignment of the laser beam which resulted
in the mouthpiece backbore blocking a small percentage of the beam and therefore slightly reducing the
intensity of light detected by the diode. Measurements were carried out with P,, > 0 (air flow through lips
out of mouth) and with P,, <0 (air flow through lips into mouth).

When P,, > 0 there is little variation of H with Pp,, confirming the earlier observation that H ~ H,.
Following the discussion of the pressure field surrounding the lips (section I1.A), with P,, > 0, it is expected
that the static overpressure in the lip channel, P;, should be equal to zero because the static overpressure
in the mouthpiece, P, is zero and there is no recovery of pressure. In this case there is no Bernoulli force,
H — Hy = Pp/(w?pup) and so a plot of H versus |Py| should give a straight line graph with positive
gradient. With P, < 0it is expected that P, = P,, and so the Fp and Fp forces both act to close the lips:
H—Hy = m(l/(w%up) + 1/(w? pp)). Since P,, < 0 a plot of H versus |P,,| should give a straight line
graph with negative gradient and the magnitude of the gradient should be greater than in the P,, > 0 case.

In figure 15, as expected, the gradient is clearly negative in the P,, < 0 case. However, for the P,, > 0 case
the gradient is actually slightly negative indicating there must be a significant Bernoulli force. Hirschberg [45]
has shown that the Bernoulli force may indeed act under these conditions: the inclusion of viscous effects in
the flow can lead to retarded flow separation within a diverging lip channel. As a result the velocity of the
jet is less than the velocity at the neck of the lip channel, and a pressure gradient, which acts to close the
lips, 1s created in the lip channel.
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Figure 16 shows that, in the P, < 0 case, the gradient of the H versus |Pp,| curves increase as the
embouchure is slackened. This demonstrates that the total ‘static stiffness’ (which is proportional to the
parallel combination of w%,up and w%,uB) decreases as the embouchure is slackened. In the Py, > 0 case
the two forces acting on the lips oppose each other; the measurements were insufficiently accurate to permit
measurments of ‘static stiffness’ in that situation.

Dynamic response measurements for 3 different embouchures, as a function of mouth pressure

A ‘typical’ mechanical response curve was presented in figure 12. There were three distinct modes: the
first mode, with resonance frequency fr1 = 223 Hz, displayed ‘outward striking’ behaviour but the higher
modes, with resonance frequencies fra = 260Hz and frs = 393Hz, both demonstrated ‘inward striking’
behaviour. In figure 17 mechanical response curves, measured with P, = 0, are displayed for the three
embouchures considered in Section III.B; each of the mechanical response measurements represented in
figure 17 was made with the mouthpiece cup removed, leaving only the rim. The resonance frequencies
increase as the embouchure is tightened. However in each case there i1s a strong resonance with outward
character around 180-230Hz and one with inward character around 330-400Hz. The 180-230Hz and 330-
400 Hz resonances correspond, respectively, to the fr; and frs resonances of the ‘typical’ case. In figure 17,
from the magnitude curve alone there is little evidence of a resonance corresponding to fr». However for the
‘medium’ and ‘tight’ embouchures the phase curve crosses the 7/2 line around 250-270Hz, providing some
evidence of fr5 resonances. There are also weaker resonances with ‘outward’ character around 150 Hz.

The above measurements were repeated with the entire mouthpiece in place (figure 18). Figures 17
and 18 are of similar shape but the scale of the magnitude curves are very different; the measurements with
the entire mouthpiece systematically underestimate the magnitude of the mechanical response due to the
slight misalignment of the laser beam, described in connection with the static measurements in Section I11.B.
Blocking some of the light near the edge of the beam does not greatly effect the D.C. component of the diode
signal but can greatly reduce the amplitude of the A.C. component, since H >> h for mechanical response
measurements.

Figure 19 demonstrates how the mechanical response evolves as the static mouth pressure is increased from
zero to a value just below the threshold of oscillation. As P,, increases the aerodynamic coupling increases
with the result that the quality factor of one or more mechanical modes increases, tending towards infinity.
Notice that the 250-270Hz resonance with ‘inward’ character, equivalent to fr5 of the ‘typical’ curve, can
only be clearly distinguished when P, # 0. The real and imaginary components of the eigenvalues are related
to the quality factor and natural frequencies of the modes: Re[A]/27 = —f1/(2Q1) and Im[A]/27 = fL.
It is interesting to plot the measured evolution of (—fr/(2QL), fi) as a function of Py, (figure 20) as this
representation is analogous to the theoretical complex plane eigenvalue evolution (for example figure 4).
With this representation, as P, increases the horizontal component moves towards the vertical axis.

It is interesting to compare the mechanical response measurements presented here with the preliminary
measurements of Gilbert et al [4], who used an artificial mouth of similar design but fitted with only one lip.
In that study a mechanical mode with ‘outward’ behaviour and natural resonance frequency of approximately
200 Hz was measured, but no other modes were detected above 100 Hz. The 200 Hz mode corresponds to the
mode labelled f7,1 in the present study. Gilbert et al pointed out that they were able to measure modes with
‘outward’ behaviour but not modes with ‘inward’ behaviour (such as the frs and frz modes in the present
study), since the displacement of the lip was measured using a laser vibrometer which was sensitive only to
longitudinal movement of the lip.

Figure 21 represents the mechanical response of the three embouchures with P, selected to be slightly
below the threshold of oscillation in each case. There is no evidence of destabilization of the fr; mode,
with outward character. Both modes f15 and fr3 appear to be heading towards destabilization. The mouth
pressure was then further increased until one of the modes was destabilized, resulting in self sustained
oscillation. With the ‘tight” embouchure the threshold playing frequency was very close to the fr3 resonance,
indicating that it was the frs resonance which was destabilized; with the ‘medium’ and ‘slack’ embouchures
the frs resonance appeared to be destabilized. As the embouchure is varied from the ‘slack’ position to
the ‘tight’ position there is a bifurcation of the periodic regime associated with frs to the periodic regime
associated with frs. This unexpected behaviour supports the mouthpiece playing frequency measurements
of Gilbert et al [4] (figure 5); they observed two discrete oscillation regimes, one at 250 Hz and one at 400 Hz.
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The lips of the artificial mouth did not buzz when the mouthpiece cup was removed, leaving only the
rim. However, to investigate whether there was any evidence of a destabilizing effect even with the cup
removed, mechanical response measurements were performed for increasing values of P,,. In figure 22
the quality factor of the second mode (250Hz) increases with P, indicating the mode is heading towards
destabilization. There is no significant increase in the quality factor of the first mode, indicating the first
mode is substantially stable. With the acoustical coupling to the mouthpiece now removed, the third mode
also appears stable. However its resonance frequency does increase as P, increases, which suggests the mode
could still be sensitive to airflow coupling. It 1s not clear if the destabilizing effect on the second mode is due
to aerodynamic coupling to another mechanical mode or to aerodynamic coupling between the lips and the
acoustical resonator formed by the mouth cavity [46]. It is worth noting that any possibility of flow control
by the mouthpiece throat is certainly absent in the measurements with rim only.

Mouth cavity effect

Experiments were carried out to determine the influence of the mouth cavity on the mechanical response
of the artificial lips. The mechanical response of the lips was measured with the mouth cavity in its usual
state. The mouth cavity was then partially filled with solid material, reducing the volume of the cavity
by approximately 30%, and the mechanical response of the lips was measured a second time. Finally, the
solid material was removed and the mechanical response was measured again, with the original mouth cavity
volume. Throughout the measurements the embouchure was held constant. Measurements were carried out
firstly with the mouthpiece cup removed and P,, = 0 (figure 23), and secondly with the entire mouthpiece
fitted and Py, just below the threshold of oscillation (figure 24). There is no clear evidence that the mechanical
response of the lips is significantly affected by the modification to the mouth cavity.

In the literature, the ability of brass players to ‘buzz’ their lips without a mouthpiece is sometimes
explained by the mouth cavity effect: destabilization of the lips occurs due to aerodynamic coupling between
the lips and the acoustical resonator formed by the mouth cavity [46]. The results of the present experiment
do not support this hypothesis. However, even if the mouth cavity is not crucial for destabilization of the
lips 1t could still have a significant effect on other aspects of brass instrument acoustics. For example, in the
case of the didgeridoo, the player varies the mouth cavity to alter the timbre of the sound.

Mechanical response evolution with embouchure

The mechanical response measurements presented above were performed using only three different em-
bouchures. The contour map (figure 25) indicates how the mechanical response evolves with embouchure as
the embouchure varies over twenty different positions. The contour shading indicates the decibel mechanical
response (10log;,[|C(w)|/Co]) of a particular embouchure (indicated on vertical axis) to forcing at frequency
f (indicated on horizontal axis). The lighter the shading of the map, the stronger the mechanical response.
The same reference level, Cy, was used for each embouchure; Cy was selected to be the maximum value of
mechanical response magnitude. The measurements were performed with the mouthpiece cup removed and
with P, = 0.

The contour map was produced using measurements performed several weeks after the measurements
presented in previous sections, but examination of the resonance frequencies suggest that the early mea-
surements with embouchures ‘slack’, ‘medium’ and ‘tight’ have similar mechanical response to contour map
measurements with the embouchure positioned at, respectively, 3, 7 and 11 1/8 rotations from the slackest
position. The new measurements have similar form to the measurements presented in previous sections but
the magnitude of the new response measurements is systematically lower. The range of parameter values
extracted from the contour map response measurements are presented in table 2 and a complete list of the
parameter values are displayed in table B of the appendix. These parameters were used to select the range
of fr, and @ for figure 7 and to select parameter values for additional threshold simulation measurements
presented in section section III.C.

The 180-220 Hz mode (previously labeled fr1) and the 300-400 Hz mode (fr3) can be clearly distinguished
on the contour map, but as P,, = 0 there is no clear evidence of the intermediate fr» mode. For slacker
embouchures an additional mode at around 160Hz is also apparent. As the embouchure is tightened fr
and fr3 increase in frequency.
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Lip parameter values

The measuremnets of mechanical response of the artificial lips presented in sections ITI.B-III.B allow an
estimation of the lip parameters required to run the one mass oscillation threshold simulations developed in
section II. The output from the simulations will be presented in section III.C.

The measured lip parameters for the embouchures labeled ‘slack’, ‘medium’ and ‘tight’ are presented in
table 1. Estimates for the ranges of the lip parameters are displayed in table 2, alongside values used by
other authors. The ‘present study’ estimates of b and H; are extrapolations of the b and Hy values listed in
table 1. The ranges of fr,1, Qr1 and 1/pur1 in table 2 were estimated from the values in table 1 and from
the additional measurements used to generate the contour map (figure 25). The ranges of fr2, @r2, and
1/pr2, in table 2, were estimated from the values of table 1 and from mechanical response measurements
performed with identical embouchure positions to the contour map measurements but with P,, =3 mbar. In
table 2 only the parameter values of modes fr1 (‘outward striking’) and frs (‘inward striking’) are displayed
because, for the acoustic resonators considered in section III.C, initial runs of the simulation indicated that
mode fr3 could only be destabilized with unrealistically high values of P,,.

The parameter estimates in the ‘present study’, Elliot and Bowsher [2] and Saneyoshi et al [24] were
extracted from measurements with either a trombone or a euphonium mouthpiece. All of the ‘present study’
parameters were obtained by direct measurement, using the artificial lip reed mechanism. Not all of the
parameters used by Saneyoshi et al or Elliot and Bowsher were measured directly: although some parameters
were deduced from measurements with human players others were estimated using inverse calculations which
assume the correctness of the one mass model.

The other authors considered a larger range of lip resonance frequencies than in the present study; the
ranges of frequency dependent parameters quoted in table 2 are in all cases those appropriate to the range
of fr,1 and fr5 observed in the present study. Inevitably the various authors have used different notation.
Table 3 indicates the relationship between the parameters used in the various studies; individual papers
should be consulted for explanation of the notation.

From table 2 it is obvious that there is a considerable variety in the range of parameter values selected
by the various authors. In particular the lip quality factor used by Elliot and Bowsher appears exceptionally
low compared to the Saneyoshi et al and ‘present study’ estimates. Elliot and Bowsher based their estimate
of lip quality factor not on measurements of the lips but on measurements by Ishizaka et al. [47] of the
mechanical response of human neck and cheek flesh. There appears to be no experimental justification for
the choice of lip quality factor by Saneyoshi et al. The ratios of effective area to effective mass (1/pz1 and
1/pt12) measured in the present study are slightly lower than the values adopted by Saneyoshi et al., and
much lower than the values used by Elliot and Bowsher.

III.C Threshold behaviour of buzzing lips coupled to a trombone

In this section simulated threshold behaviour is compared with the threshold behaviour measured using a
trombone coupled to the artificial lips.

Fixed embouchure, variable slide length

Immediately before conducting each set of threshold measurements, the mechanical response of each em-
bouchure was measured with P,, = 0 and the parameters f11, Qr1 and 1/pr1 were extracted. The parameters
fr2, Qre and 1/puzs were extracted from the P,, = 3mbar measurements. The b and Hy values were esti-
mated from the values in table 1 and from extrapolations of these values. The acoustic parameters extracted
from input impedance measurements are listed in table A of the appendix.

Figure 26 demonstrates how the threshold values vary as the trombone slide is extended. The simulated
behaviour was presented earlier in this paper (as figure 6), and was discussed in some detail. Tt has been
reproduced as figure 26b to allow direct comparison with the equivalent threshold measurements (figure 26a).
The measured range of threshold pressure is similar to the range predicted by the inward striking model.
The outward striking model predicts much higher threshold pressure values, but they are still within a
range which a human player could easily produce. Both measurements and simulation demonstrate distinct
regimes corresponding to the 4th, 5th and 6th modes of the acoustical resonator. The regimes are apparent
in the variation of threshold frequency and, to a lesser extent, in the variation of threshold pressure. The
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experimental measurements of slide position at the transitions between regimes do not coincide with the
regime transition slide positions predicted by either the inward striking or outward striking models. Figure 27
examines how the threshold behaviour is effected by a change of embouchure and demonstrates that the
inward striking model does capture the qualitative threshold behaviour: both measurements and simulation
show that tightening the embouchure increases threshold pressures and frequencies and shortens the slide
extension required for the transition from acoustical mode 5 to mode 6.

With a fixed embouchure, it is found that for some slide positions the threshold frequency is above the
measured acoustic resonance frequency, for others the situation is reversed. This agrees with earlier playing
frequency measurements on cup mouthpiece instruments which indicate the playing frequency may be either
above or below the instrument resonance frequency, depending on playing conditions [31] [48] [4]. Simple
one mass models cannot explain this behaviour: with such models the threshold frequency is always below
the acoustic resonance frequency (inward striking reed) or always above the acoustic resonance frequency
(outward striking reed). A two mass model coupling the mode with outward striking characteristics, fr1, to
the mode with inward striking characteristics, f7, would allow the threshold frequency to lie above or below
the acoustical resonance frequency, depending on the acoustic resonator conditions. Future work will include
the implementation of threshold value simulations based on the two-mass model. Two-mass models have
already been considered by Adachi and Sato [16]. Several additional terms, which have also been considered
in previous studies, such as non-stationary flow terms [2] [24] or terms to model the effect of the mouth
cavity and vocal tract [2], could also be added to the current model. Additional terms can easily be added
to the one-mass model; the difficulty is in selecting realistic values for the additional parameters.

Fixed slide length, variable embouchure

With the trombone slide fixed in the unextended position, threshold measurements were performed as a
function of embouchure position. The embouchure was set in turn to each of the twenty positions used to
produce the contour plot (figure 25); the embouchure was varied from tightest position to slackest position.
The simulations were run using the lip parameters listed in table B of the appendix.

In figure 7 the threshold values vary only as a function of lip resonance frequency, fr,. Figure 28b is similar
to figure 7a, but offers a more realistic representation since the parameters fr,, @y, and 1/puy,, extracted from
experimental measurements, all vary with embouchure. In figure 7a the position of the local minimum in
the threshold pressure curve clearly defines the ‘most comfortable note’. The experimental measurements
(figure 28a) indicate that the threshold pressure varies slowly with embouchure so the ‘most comfortable note’
is not so well defined. The outward striking reed model of figure 28b also shows a wide range of embouchures
(0-9) when the threshold pressure does not vary significantly with pressure. However the inward striking
model suggests that, around fr1, the ‘most comfortable note’ is produced with an embouchure 2/8 rotations
from slackest position and around fs4 the ‘most comfortable note” will be produced with an embouchure
slightly tighter than the tightest embouchure of figure 28b.

The experimental measurements indicate that, for the tightest embouchures, the threshold frequency lies
slightly above frs, the resonance frequency of the lip mode with inward striking character. This effect cannot
be explained by the simple one mass model.

IV. CONCLUSIONS

In this study a simplified model of the self-sustained oscillations of brass instruments was developed, using
a one—mass model of the lips. Following Elliot and Bowsher [2], the lips and the acoustical resonator were
each represented as simple harmonic oscillators. After making several assumptions about the pressure field
around the lips, the air flow through the lips, which couples the two oscillators, was modelled. The basic
equations describing the system were linearized about the equilibrium position of the lips and then arranged
into four simultaneous first order differential equations.

The theory of linear stability analysis was discussed in a general context, then applied to the specific
case of the one-mass lip reed model. The complex plane eigenvalue evolution was briefly studied, but
particular emphasis was placed on investigating the variation of threshold values with changes in acoustical
and mechanical parameters.
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The measurements presented in section III demonstrate that the mechanical response of the artificial lip
mechanism is complicated and involves three strong mechanical modes, one mode with outward character and
two modes with inward character. Mechanical response measurements as a function of static mouth pressure
suggest that the mouthpiece ‘buzz’ can result from destabilization of the two modes with inward character
(modes 2 and 3). However oscillation threshold measurements demonstrate that the mode with outward
character (mode 1) is also important when the lips are coupled to a trombone. There is no experimental
evidence that the acoustical resonance of the mouth cavity has a significant influence on the stability of the
lips.

The static and dynamic mechanical response measurements presented in this paper provide the first
‘direct’ measurement of lip parameters. The lip quality factors measured in this study are higher than the
values which other authors have used in their simulations, while the measured ratio of effective area to
effective mass is consistently lower than the values previously adopted.

The measured threshold values were compared with the theoretical threshold values predicted using
linear stability analysis applied to the one-mass model. The experimental threshold pressure was considered
to be the static mouth pressure required to sustain a permanent periodic regime with a predetermined
small amplitude. This is a reasonable assumption provided the bifurcation is a direct bifurcation. There was
found to be good qualitative agreement between the measured and simulated oscillation threshold behaviour.
The discrepancies between experiment and simulation are no greater than the discrepancies encountered by
Wilson and Beavers in their investigation of single reed instruments [28]. However in most instances the
simulations presented in this paper overestimate the threshold pressure and fail to accurately predict the
slide/embouchure positions at the transition between different regimes. More importantly, the measurements
showed that, with a fixed embouchure, for some slide positions the threshold frequency is above the measured
acoustic resonance frequency; for other slide positions the situation is reversed. The one-mass model cannot
explain this behaviour. The existence of two different mouthpiece buzzing regimes is also inconsistent with
the one-mass model [4].

Initial simulations coupling a two-mass lip model to a one-mass representation of the acoustical resonator
have failed to demonstrate the strong coalescence of the mechanical modes which has been observed in stud-
ies of the soft palate [41]. However the mechanical response measurements presented in this paper suggest
the possibility of coupling between the 1st and 2nd mechanical modes when the static mouth pressure is
just below the threshold of oscillation. Future work will include the implementation of threshold simulations
based on the two-mass model, using the lip parameters presented in the current study.
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Figure 1: (a) Two continuous flexible lips. (b) One-mass model of lip vibration.
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Figure 2: Complex plane representation of eigenvalue evolution as a function of control parameter a (adapted
from Bolotin [49]). The dotted lines illustrate an example of the eigenvalues for a system of two coupled
oscillators without damping, while the solid lines illustrate the same system with damping. Filled circles
represent eigenvalues evaluated at o = 0; unfilled circles represent Hopf bifurcations at a = ax.
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Figure 3: Imaginary and real parts of eigenvalues as a function of a control parameter, o, which is character-
istic of the flow. This figure demonstrates coalescence of eigenfrequencies (imaginary parts of eigenvalues),
in the undamped case, because of the flow coupling effect. The introduction of structural damping lowers
the threshold value of a.
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Figure 4: Complex plane representation of eigenvalue evolution as a function of P, for four different sets of
mechanical parameters. In each case 1/ur, = 0.09 kag_l, fa=230Hz, Q4 =24, and 74 =20 M Q.
Here and elsewhere 1Q = 1kgm™*s~'.
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Figure 5: Complex plane representation of eigenvalue evolution as a function of P, for four different sets of
acoustical parameters. In each case Z4 = 20MQ, fr, = 205Hz, Q1. = 9, and 1/pr = 0.09 m?kg 1.
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Figure 6: Trombone threshold values simulated using the inward striking model and the outward striking
model. The embouchure was held constant as the slide extension was varied. Threshold frequencies are
compared with resonance frequencies of the 4th, 5th and 6th acoustical modes of the trombone. Acoustical
parameters (listed in table A of the Appendix) were extracted from input impedance measurements. Lip
parameters used: fr1 = 224Hz, Q1 = 9.0, 1/ur1 = 0.09m?*kg™'; fro = 261 Hz, Q12 = 14.5, 1/purs =
—0.11m%*kg~ 1.

25



260 T T T T T T T T

200 [ § e

f./Hz
N
N
o
T
N
N
-\
A
|

N

o

o
T
\
|

180 [ // fAS T

160 L | L | L | L |

50 T T T T T T T T

40 - .

30 - \-._,/

20 .

P,/ mbar

10 - n

| L | L | L |

0 L L
160 180 200 220 240 260
f /Hz

f./Hz

/ mbar

P

260

240

N N
o N
o O

180

160

50
40
30

= 20

10

Figure 7: Trombone threshold values simulated using the outward striking model. The slide remained
unextended while (a) the natural resonance frequency of the lip was increased and (b) lip quality factor
was increased. Parameters used to obtain figures (a) and (b): fas = 170Hz, Qa3 = 18, Zaz = 20 MQ;
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Figure 8: Measured input impedance magnitude of trombone with slide unextended (solid line) and least
squares fit to modes 2 to 6 (dashed line).

Figure 9: Photograph of artificial mouth, looking at the lips through the teeth.
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Figure 10: Cross-sectional view of two-piece mouthpiece showing the cup section remove from the rim. The
numbers in the figure indicate dimensions in mm.
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Figure 11: Apparatus for measuring mechanical response of artificial lip reed.
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Figure 12: Measured mechanical response of artificial lip reed with tight embouchure (entire mouthpiece
fitted). A static mouth pressure of 18.3 mbar was applied.
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Figure 13: Apparatus for measuring threshold pressure and frequency.
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Figure 15: Measured variation of H with P, for tightest embouchure. No periodic forcing of lips or self-
excitation.

31



0.7 \ \ ‘ \

4 tightest embouchure
: = medium embouchure
e slackest embouchure

H/ mm

0.2 ‘ ‘ ‘ ‘

0 0 20 30
[P..| / mbar

Figure 16: Measured variation of H with P, for 3 different embouchures. In each case measurements were
carried out with the cup removed and with P, < 0.
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Figure 17: Mechanical response of the three embouchures with P, = 0 (mouthpiece cup removed).
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Figure 18: Mechanical response of the three embouchures with P, = 0 (entire mouthpiece fitted).
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Figure 19: Mechanical response of tightest embouchure with different values of P, (entire mouthpiece fitted).
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Figure 21: Mechanical response of the three embouchures with P, slightly below oscillation threshold (entire
mouthpiece fitted).
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Figure 24: Mechanical response measurements with different mouth cavity volumes. Measurements carried
out with cup removed and P,, = 18.4mbar.
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Figure 25: Contour map of mechanical response magnitude as a function of embouchure and frequency.
Measurements performed with mouthpiece cup removed and P,, = 0.
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Figure 26: Variation of threshold valuves with slide position (fixed embouchure). (a) Measured threshold
behaviour. (b) Threshold behaviour simulated using the inward and outward one mass models with lip

parameters estimated from mechanical response measurements (see table B). Lip parameters used: fr1 =
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Figure 27: Variation of threshold values with slide position for two different embouchures. The horizontal
lines indicate the lip resonance frequencies for embouchure A (dashed lines) and embouchure B (solid lines).
(a) Measured threshold behaviour. (b) Threshold behaviour simulated using the inward one mass model.
Embouchure A parameters: fro, = 261Hz, Qro = 14.5, 1/prs = —0.11m%kg~'. Embouchure B parameters:
fr2=2795Hz, Qro = 10.5, 1/prs = —0.08 m?kg~1!.
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Figure 28: Variation of threshold values with embouchure, the trombone slide remains unextended. (a)
Measured threshold behaviour. (b) Threshold behaviour simulated using the inward and outward one mass
models with lip parameters estimated from mechanical response measurements (see table B of the appendix).
Acoustical parameters: f43 = 170.5Hz, Za3 = 21 MQ, Qa3 = 19; faa = 229.5Hz, Z44 = 20MQ, Q 44 = 24;
fas = 288.5Hz, Za5 = 22MQ, Qa5 = 31.5.
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Tables

| || slack | medium | tight |

b/ mm 15 12 11
Hy / mm 0.63 | 0.53 0.44
fr1 / Hz 189 203.5 222
Q11 10.5 6 9
1/pr1 / m*kg=t || 0.07 0.11 0.09
fr2 / Hz 234 resonance | 259.5
QL2 11 not clearly | 10.5
1/pr2 / m*kg=! || —0.13 | resolved —0.11
frs / Hz 338.5 | 362 394
Qra 8 4 13
/prs / m%kg=" || —0.30 | —0.26 —0.14

Table 1: Parameters for embouchures ‘slack’, ‘medium’ and ‘tight’ estimated from static and dynamic
mechanical response measurements.
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present Elliot & Saneyoshi
study Bowsher [2] | et al [24]

b/ mm 9-18 13 8.8 -10.5

Hy / mm 0.25-0.70 0.30 - 0.45 0.07-0.17

fr1 / Hz 182 — 237 N.A. N.A.

Qr1 6—-12 0.5 N.A.

1/pr1 / m%kg=! || 0.04-0.11 0.3-0.6 N.A.

fro/ Hz 225 — 278 N.A. N.A.

Q1o 8- 16 0.5 5

1/prs / m*kg=t || —0.05- -0.13 | —=0.5 - —0.7 | —0.19 - —0.27

Table 2: Comparison of parameter ranges measured in present study with parameter ranges used in previous
studies. Both of the previous studies [2] [24] considered a much larger range of lip resonance frequencies than
in the present study, so fr1 and fr2 have been deemed not applicable (N.A.). Also, Saneyoshi et al [24] did
not consider the outward striking reed case so fr1, @r1 and 1/ur; are not applicable (N.A.).

present Elliot & Saneyoshi
study | Bowsher [2] | et al [24]
b l b
Hy X d
L 4 N.A.
KL m
1 _ Ay _ A
fro m m’

Table 3: Relationship between parameters in present study and parameters used in previous studies [2] [24].
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Appendix: Tables of measured
acoustical and mechanical parameters
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slide
extension || faa | Zaa | Qaa || fas | Zas | Qas || fas | Zas | Qas
/em || /Hz | /MQ /Hz | /MQ /Hz | /MQ

0 || 229.5 20 24.0 || 288.5 22 31 343.0 19 29.5
31| 225.0 18 26.5 || 284.5 20 2 335.0 17 23.5
6 || 220.5 20 26.5 || 279.0 21 25.0 || 329.0 20 29.0
9 1| 216.0 20 26.5 || 273.5 21 25.0 || 322.5 19 26.0
12 || 212.0 19 26.0 || 268.0 21 25.0 || 317.0 20 33.0
15 || 208.0 20 25.0 || 263.0 21 28.0 || 311.0 20 33.5
18 || 205.0 19 23.5 || 257.5 19 24.0 || 306.5 18 33.5
21 || 201.5 20 24.0 || 253.0 20 24.5 || 302.0 19 26.5
24 || 197.0 21 25.0 || 248.0 21 27.0 || 297.0 20 26.5
27 || 194.0 20 25.0 || 243.0 19 25.5 || 292.0 20 28.5
30 [ 190.5 19 23.5 || 239.0 18 26.5 || 288.5 21 33.5
33 || 187.5 13 24.0 || 234.5 14 27.5 || 284.5 15 27.5
36 || 184.0 14 22.5 || 230.5 14 29.5 || 280.5 15 28.0
39 || 180.5 14 21.5 || 226.5 15 32.0 || 276.0 15 28.5
42 || 177.5 15 25.5 || 222.5 13 28.0 || 271.0 15 28.5
45 || 174.5 15 22.0 || 219.5 13 28.0 || 267.0 15 27.5
48 || 171.0 15 22.0 || 215.5 13 31.0 || 262.0 16 26.5
51 || 168.5 15 22.5 || 213.0 12 24.5 || 257.5 15 28.0
54 || 165.5 16 23.0 || 209.5 13 27.5 || 253.5 15 27.5
57 || 163.0 15 20.5 || 206.5 12 27.5 || 249.5 15 28.0
60 || 160.5 15 23.0 || 204.0 12 28.5 || 245.5 14 27.5
63 || 158.0 15 22.0 || 201.0 12 27.5 || 241.5 14 27.0

ot

[0%%)
ot

Table A: Acoustical parameters of modes 4, 5 and 6, extracted from input impedance measurements of
trombone. Note that 1Q = 1kgm™*s~'. These parameters were used to produce figures 6, 26b and 27b.
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embouchure Hy b fr1 | Qi 1/pra fr2 | Qr2 1/prs
/mm | /mm /Hz /mZkg~! /Hz /m?kg=1

0 0.70 18 182.0 9.5 0.044 || 223.0 9.2 —0.065
1 0.68 17 || 182.0 | 10.0 0.041 225.5 | 10.5 —-0.059
2 0.65 16 186.0 | 10.5 0.042 || 228.0 9.8 —0.066
3 0.63 15 || 189.5 | 10.5 0.042 230.5 8.0 —0.084
4 0.61 14 192.5 | 11.5 0.039 || 234.2 | 10.2 —0.069
H 0.58 13 || 196.5 | 10.0 0.044 238.0 12.5 —0.058
6 0.56 13 || 202.0 8.5 0.053 || 241.2 | 11.8 —0.065
7 0.53 12 || 204.5 7.0 0.063 2445 | 11.0 -0.073
8 0.51 12 || 209.5 7.5 0.064 || 247.0 | 10.8 —-0.073
91 0.48 12 || 213.0 8.5 0.059 249.5 | 10.5 -0.074
10 0.46 11 216.0 9.5 0.056 || 252.8 | 13.2 —0.059
11 0.44 11 || 219.0 9.5 0.059 256.0 | 16.0 —-0.048
12 0.41 11 221.5 | 10.5 0.056 || 259.0 | 15.8 —0.049
13 0.39 10 || 222.0 | 11.0 0.057 262.0 15.5 —0.050
14 0.37 10 || 225.0 | 12.0 0.056 || 264.8 | 14.8 —0.052
15 0.34 10 || 227.5 | 12.0 0.059 267.5 14.0 —0.053
16 0.32 9 || 2295 | 11.5 0.064 || 270.5 | 13.0 —0.059
17 || 0.30 9 | 232.0 | 11.5 0.067 273.5 | 12.0 -0.067
18 0.27 9 || 234.0 | 11.5 0.070 || 275.8 | 12.2 —0.068
19 || 0.25 9 || 237.0 | 12.0 0.072 278.0 | 12.5 -0.069

Table B: Lip parameters extracted from mechanical response measurements. Numbers in bold font indicate
parameters which were estimated from extrapolating or interpolating neighbouring measured parameter
values (standard font). The lip parameters in this table were used to produce figure 28b.
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