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Non-linear characteristics of single reed instruments : quasi-static volume flow and reed 
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Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France 
 
 
 
1. Introduction 

Sound production in reed wind instruments is the result of self-sustained oscillations. 

A mechanical oscillator, the reed, acts as a valve which modulates the air flow entering into 

the mouthpiece. The destabilisation of the mechanical element is the result of a complex 

aeroelastic coupling between the reed, the air flow into the instrument driven by the mouth 

pressure of the musician, and the resonant acoustic field in the instrument itself. Following 

McIntyre et al. (1983), wind instruments can be described in terms of lumped model formed 

by a closed feedback loop operating as a self-sustained oscillator. In their model the loop is 

made up with two elements, a lumped non-linear element  - the mouthpiece - and a linear 

passive element - the resonator, that is the instrument itself. The modelling and the 

measurement of  the resonator has been extensively studied since Bouasse (1929) by many 

authors (see for example references in Nederveen, 1998, or Fletcher and Rossing, 1998). On 

the contrary, the non-linear element has only recently been the subject of thorough studies 

(see for example the review given by Hirschberg, 1995) and the knowledge of this elements 

action is considerably less than that of the resonator. The non-linear element can be defined 

by a relationship between the pressure difference across the reed  and the volume flow at the 

inlet of the pipe of the instrument. Assuming a quasi-static response of the reed which 

neglects inertia and damping, the volume flow is thus an explicit function of the pressure 

difference. This function is called the characteristics of the reed. Most authors converge on an 

elementary model of the characteristic presented in section 2.1 (Wilson and Beavers, 1974 ; 

Fletcher, 1979 ; Fletcher 1993 ; Saneyoshi et al., 1987 ; Kergomard 1995 ; Kergomard et al. 
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2000 ; Ollivier et al. 2002). It is based on a quasi-stationary model of the air flow through the 

mouthpiece, and on a mechanical model of the reed discussed respectively in sections 2.2 and 

2.3. The aim of the present paper is to obtain experimental data for the non-linear element in 

order to check the validity of the elementary model and to find realistic values of the 

parameters useful for physical modelling synthesis. The data may also give information 

helpful for the understanding of the physical phenomena involved.  

In the present paper, a method for measuring the characteristics is proposed, the 

measurements being done in quasi-stationary conditions. The dynamic aspects related to the 

reed are not considered in the present paper. These aspects are certainly not negligible with 

regard to the spectrum of the instrument (Thomson, 1979). However when the playing 

frequency is small compared to the reed resonance frequency, it has been shown that these 

aspects are not essential from the strict point of view of the auto-oscillation (Wilson and 

Beavers, 1974 ; Dalmont et al., 1995). For the experiments an artificial blowing machine is 

used (section 3.1). To perform the volume flux measurements, a constriction (diaphragm) is 

used as a pressure reducing element for a differential pressure flowmeter (section 3.2). The 

diaphragm takes the place of the resonator. The major advantage of such a device is that the 

diaphragm also plays the role of a non-linear absorber (Ingard and Ising, 1967) which thwarts 

a possible standing wave in the mouthpiece. Oscillations of the reed are thus in most cases 

impeded and avoided if the diaphragm is well chosen. This makes it possible the measurement 

of the complete characteristics of real clarinet mouthpieces. The choice and dimensions of the 

diaphragm which depends on the reed properties are discussed section 3.3. The diaphragm 

does not induce additional sensors for the pressure sensors used other than those commonly 

present in an artificial mouth. In addition to the flow measurement, the opening of the reed is 

measured optically. Then the measurements of the reed opening and of the pressure difference 

across the reed gives information on the evolution of the reed stiffness which is important for 
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the understanding of the quasi-static reed mechanics. For obtaining relevant results, an 

accurate calibration of the sensors has to be done. Thus a specific experimental procedure has 

been developed which is discussed in section 3.5.  Some typical experimental results are 

presented section 4.1. Section 4.2 and 4.3 are focused on two aspects of the mechanics of the 

reed, viscoelasticity and stiffness respectively. Section 4.4 is dedicated to the flow aspects. 

Finally in section 4.5 typical values of the parameters of the model are summarized and the 

accuracy of their determination is discussed. 

 

2. State of art 

 

2.1. Elementary model 

Backus (1963) has presented the first measurements of the characteristics of a single 

reed instrument under steady flow conditions. The main result of Backus is a non-linear 

expression relating the volume flow U through the reed and two variables : the pressure 

difference ∆P across the reed, and the opening H between the tip of the reed and the 

mouthpiece. The pressure difference ∆P across the reed is equal to the mouth pressure Pm 

minus the pressure in the mouthpiece Pin. Backus fitted the experimental data by means of an 

expression in which U is proportional to  (∆P)4/3 and to H2/3. There are good arguments to 

abort Backus formula (Hirschberg et al., 1990, Hirschberg, 1995) and most flow models are 

now based on the stationary Bernoulli equation (Wilson and Beavers, 1974 ; Fletcher, 1979 ; 

Saneyoshi et al., 1987 ; Fletcher 1993) which states that the volume flux U in the reed channel 

is given by :  

ρ
P

wHU
∆= 2

, (1) 

where w is the width of the reed channel, and ρ is the air density.  
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The steps leading to equation (1) are summarised by Hirschberg (1995). A reasonable 

prediction of the flow through the reed channel is obtained by assuming flow separation at the 

neck of the flow channel (figure 1a). For a uniform reed channel of height H the pressure in 

the reed channel is equal to the pressure in the mouthpiece. Assuming a turbulent dissipation 

of the kinetic energy in the jet without pressure recovery and neglecting friction in the reed 

channel we find, from Bernoulli equation, the velocity vb : 

ρ
P

vb

∆= 2
. (2) 

Multiplying vb by the jet cross section Sj provides a prediction for the volume flow entering 

into the mouthpiece. If there are rounded corners at the inlet of the reed channel as in figure 

1b for example), it is furthermore assumed that the jet cross section Sj is equal to wH, where w 

is independent of H. The motion of the reed determines the opening cross-section area and 

controls the volume flow entering in the mouthpiece. 

 

FIG. 1. (a) Flow control by the clarinet reed involving free jet formation and turbulent 

dissipation. (b) A two dimensional model of the reed channel geometry and expected flow. 

 

Assuming the mechanical response of the reed to be reduced to its stiffness (see 

section 2.3 for discussion) the variation of the reed opening HHy −= 0 , where H is the reed 

opening and 0H  the reed opening in the absence of flow, is proportional to the pressure 

difference ∆P across the reed : 

k

P
y

∆= , (3) 
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where k is a stiffness per unit area. Equation (3) is meaningful until H is equal zero (reed 

blocked on the lay). This corresponds to a limit value PM of the pressure difference ∆P given 

by : 

0HkPM = . (4) 

If the pressure difference is larger than PM, the reed closes the opening and no flow enters into 

the mouthpiece. Finally the volume flow U can be written as a function of the pressure 

difference ∆P :  
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This non-linear characteristics is displayed figure 2. Notice that there is a strong localised 

non-linearity in the characteristic model around the particular value of the pressure difference 

∆P=PM. The maximum value of the flow 
ρ

=
3

2

3

2
0max

MP
wHU is obtained for 3/MPP =∆  

which is just below the threshold of oscillation (Kergomard et al., 2000).  

 

FIG. 2.  Theoretical characteristic (equation 5) : volume flux U as a function of the pressure 

difference ∆P (arbitrary scales). PM is the value of the pressure difference corresponding to 

the reed blocked on the mouthpiece.  

  

2.2. Quasi-stationary model of air flow 

Hirschberg et al. (1990) and Van Zon et al. (1990) have studied experimentally and 

theoretically the volume flow control by the motion of the reed in order to explore the limits 

of validity of the elementary model presented above, and to provide a better understanding of 

the results of Backus (1963). 
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Following Van Zon et al. (1990) due to the abrupt transition from the narrow reed 

channel of height H to the inner part of the mouthpiece of diameter D, flow separation occurs 

for sufficient high Reynolds numbers Re=ρU/(µw)>10 (µ is the dynamic viscosity of air). A 

free jet is formed in the mouthpiece. For large values of D/H>10, which is a typical value for 

single reed instruments, the pressure recovery upon deceleration of the flow in the mouthpiece 

is negligible. Hence the pressure Pin in the mouthpiece is assumed uniform and equal to the 

pressure at the end of the reed channel. Measurements by Van Zon et al. (1990) confirm this 

assumption : the pressure variations within the mouthpiece are less than 3% of the dynamic 

pressure in the jet. 

In the limit of high Reynolds numbers and a short channel (Re.H/L>1000 where L is 

the length of the reed channel) the volume flow can be estimated by assuming a uniform flow 

in the reed channel and by applying Bernoulli’s equation. Ignoring the flow separation at the 

entrance of the channel, the volume flow is found to be given by equation 1 (elementary 

model). As noted in Hirschberg et al. (1990) separation occurs when the edges at the entrance 

are sharp, which is the case for clarinet mouthpiece and its reed. A free jet with a section Sj 

lower than the reed-mouthpiece opening cross-section S will be formed within in the channel. 

For short reed channels (L/H<3) no reattachment of the flow occurs within the channel and 

the volume flow U will be given by : 

ρ
α P

wHU
∆= 2

 where 
S

S j=α  . (6) 

The coefficient α is a “contraction” coefficient which is strongly dependent on the geometry 

of the reed channel inlet. For typical 2D mouthpiece geometry, values in the range 

0.5<α<0.61 are expected. Laser Doppler flow measurements and flow visualisation 

experiments by Van Zon (1989) confirm the typical values of α for the geometry considered. 

For low Reynolds number (Re<10) and long reed channel (L/H>10), the flow is well 
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approximated by a fully developed Poiseuille flow. This corresponds to the case of the reed 

almost closed for which the volume flow is thus given by :  

L

PwH
U

νρ12

3∆= . (7) 

Both Poiseuille and Bernoulli limits were also found by Gilbert (1991) and Maurin (1992). 

The intermediate flows between the two extreme cases mentioned above are discussed in Van 

Zon et al. (1990) and Hirschberg et al. (1991). For L/H>4, the jet formed by the separation of 

the flow from the sharp edge of the reed at the entrance of  the reed channel reattaches to the 

wall after a distance of about 2H. If the channel is short the friction is negligible, the volume 

flow U approaches the value given by equation (1) then the section Sj of the jet is equal to the 

reed-mouthpiece opening cross-section S. The quasi-stationary models described above 

assume a fixed separation point at the inlet or at the exit of the reed channel and a uniform 

section of the reed channel. This hypothesis is questionable in the case of the clarinet 

mouthpiece. The transition between the “reed channel” and the mouthpiece can be smooth. In 

such a case the reed channel height is not uniform, and for L/H>4 the separation point is not 

easy to determine. As a consequence the coefficient α  is not so easy to predict precisely and 

can be equal to values larger than 1. In other words, in such a case the volume flux U can be 

larger than the one predicted with the elementary model (equation 1). In the case of a fully 

separated jet flow (short reed channels situation, L/H<2), the channel geometry is not 

expected to be critical and the result given in equation (6) could remain valid. Notice that all 

the theoretical results described before have been successfully compared with experimental 

results obtained with a two-dimensional mouthpiece geometry. Another particularity of 

clarinet mouthpieces hasn’t been yet mentioned. The reed channel consists of two parts : a) 

the front slit delimited by the edge of the mouthpiece tip and the reed and b) the lateral slits 

between the lay and the reed. Then the effective section Sj can be larger than the opening 
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cross-section S. In such a case the contraction coefficient α defined by equation 6 can be 

larger than one if w is always defined as the width of the tip of the mouthpiece. 

 

2.3. Quasi-static response of the reed 

The mechanics of the reed is complex. The material is orthotropic and the dimension 

irregular. Prediction of the deformation of the reed is difficult because reed is an essentially 

inhomogeneous material (Heinrich, 1991). Its mechanical properties are variable and also 

depend strongly on the amount of water in the material (Heinrich, 1991 ; Obataya and 

Norimoto, 1999). Marandas et al. (1994) suggest that a dry reed displays a viscoelastic 

behaviour whereas a wet reed has a viscoplastic behaviour. The reed rolls up (or not) on the 

lay of the mouthpiece whose geometry is said to be very critical : from the experience of 

craftsmen it seems that variations of some hundredths of millimeters on dimensions of the 

curvature of the lay  lead to change of behaviour perceptible by the musician (Hirschberg et 

al., 1991). Finally the lips of the musician are pressed on the reed. This means that the 

mechanical behaviour of the reed is also dependent on the coupling with the lip, a mechanical 

system which is also not easy to characterise.  

The reed is usually considered to be a one degree of freedom oscillator, that is the reed 

tip displacement y is related to the pressure difference ∆P  by the following equation : 

µ
∆=ω++ P

yygy r
2

&&& ,     (8) 

where rω  is the angular resonance frequency of the reed, g a viscous-damping coefficient and 

µ  is a  mass per area. The dynamic aspects related to the reed are not considered in the 

present paper and equation (8) is then reduced to equation (3) with 

2
rk µω= .     (9). 
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The determination of the reed stiffness k is difficult and only orders of magnitude for these 

parameters can be found in the literature. The difficulty lies in the fact that these parameters 

are generally found only in an indirect way and under experimental conditions which are not 

always realistic.  Thus, equation (9) suggests that the stiffness can be deduced from the reed 

resonance frequency.  In fact this is questionable because the surface per area µ  is itself badly 

known. In addition the validity of the parameter obtained from the resonance frequency for 

low frequencies is also questionable.  The stiffness per area was measured by Nederveen 

(1998) but not in a playing situation.  Another solution for determining this stiffness k consists 

in measuring the impedance of reed (Dalmont et al., 1995 ; Boutillon and Gibiat, 1996). 

Unfortunately the stiffness per area is obtained by using an equivalent surface whose value is 

badly known.  Moreover, contrary to what one could suppose, the resonance frequency of the 

reed itself is difficult to determine. Thus Facchinetti and Boutillon (2001) showed that the 

frequency of a squeak depends as much on the resonator as on the reed. A simple method to 

determine the stiffness consists in determining the beating pressure MP  and the opening at 

rest 0H .  The beating pressure can be estimated with an artificial mouth by seeking the 

pressure for which the reed starts to oscillate after having been plated.  This method, being 

based on the equation (4) is used implicitly by Kergomard (1995).  In the present paper 

another method allowing an accurate determination of the beating pressure is given. 

In the elementary model presented the reed stiffness k is assumed to be constant.  A 

priori it seems natural to think they are not. The most commonly admitted idea is that the 

vibrating length of the reed decreases with the opening. This would lead to an increase in the 

stiffness (Nederveen, 1998). To go further in the analysis various authors propose to model 

the reed as a bar (Stewart and Strong, 1980 ; Sommerfeld and Strong, 1988 ; Stuifmeell, 

1989 ; Gazengel, 1994 ; Ducasse, 2001 ; Van Walstijn, 2002). Their results tend to show 

(Gazengel, 1994 ; Ducasse, 2001 ; Van Walstijn, 2002) that the reed rolls up on the table of 
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the mouthpiece only under certain conditions which are satisfied for only very particular reed 

geometries.  With the dimensions of a real reed and table Ducasse (2001) showed that the reed 

deforms without sticking to the table until a given point near the tip touches the table.  This 

result is confirmed by van Walstijn (2002) who shows that the stiffness is nearly constant as 

long as the end of the reed does not touch the table and takes a larger value afterwards.  These 

studies would justify the "simplistic" approach of the model suggested (equation 5) at least 

until the reed tip touches the lay.  It remain to verify whether the transverse bending of the 

reed which is supported only on the side by the table does not modify this two dimensional 

behaviour.  

 

FIG. 3. Theoretical characteristics (equation 5) in the case of a discontinuous reed stiffness 

(according to Van Walstijn (2002), see text). 

 

3. Experimental device and procedure 

 

3.1  The artificial mouth 

The artificial mouth consists of a Plexiglas box with metal reinforcement (Gazengel, 

1994).  The artificial lip consists of a cylindrical latex balloon of small diameter (10mm) in 

which a piece of foam saturated with water is inserted.  The lip is fixed on a rigid support 

which position can be translated vertically by means of a screw. The mouthpiece is inserted in 

a metal barrel whose horizontal position can be adjusted.  Resonators can be fixed onto the 

other end of the barrel.  The air is supplied by a high pressure system through a sonic valve. 

The pressure Pm in the mouth is measured by a static pressure sensor.  A miniature 

differential pressure sensor mounted in the wall of the mouthpiece measures the pressure 

difference inm PPP −=∆  between the mouth cavity and the inside of the mouthpiece.  The 
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reed slit opening is measured using a LASER beam and a photoelectric diode. This is the 

method used by Backus (1963) (see figure 4).  

 

FIG. 4. Experimental device. 

 

3.2  Flow measurement   

To determine the static non-linear characteristics the clarinet is replaced by a 

diaphragm playing the role of a pressure reducing element. Using the pressure measurements, 

the flow through the reed is calculated by using Bernoulli’s equation :  

2

2

2

1

dia
in

S

U
P ρ=    (10) 

where the atmospheric pressure is used as a reference, Sdia being the section of the opening of 

the diaphragm. 

Compared to another flowmeter placed upstream of the cavity, the diaphragm, apart 

from its simplicity of implementation, has several advantages. It makes it possible, if its 

dimensions are well chosen, to obtain a complete characteristic since it avoid oscillations. 

Indeed apart from its pressure reducing effect the diaphragm plays, for acoustics, the role of a 

non-linear resistance thus preventing the appearance of a standing wave inside the barrel. This 

makes our experiment similar to the one suggested by Benade (1976, page 437). 

 

3..3  The choice of the diaphragm 

The diameter of the diaphragm is the result of a compromise. If this diameter is too 

large the pressure drop inP  created by the diaphragm is too small to be measured. If, on the 

contrary, it is too narrow the reed closes suddenly above a critical threshold and part of the 
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non-linear characteristic cannot be explored (Hirschberg, 1995). This phenomenon occurs 

when : 

0
)()(

=
∂

+∆∂
=

∂
∂

U

PP

U

P inm .   (11) 

Considering that the pressure P∆  and  Pin are given respectively by equations (5) and (10), it 

is thus necessary, to avoid phenomenon of sudden closure, that : 

3/0wHSdia > .      (12) 

  In practice the section of the opening of the diaphragm is chosen to be close to the 

section of the reed slit at rest position. This might avoid the sudden closing of the reed while 

ensuring a sufficiently large pressure drop. 

The cross section area of the jet formed by the diaphragm is assumed here to be equal 

to the section of the opening of the diaphragm. This assumption is valid only in the absence of 

a vena contracta. To avoid a vena contracta the diaphragms has been chamfered (conical 

orifice). This chamfer suppresses the vena contracta and also extends the range in which the 

coefficient of discharge is constant (OMEGA, 1995). In order to check this the diaphragms 

have been calibrated by means of a volume gas meter. The calibration of the various 

diaphragms proves that the vena contracta coefficient is constant and equal to unity within 1% 

uncertainty for all the diaphragms except for the 3.5mm diameter diaphragm for which it is 

estimated to be 0.97. 

 

FIG. 5. Volume flow U as a function of the total pressure drop mP  for the clarinet mouthpiece 

ended with a diaphragm (arbitrary scales). 

 

3.4 Reed opening measurement 
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This measurement is likely to give information on the behaviour of the jet entering the 

instrument. In particular the opening can be compared to the effective section of the jet 

entering in the mouthpiece. This measurement also makes it possible to relate the opening  H 

and the pressure difference P∆  on both sides of the reed. This allows the determination of the 

evolution of the reed stiffness with the pressure difference. 

The sensitivity of the optical system used to measure the opening H is calibrated by 

means of visual observation with a camera in macro mode. This device was used for checking 

the linearity of the optical system and to determine the opening at rest 0H . A difficulty with 

the optical system is that the light beam can be fully stopped while the reed slit is not 

completely closed. To limit this problem, it is checked by visual inspection, before each 

experiment, that, when the reed is almost closed, the diode still detects a signal. 

 

3.5 Experimental procedure 

 

The two pressure signals and the optical signal are collected on a computer via a data 

acquisition card. The opening at rest having been measured as described above, the 

experiment starts without blowing pressure ( 0=∆P ). This state is maintained for a few 

seconds. This is used for the determination of the zeros of the pressure sensors and the value 

of the optical signal corresponding to the opening at rest. The pressure in the mouth cavity 

mP  is then increased gradually until the reed closes completely the opening. This state is also 

maintained for a few seconds. This is done for the relative calibration of the differential 

pressure sensor ENTRAN, as in that case 0=inP , the sensitivity of the static pressure sensor 

measuring mP  being supposed to be known. This calibration is important because the pressure 

inP  is obtained by making the difference between the signals from the two pressure sensors. 

The pressure in the mouth is then gradually brought back to zero. A typical duration of such 
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an experiment is 50 to 100s with a sampling frequency of 100Hz (see figure 6). For some 

embouchures, when the reed is almost closed reed, oscillations occur incidently which make 

the corresponding part of the non-linear characteristic not exploitable. 

 

FIG. 6. Experimental signals 

______ static pressure sensor.  

_ _ _ _ differential pressure sensor. 

- - - - -  optical sensor. 

 

4. Experimental results 

 

4.1 A typical experimental result 

The non-linear characteristic was measured for various mouthpieces, reeds and 

embouchures. Before each measurement of the characteristic, the embouchure is tested with a 

cylindrical pipe of 30cm in order to check that the instrument produces a realistic sound of 

good musical quality. The phenomena observed are globally reproducible even if one 

observes a large variation in the numerical values of the various parameters. The goal of this 

section is to present a typical case in order to stress the most significant results. A more 

detailed analysis of the experimental results is provided in the following sections. 

On the figure 7.a, a non-linear characteristic )( PNLU ∆=  is shown for an opening at rest 

of =0H 0.6mm. The reed is a Plasticover (covered with plastic) reed of force 3. This type of 

reed has been chosen because it is less influenced by moisture than a standard reed. The 

clarinet mouthpiece is a C80 by Selmer. The curve shows an hysteresis, the maximum flow 

being larger for increasing pressure than for decreasing pressure.  This hysteresis can be 

attributed to the viscoplastic behaviour of the reed.  This point is discussed section 4.2. The 
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curves are similar to the theoretical curves coming from equation (5), which are also plotted 

for reference in figure 7.a (dots). The parameters of these theoretical curves are chosen so that 

the maximum of the theoretical curves matches with those of the experiments. It appears that 

the closing is never total and that even when the reed can be considered as closed (beyond 

60mbar) a weak flow remains. This flow decreases when the maximum pressure is maintained 

a few seconds. The theoretical model is thus valid until the reed is nearly closed. It does not 

take into account the residual flow when the reed channel is closed.  

Figure 7.b plots the reed opening as a function of the pressure drop. This curve shows that 

the stiffness of the reed can be considered as roughly independent on the pressure. This is 

emphasised on figure 7.b by to straight lines of same slope, showing that the stiffness is 

approximately the same when the pressure is increasing as when it is decreasing. Only the rest 

position differs (4% difference). This is confirmed by the fact that between the two theoretical 

curves of figure 7.a only the values of 0H  are different in the same ratio. This result is 

explained on the basis of a viscoelastic model in which the return to rest position is delayed 

(cf. section 4.2). It appears from figure 7.b that the zero of the optical signal is reached for a 

pressure for which the flow is still significant.  As noted section 3.4, this is due to the 

difficulty of adjustment of the optical set-up for which the zero is reached whereas the reed is 

still open. 

As explained section 2.2 the jet cross section jS  can be deduced from the volume flow 

using equation 2. Figure 7.c plots the effective cross section as a function of the variation of 

the reed opening measured by the optical device. The results show systematically that the jet 

cross section varies linearly with the aperture. In some cases, when the optical adjustment was 

optimum, a line passing trough zero within an uncertainty lower than 0.1mm was obtained. 

The assumption of a jet cross section proportional to the opening thus seems sensible. This 
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assumption is used for the determination, by extrapolation, of the opening corresponding to 

the zero value of the optical signal. 

 

FIG. 7. Typical experimental results (continuous line experiments ; doted lines theory)  

(a) Non-linear characteristics, volume flow U versus pressure difference P∆  

(b) reed opening H versus pressure difference P∆ ,  

(c) jet cross section S versus reed opening U. 

 

 

4.2 Viscoelasticity of the reed 

As noticed in section 4.1, some curves exhibit an hysteresis due to a change of the rest 

position. This result could seem contradictory with the assumption of a static measurement. 

Indeed the duration of the experiment and the speed of the pressure variations are such that 

the effects of the reed inertia are negligible during the experiment. The hysteresis can 

therefore only be explained as the result of a viscoelastic behaviour of the reed which only 

recovers its original rest position after a time delay larger than our experiments (Marandas et 

al., 1994). By analysing the opening as a function of time after the reed has been plated and 

then quickly slackened, it appears, for a given reed, that this one recovers its rest position in 

three steps.  The reed slit opening reaches almost instantaneously 93% of its maximum value.  

An exponential decay of the difference between the opening value and the maximum opening 

with a relaxation time s81 ≅τ  is then observed.  At the end of this second phase the reed slit 

opening reaches 97% of its maximum value. Rest position is finally reached at the end of a 

last phase for which the relaxation time is s9002 ≅τ . In this second case, taking into account 

the importance of the relaxation time, it is not unreasonable to speak of a quasi-plastic 

deformation (Marandas et al., 1994). Taking into account the typical duration of an 
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experiment one can think that hysteresis observed in the experimental characteristics is due to 

a conjugation of these two effects. In particular the fact that when the reed is closed there 

remains a flow which tends to decrease if the maximum pressure is maintained a sufficiently 

long time. These viscoelastic effects essential for the musician (Ducasse, 2001 ; Marandas et 

al., 1994), are probably not relevant when considering a physical model of the autooscillation 

process. The actual characteristics might be found somewhere in between the two static 

characteristics obtained respectively upon increasing the pressure and decreasing the pressure. 

By chance the hysteresis being rather small the uncertainty on the relevant parameters of the 

model will be small. Typically it should not exceed few percent of 0H . To limit this effect it 

is useful, before doing an experiment, to close the reed for a few seconds by applying a large 

pressure in the mouth volume in order to limit the quasi-plastic effect ( s9002 ≅τ ). This is 

similar to some musicians practice which consists in pressing the reed with the thumb before 

playing. It is important to notice that the amplitude of the hysteresis can vary considerably 

with the reed. We observed that for some reeds, a priori not different from the others, the 

hysteresis did not appear. On the other hand our experiments have been done with a dry reed 

covered with plastic. A wet standard read would probably have emphasised a slightly 

different behaviour (Marandas et al., 1994). 

 

4.3 Reed stiffness  

As noted section 4.1, the reed stiffness can be regarded as a constant until the reed 

beats. With some mouthpieces and reeds a slightly different behaviour has been observed. 

Figure 8 shows a result with a clarinet mouthpiece B40 by Vandoren, a Plasticover reed n°3 

and a reed opening at rest mmH 6.00 = . In figure 8.a a plot of the non-linear characteristics is 

compared to the simple basic model (equation 5) in which parameters MP  and 0wH  are 

chosen so that the maxima of the experimental and theoretical curves coincide. One can note 
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that the theoretical curve and the model differ for a pressure slightly lower than 

mbarP 40=∆ . Figure 8.b plots the reed slit opening as a function of the pressure difference. 

One can note that the curve is linear for the pressure lower than 40mbar. The reed stiffness 

can be deduced from the slope of the curve. The following value for the reed stiffness is 

obtained: =k mbar/mm116 . This result is in agreement with the value 

mmmbarHPk M /1220 ==  deduced from the maximum of flow of the characteristics 

mbarPM 73=  and the reed opening at rest mmH 6.00 = . This is not very different from the 

result of experiment of figure 7.b in which the reed stiffness is found to be 

mmmbark /107= . It is also noticed that the extrapolated line passes through zero for 

MPP =∆  which validates the calibration method of  the optical system based on the 

extrapolation of the function )(HS j  (cf. section 4.1). The function )( PH ∆  deviates from a 

linear behaviour above 40mbar. This is in agreement with the observation made on the figure 

8.a that  the simple model is no more valid beyond mbarP 40=∆ . We expect that beyond this 

pressure the reed stiffness increases as a result of a reduction of the free reed length due to 

contact with the lay. The remarkable result here is that the change in the reed stiffness value 

appears only for a pressure higher than the threshold of oscillation 3/MPP ≈∆ . According to 

various measurements it seems that this phenomenon is general. This result is to be compared 

with the analysis of various authors (Gazengel, 1994 ; Ducasse, 2001 ; Van Walstjin, 2002) 

according to whom the curling up phenomenon is limited and has a small influence on the 

reed stiffness, the end of the reed touching the lay without smoothly curled up on the lay. Our 

measurements do not exclude this scenario but show that it should appear only for high 

pressures. Complementary measurements, allowing to determine directly the point of contact 

between the reed and the lay, are now in preparation to confirm this result.  

 

FIG. 8. Experimental results (continuous line experiments ; doted lines theory)  
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(a) non-linear characteristics, volume flow U versus pressure difference P∆   

(b) reed opening H versus pressure difference P∆ . 

 

4.4 Air flow  

 To evaluate the discrepancy between the model for the volume flow and the 

measurement, the measured volume flux U  can be divided by the theoretical one Ub 

calculated using equation 1 where H is measured with the optical device and mmw 14=  is the 

external width of the mouthpiece inlet. The dimensionless quantity obtained is the vena 

contracta coefficient α  (see equation 6). It is displayed versus the reed opening in figure 9 for 

the same experiment as in figure 8. Parameter α remains constant along a large range of reed 

openings : 95.0≈α  for mmHmm 65.02.0 << . For mmH 15.0<  the optical measurements 

are no longer relevant. From the experiment of figure 7.c the value 2.1≈α  is found. The 

constant behaviour of α has been observed for every embouchure tested, α being in the range 

0.85 to 1.30. These results confirm that a volume flux calculated from the Bernoulli law with 

a constant vena contracta coefficient α is a reasonable approximation for sufficiently large 

reed opening. At this stage, the experimental device and particularly the reed opening 

measurement are not sufficient to draw conclusions for a small reed opening.  

  

FIG. 9. : Contraction coefficient α  versus reed opening H (same embouchure set-up as in 

figure 8).  

 

 It is interesting to compare the measured α values with the vena contracta coefficient 

obtained for simplified geometries of mouthpieces and in less realistic playing conditions. As 

mentioned in Section 2.2, Van Zon (1989) has obtained values in the range 0.50 to 0.61 for 

typical 2D mouthpiece. Furthermore Maurin (1992) observed larger values, in the range 0.60 



 20

to 0.85 for a clarinet mouthpiece mounted in an artificial mouth, the lateral parts of the reed 

channel being waxed to approach a 2D geometrical situation. The larger value of α could be 

explained by an effect of the confinement of the flow upstream of the inlet reed channel. This 

phenomenon would also occur in actual clarinet playing. Valkering (1993) measured volume 

flows through a reed channel formed by a stiff flat metal reed with sharp edges placed on an 

actual clarinet mouthpiece. It is shown that the flow threw lateral sides can increase the flux 

within 50% which lead to values for α compatible with our results. 

 

4.5 Typical parameters range values 

 

The model formulated in equation 5 is based on parameters of which the values have 

to be defined when dealing with simulations or physical modelling synthesis. Our experiments 

allow the determination of some of these parameters. In the present section the range of these 

parameters and the accuracy with which they can be determined using our setup are discussed. 

Results are summarised in table 1. The reed parameters, that is the opening at rest 0H  and the 

reed stiffness per area k, are determined using the optical device (see section 3.4 and 4.3). The 

reed opening is approximately mmH 10 =  when the reed is free, that is when the lips do not 

press the reed. When the lip presses the reed this value decreases but probably not much under 

mmH 4.00 =  which correspond to a rather tight embouchure. Because of the small value of 

the reed opening and of the geometrical irregularities of the reed this parameter 0H  can not 

be determined with a great accuracy. The accuracy on this parameter 0H  is estimated to be 

only 10%. The reed stiffness which is deduced from PHk ∆= /0  is found to be in the range 

of 100mbar/mm. From our measurements it appears that the range in which these parameter 

varies is rather small. In all the measurement realised it did not vary more than 50%. This 
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parameter being deduced from 0H , its accuracy is in the same range as 0H , that is 10%. On 

the other hand the product of the two reed parameters 0H  and k is the beating pressure 

0kHPM = . This beating pressure MP  is found to be around mbar80  for a loose embouchure 

and around mbar60  for a tight embouchure. This parameter can be determined with a good 

accuracy from the flow measurement (see section 4.1). In some cases an accuracy of  2% can 

be reached (a little bit more if the hysteresis is considered, see section 4.2). From flow 

measurements the maximum flow can also be deduced from which the value of the effective 

surface of the jet at rest 0wHS j α=  can be deduced with a good accuracy (3%). From this 

surface the effective width of the reed channel wα  can be deduced (section 4.4). The 

uncertainty on this parameter is in the same range as for the reed opening 0H  from which it is 

deduced. In table 1 realistic values of the parameters of the model for the clarinet are 

summarised. These values are in agreement with those given by other authors (Nederveen 

1998 ; Stewart & Strong 1980). We guess that these values might be useful for physical 

modelling synthesis and simulations. 

 

 

5. Conclusion and perspectives 

 

 The experiments presented in the present paper allow a better characterization of the 

clarinet mouthpiece behaviour. It also gives elements useful for a better comprehension of the 

physical phenomena involved. In the nineties a considerable effort has been carried out in 

parallel at the LAUM (Le Mans, France) and at the TUE (Eindhoven, Nederlands) to obtain a 

reliable model for the relationship between the jet section and the reed channel height 

characterised by the coefficient α of equation 6 (Van Zon, 1989 ; Hirschberg et al., 1990 ; 
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Hirschberg et al., 1994 ; Hirschberg, 1995). Using simplified 2D geometries, different 

stationary regimes have been identified experimentally and explained theoretically. We have 

now proposed an experimental procedure allowing to measure these characteristics with 

actual mouthpieces and reeds under conditions close to playing conditions. Our measurements 

with this new procedure seem to agree qualitatively with the earlier measurements in 

simplified geometries. The main problem in the interpretation of our results is the uncertainty 

in the geometry of the reed channel and of the lateral slits between the lay and the reed. Our 

result do confirm that a volume flux calculated from the Bernoulli law with a constant 

parameter vena contracta coefficient α a is reasonable first approximation for sufficiently 

large reed opening. For a small reed opening the effect of friction becomes significant and a 

correction for viscous effects should be introduced. 

 In the quasi-stationary basic model, the behaviour of the reed is reduced to a spring 

with a constant stiffness. Rather surprisingly, experimental results confirm that the latter 

hypothesis is reasonable, a stiffness value being associated for each embouchure adjustment. 

Nevertheless for some of the embouchures, the hypothesis is correct up to a critical pressure 

threshold above which the equivalent stiffness is increasing when the reed-lay aperture is 

decreasing. Some authors proposed to consider a variable stiffness k(H) to take into account 

the curvature of the lay (see for example the time domain simulations of Ducasse, 1990). Our 

results show that this should be done with care. Indeed, a variation of the stiffness with the 

opening has been observed for some embouchures, but only when the reed is near closing. 

Supplementary investigations have to be done with different reeds and mouthpieces in order 

to check the variability of the results. A comparison with the recent theoretical works of 

Ducasse (2001) and Van Walstijn (2002) should be done by using a reed and a lip of which 

characteristics would be measurable and controllable. Incidentally, our measurements confirm 

the visco-elastic behaviour of reeds reported by Marandas et al. (1994). It seems however that 
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this behaviour is not relevant when predicting oscillations because the memory time scales 

involved are long compared to the oscillation period.  

Finally, our study allows to conclude that the "simplistic" model described in section 2 

is valid at least on the major part of the characteristics. This result confirms the practical 

interest of theoretical studies based on this model (Wilson and Beavers, 1974 ; Fletcher, 1979 

; Saneyoshi et al., 1987 ; Fletcher 1993 ; Kergomard, 1995 ; Kergomard et al., 2000 ; Ollivier 

et al., 2002). Similar studies could be done for other instruments. For instance, a saxophone 

alto mouthpiece has been tested too : the same behaviour as for a clarinet mouthpiece has 

been observed both from the point of view of the air flow and the reed mechanics in stationary 

regime. This suggest that, except the size, there is no major difference between a clarinet and 

a saxophone mouthpiece. The case of the double reed of an oboe or a bassoon could also be 

investigated in the same way. This could allow to check if the hypothesis by Barjau and 

Agullo (1989) of a cross section proportional to the opening to the power two is sensible. The 

conjecture that there is a significant pressure recovery inside the narrow pipes on which 

double reeds are mounted (Hirschberg, 1995) could also be checked.  
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Figure and table legends 

 

Table 1 : Summary of the parameters values of the parameters for the clarinet. 

 

FIG. 1. (a) Flow control by the clarinet reed involving free jet formation and turbulent 

dissipation. (b) A two dimensional model of the reed channel geometry and expected flow. 

 

FIG. 2.  Theoretical characteristics (equation 5) : volume flux U as a function of the pressure 

difference ∆P (arbitrary scales). PM is the value of the pressure difference corresponding to 

the reed blocked on the mouthpiece.  

 

FIG. 3.  Theoretical characteristics (equation 5) in the case of a discontinuous reed stiffness 

(according to Van Walstijn (2002), see text). 

 

FIG. 4. Experimental device. 

 

FIG. 5. Volume flow U as a function of the total pressure drop mP  for the clarinet mouthpiece 

ended with a diaphragm (arbitrary scales). 

 

FIG. 6. Experimental signals 

______ static pressure sensor.  

_ _ _ _ differential pressure sensor. 

- - - - -  optical sensor. 

 

FIG. 7. Typical experimental results (continuous line experiments ; doted lines theory)  

(d) Non-linear characteristics, volume flow U versus pressure difference P∆  
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(e) reed opening H versus pressure difference P∆ ,  

(f) jet cross section S versus reed opening U. 

 

FIG. 8. Experimental results (continuous line experiments ; doted lines theory)  

(c) non-linear characteristics, volume flow U versus pressure difference P∆   

(d) reed opening H versus pressure difference P∆ . 

 

FIG. 9. : Contraction coefficient α  versus reed opening H (same embouchure set-up as in 

figure 8).  
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Figure 7.a 
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Figure 7.b 
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Figure 7.c 
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Figure 8 
 

0 10 20 30 40 50 60 70 80
0

100

200

300

400

∆P (mbar)

U
 (

cm
3 /s

)

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

∆P (mbar)

H
 (

m
m

)



 40

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
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Tableau des constantes et valeurs typiques 
 
 

 
Quantity 

 

 
Symbol 

 
Typical values 

 
Reed opening at rest 

 

 

0H  
 

mm0.14.0 −  

 
Beating pressure 

 

 

MP  
 

mbar10040−  

 
Reed surfacic stiffness 

 

 
k  

 
mbar/mm13080−  

 
Jet effective width 

 

 
wα  

 
mm1812−  

 
Maximum flow 

 

 

maxU  
 

/scm600200 3−  

 
 


