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CONTROLLABILITY TO TRAJECTORIES FOR SOME PARABOLIC
SYSTEMS OF THREE AND TWO EQUATIONS BY ONE CONTROL

FORCE

ASSIA BENABDALLAH ∗, MICHEL CRISTOFOL † , PATRICIA GAITAN ‡ , AND LUZ DE

TERESA §

Abstract. We present a controllability result for a class of linear parabolic systems of 3 equa-
tions. To prove the result, we establish a global Carleman estimate for the solutions of a system
of 2 coupled parabolic equations with first order terms. We also obtain stability results for the
identification of coefficients of the systems.

Key words. Control, observability, Carleman estimates, reaction-diffusion systems, inverse
problems.

AMS subject classifications. 93B05, 93B07, 35K05, 35K55, 35R30.

1. Introduction and notations. The controllability of linear ordinary differ-
ential systems is a well understood subject. In particular, if n,m ∈ IN with n,m ≥ 1
and A ∈ L(IRn) and C ∈ L(IRm, IRn). Let us define the controllability matrix

[A |C] =
[
An−1C |An−2C | · · · |C

]
.(1.1)

Then, the linear ordinary differential system Y ′ = AY + Cu is controllable at
time T > 0 if and only if the Kalman rank condition

rank [A |C] = n,

is satisfied (see for example [24, Chapter 2, p. 35]).
In the last ten years there has being an increasing interest in the study of null

controllability and inverse problems for systems of parabolic equations. To the best
of our knowledge most of the existing results in the litterature deal with zero order
coupling systems or constant coefficients (see for instance [29], [1] [9], [2], [3], [13],
[19], [21], [4], [5], [8] and [20]). In these papers, almost all the results have been
established for 2× 2 systems where the control is exerted on the first equation. The
most general results in this context seem to be those in [20], [4] and [5]. In [20], the
authors study a cascade parabolic system of n equations (n ≥ 2) controlled with one
single distributed control. In [4] and [5], the authors provide necessary and sufficient
conditions for the controllability of n × n parabolic linear systems with constant or
time-dependent coefficients. Recent results in the controllability or observability of
systems show the complexity of controlling coupled parabolic equations and also the
very different behavior with respect to the scalar case. For example the results in
[16], [6] and [2] show that boundary controllability and distributed controllability for
coupled systems are not equivalent as in the scalar case. For a complete description
of the complexity of the situation and the survey of the recent results see [7].
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The main goal of our work is to propose a Carleman inequality for 3×3 parabolic
linear systems with non constant coefficients by one observation. This allows us
to exhibit sufficient conditions for the null controllability of the system with one
control. Also this gives stability estimates for the identification of coefficients of
the system. The controllability results generalize the Kalman condition obtained for
parabolic systems with constant coefficients in [4]. The main ingredient of the proof
is a Carleman estimate for a 2× 2 reaction-convection-diffusion system.

Let Ω ⊂ IRn, n ≥ 1 be a bounded connected open set of class C2. Let T > 0
and let ω be an open non empty subset of Ω. We define ΩT = Ω × (0, T ) and
ΣT = ∂Ω × (0, T ). More generally for any set O ⊂ Ω or O ⊂ ∂Ω, OT and 1O will
denote resp. the set O× (0, T ) and the characteristic function of the set O. Our main
objective is to establish new controllability results for coupled parabolic equations
with one distributed control force in ωT . To be more precise, let us consider second
order elliptic self adjoint operators given by

div(Hl∇) =

n∑
i,j=1

∂i
(
hlij(x, t)∂j

)
, l = 1, 2, 3,(1.2)

with {
hlij ∈W 1,∞(ΩT ),

hlij(x, t) = hlji(x, t) a.e. in ΩT ,

and the coefficients hlij satisfying the uniform elliptic condition

n∑
i,j=1

hlij(x, t)ξiξj ≥ h0|ξ|2, ∀ξ ∈ IRn, a.e. in ΩT , l = 1, 2, 3,(1.3)

for a positive constant h0. Let (aij)1≤i,j≤3 ∈ C4(ΩT ) (this assumption can be weak-
ened see Remark 3.5). We consider the following 3× 3 reaction-diffusion system

∂ty = (L+A)y + Cf1ω in ΩT ,

y = 0 on ΣT ,

y(·, 0) = y0(·) in Ω,

(1.4)

where

L =

 div(H1∇) 0 0
0 div(H2∇) 0
0 0 div(H3∇)

 ,

A = (aij)1≤i,j≤3, C = (1, 0, 0)t ∈ L
(
IR, IR3

)
, f ∈ L2(ΩT ) and y0 = (y0,i)1≤i≤3 ∈

L2(Ω)3. In (1.4), y = (yi)1≤i≤3 is the state variable.
We will say that (1.4) is null controllable if for all initial data in L2(Ω)3 there

exists f ∈ L2(ΩT ) such that the solution of (1.4) satisfy y(·, T ) = 0. In [4] it has been
proved, among other results, that if all the coefficients (aij) are constant and if there
exists d1 ∈ IR such that d1H1 = H2 = H3, then system (1.4) is null controllable if
and only if the algebraic Kalman condition, det [A |C] 6= 0, is satisfied (here [A |C]
is given by (1.1)). On the other hand, the results in [20] are valid for non constant
coefficients in A but the matrix A is in cascade. That means that a prefixed structure
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of A is required. Our main interest is to remove the assumption that the coefficients
have to be constant or A to be a cascade matrix.

The main result of this paper is

Theorem 1.1. Suppose that there exists j ∈ {2, 3} such that |aj1(x, t)| ≥ C > 0

for all (x, t) ∈ ωT and that H2 = H3. Let j be as before. We define kj =
6

j
,

Bkj := −2H2

(
∇akj1 −

akj1

aj1
∇aj1

)
,

and

bj =
2H2∇aj1(∇akj1aj1 −∇aj1akj1)

a2
j1

+
akj1div(H2∇aj1)− aj1div(H2∇akj1)

aj1

+
aj1∂tak1 − ak1∂taj1

aj1
− (−1)j

det [A |C]

aj1
.

Assume that ∂ω ∩ ∂Ω = γ , |γ| 6= 0, and Bkj · ν 6= 0, on γT .

Then, for all y0 ∈ (L2(Ω))3, there exists f ∈ L2(ΩT ) such that the corresponding
solution of (1.4) satisfies y1(·, T ) = y2(·, T ) = y3(·, T ) = 0.

Remark 1.2.

1. If all the coefficients are constant, Bkj = 0 for all j ∈ {2, 3}, then assumptions
of Theorem 1.1 are reduced to bj 6= 0 and more precisely to det[A|C] 6= 0. So
we recover the condition obtained in [5].

2. The result is valid if Bkj (x, t) = 0 in ω′T for some open set ω′ ⊂ ω, and if we
assume that |bj(x, t)| ≥ α > 0 in ω′T for some α > 0.

3. It is not difficult to construct an example where the algebraic Kalman rank
condition is not satisfied but assumptions of Theorem 1.1 is verified. For
example, take Ω any smooth domain in IR2 containing ω = {y < −1, (x −
2)2+(y+1)2 < 1} and γ = [1, 3]×{−1}. Take now a32 = a23 = a22 = a33 = 0,
a31(x, y) = −y2, a21(x, y) = x+ y and H1 = H2 = H3 = Id. Then a31 6= 0 in
ωT , but det[A,C] = 0 in Ω.
Moreover, we have(

∇a21 −
a21

a31
∇a31

)
· ν(x) = 2x− 1 > 0, on γ.

So the assumptions of Theorem 1.1 are satisfied.
4. In our proof the fact that ∂ω ∩ ∂Ω = γ is used to invert a suitable operator

and it is an open question if this is only a technical requirement or not.

The proof of Theorem 1.1 relies in an essential way in the obtention of a new
Carleman inequality for two coupled reaction-diffusion-convection equations. This
inequality uses Carleman estimates for scalar parabolic equations introduced by Fur-
sikov and Imanuvilov in [18] (see also Theorem 2.4) but is new in the sense that we
are working with a system of equations so in particular new assumptions are required
in the control region and the kind of coupling.

Also it is important to remark that even if the technique used to obtain this in-
equality is based in the technique used in [8], the inequality given in [8] is improved
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in the present paper with the consequence that results in [8] imply approximate con-
trollability of the 2x2 reaction-diffusion system (2.1) and our results imply null con-
trollability of the same system.

Our controllability result does not need restrictive assumptions such as for cascade
systems or constant coefficients. In the case of constant coefficients, we recover the
Kalman’s criterion proved in [4]. In Section 2, we derive a controllability result for a
class of 2×2 reaction-diffusion-convection systems. In [21], the author studies the null
controllability of systems of two parabolic equations, where the coupling terms are
first order space derivatives in one equation and second order space derivatives in the
other. The results of [21] cannot be derived as a particular case of ours. The reverse
holds true as well. They are independent results, proved with different techniques,
both aiming for a better understanding of the complexity of Carleman estimates for
coupled equations and their controllability and identification consequences.

A large area of applications in ecology and biology requires the identification of co-
efficients for reaction-diffusion systems. Starting with the pioneer work of Bukhgeim-
Klibanov [10], Carleman estimates have been successfully used for the uniqueness and
stability for determining coefficients. Often, it is difficult to observe all the com-
ponents for reaction-diffusion systems, thus the increasing interest in reducing the
number of observed components. There are very few research papers devoted to this
problem. We can refer to [13], [8], for 2 × 2 parabolic systems and to [23] for Lamé
sytems. We use our new Carleman estimate for 2 × 2 parabolic systems with advec-
tion terms to prove, for a 3 × 3 reaction-diffusion system, a stability result for three
coefficients (one in each equation). We only observe one component and we need the
knowledge of the solution at a fixed time T ′ ∈ (0, T ) and all the domain Ω and these
three coefficients in ω. We generalize for a n× n parabolic system: a stability result
for n coefficients observing only n−2 components with the partial knowledge of solely
three coefficients.

The paper is organized as follows. In Section 2 we prove a new controllabil-
ity result for a 2 × 2 reaction-diffusion-convection system. This section contains the
main ingredient of this paper: a new Carleman estimate for 2× 2 reaction-diffusion-
convection systems with only one observation. In Section 3 we prove our main result:
Theorem 1.1. To prove this, we establish an observability estimate for the correspond-
ing adjoint system. This Carleman estimate for 3×3 reaction-diffusion systems follows
from the previous one for 2 × 2 reaction-diffusion-convection systems. We conclude
in Section 4 with some applications to inverse problems and generalizations for more
than 3 equations. In Section 5 we include some comments related with other kind of
parabolic systems and propose some open problems. We conclude with an Appendix
where we explain the change of coordinates that allows to simplify the proof of the
Carleman estimate for the 2× 2 reaction-diffusion-convection systems.

2. Controllability for a 2 × 2 reaction-diffusion-convection system. In
this section we present a null controllability result for coupled parabolic systems.
We consider the case of two coupled reaction-diffusion-convection equations and we
control one of them. Let us consider

∂ty1 = div(H1∇y1) + a11 y1 + a12 y2 +A11 · ∇y1 +A12 · ∇y2 + fχω in ΩT ,
∂ty2 = div(H2∇y2) + a21 y1 + a22 y2 +A21 · ∇y1 +A22 · ∇y2 in ΩT ,
y1(·, t) = y2(·, t) = 0 on ΣT ,
y1(·, 0) = y0

1(·), y2(·, 0) = y0
2(·) in Ω.

(2.1)
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with aij ∈ C4(ΩT ) and Aij ∈ C1(ΩT )n for i, j = 1, 2 (here again this regularity can be
weakened see Remark 3.5). We say that system (2.1) is null controllable if for every
initial data (y0

1 , y
0
2) ∈ (L2(Ω))2 there exists f ∈ L2(ωT ) such that the corresponding

solution of (2.1) satisfies

y1(T ) = y2(T ) = 0.

The first controllability result we obtain is the following one :
Theorem 2.1. Let us assume that ω of class C2, ω ⊂ Ω is such that for some

γ ⊂ ∂Ω, |γ| 6= 0 with γ ⊂ ∂ω∩∂Ω we have that |A21(x, t) · ν(x)| 6= 0 for every (x, t) ∈
γT . Furthermore, assume that H1|ωT ∈ W 2,∞(ωT )n

2

and that A21|ωT ∈ W 3,∞(ωT )n.
Then, system (2.1) is null controllable at time T > 0.

Remark 2.2. As in Theorem 1.1 the result is valid if A21(x, t) = 0 in ω′T for
some open set ω′ ⊂ ω, and if we assume that |a21(x, t)| ≥ α > 0 in ω′T for some
α > 0.

As in the scalar case the null controllability of (2.1) is equivalent to the obtention
of an observability inequality for the adjoint system (2.3) (see e.g [18], [15], [14]).
That is, Theorem 2.1 is equivalent to prove the following result:

Theorem 2.3. Under the assumptions of Theorem 2.1 there exists C > 0 such
that ∫

Ω

(
|ϕ1(0)|2 + |ϕ2(0)|2

)
dx ≤ C

∫ T

0

∫
ω

|ϕ1|2dxdt(2.2)

holds true for any solution of



−∂tϕ1 = div(H1∇ϕ1) + (a11 −∇ ·A11)ϕ1

+(a21 −∇ ·A21)ϕ2 −A11 · ∇ϕ1 −A21 · ∇ϕ2 in ΩT ,
−∂tϕ2 = div(H2∇ϕ2) + (a12 −∇ ·A12)ϕ1

+(a22 −∇ ·A22)ϕ2 −A12 · ∇ϕ1 −A22 · ∇ϕ2 in ΩT ,
ϕ1(·, t) = ϕ2(·, t) = 0 on ΣT ,
ϕ1(·, T ) = ϕT1 (·), ϕ2(·, T ) = ϕT2 (·) in Ω.

(2.3)

2.1. Proof of the controllability result. We prove Theorem 2.1 assuming
that Theorem 2.3 holds true. The proof of Theorem 2.3 uses the Carleman inequality
proved in the next subsection. So we prove Theorem 2.3, and conclude the section
with the proof of the Carleman inequality, i.e Theorem 2.6.

Proof. [Proof of Theorem 2.1]
We now prove Theorem 2.1 using (2.2). They are several ways to prove it. We use

the most direct technique. Let V = L2(Ω)×L2(Ω), and let G and L be the following
linear mappings:

L : L2(ωT )→ V f 7→ (y1(T ), y2(T ))

where (y1(·), y2(·)) is the corresponding solution of (2.1) with (y0
1 , y

0
2) = (0, 0), and

G : V → V (y0
1 , y

0
2) 7→ (y1(T ), y2(T ))

where (y1(·), y2(·)) solves (2.1) with f = 0. Then Theorem 2.1 is equivalent to the
inclusion

R(G) ⊂ R(L).(2.4)
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Both G and L are V -valued, bounded linear operators. So (2.4) holds if and only if,
for every (ϕT1 , ϕ

T
2 ) ∈ V ,

‖G∗(ϕT1 , ϕT2 )‖V ≤ C‖L∗(ϕT1 , ϕT2 )‖L2(ωT )(2.5)

for some constant C > 0. A simple computation shows that

G∗(ϕT1 , ϕ
T
2 ) = (ϕ1(x, 0), ϕ2(x, 0)), L∗(ϕT1 , ϕ

T
2 ) = ϕ11ωT

where ϕ1 and ϕ2 solve the adjoint system (2.3). Hence (2.5) is just (2.2) and Theorem
2.1 is proved.

2.2. A new Carleman estimate for a 2× 2 reaction-diffusion-convection
system with one observation. In this section we will prove a Carleman estimate for
a 2×2 reaction-diffusion-convection system. To this end we need to recall Carleman’s
estimates for a scalar equation. We will use the classical notations (see [18] and [22]).

Let β ∈ C2(Ω) be the function constructed by Fursikov and Imanuvilov in [18]
such that β ≥ 0 in Ω̄, |∇β| > 0 in Ω \ ω and define

η(x, t) :=
e2λK − eλβ(x)

t(T − t)
, ∀(x, t) ∈ ΩT ,

ρ(x, t) :=
eλβ(x)

t(T − t)
, ∀(x, t) ∈ ΩT ,

(2.6)

where

K ≥ ‖β‖L∞(Ω)(2.7)

is a fixed constant whose choice will be specified later. We introduce the functional

I(τ, ϕ) =

∫∫
ΩT

(sρ)τ−1e−2sη

|ϕt|2 +
∑

1≤i≤j≤n

∣∣∣∂2
xixjϕ

∣∣∣2 + (sλρ)2 |∇ϕ|2 + (sλρ)4 |ϕ|2
 dxdt

(2.8)
where s, λ > 0 and τ ∈ IR.

For a ∈ L∞(ΩT ), A ∈ L∞(ΩT )n, H ∈W 1,∞(ΩT )n
2

, let R = div(H∇)+ A ·∇+a
and I(τ, ϕ) defined by (2.8) we have the following result

Theorem 2.4. Let ω ⊂ Ω open and non empty, τ ∈ IR. Then, there exist
three positive constants s0, λ0, C0 (which only depend on Ω, ω, T , ‖H‖W 1,∞ , ‖A‖L∞ ,
‖a‖L∞ and τ) such that for every ϕ ∈ L2(0, T ;H1

0 (Ω)) with ∂tϕ±Rϕ ∈ L2(ΩT ), the
following Carleman estimate holds

I(τ, ϕ) ≤ C̃0

(∫∫
ΩT

(sρ)τe−2sη |∂tϕ±Rϕ|2 dxdt+ λ4

∫∫
ωT

(sρ)τ+3e−2sη |ϕ|2 dxdt
)
,

for all s ≥ s0, λ ≥ λ0 and η, ρ defined in (2.6) with K > 0 satisfying (2.7). The
proof of this result can be found in [22].

We consider the following reaction-diffusion-convection system:
∂tu = div(H1∇u) + au+ bv +A · ∇u+B · ∇v + f in ΩT ,
∂tv = div(H2∇v) + cu+ dv + C · ∇u+D · ∇v + g in ΩT ,
u(·, t) = v(·, t) = 0 on ΣT ,
u(·, 0) = u0(·), v(·, 0) = v0(·) in Ω.

(2.9)
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Recall that for a, b, c, d ∈ L∞(ΩT ) andA,B,C,D ∈ L∞(ΩT )n, H1, H2 ∈W 1,∞(ΩT )n
2

and for u0, v0 ∈ L2(Ω), f, g ∈ L2(ΩT ) the reaction-diffusion-convection system (2.9)
admits an unique solution (u, v) ∈ C([0, T ];L2(Ω))2 ∩ L2(0, T ;H1

0 (Ω))2. Moreover, if
u0, v0 ∈ H2(Ω)∩H1

0 (Ω), then (u, v) ∈ C([0, T ];H2(Ω)∩H1
0 (Ω))2∩C1([0, T ];L2(Ω))2.

This result can be obtained in a classical way, see for example [26].
In order to prove (2.2), our main interest is to derive an observability estimate

for (u, v) solutions of (2.9) by solely the observation of u in ωT .
Assumption 2.5.
1. Let ω ⊂ Ω be a non-empty subdomain of class C2 with ∂ω ∩ ∂Ω = γ and |γ|
6= 0,

2. B · ν(x) 6= 0, on γT ,

3. H1|ωT ∈ W 2,∞(ωT )n
2

, B|ωT ∈ W 2,∞(ωT )n, A|ωT ∈ W 1,∞(ωT )n and b|ωT ∈
W 2,∞(ωT ).

The new Carleman estimate for a 2× 2 reaction-diffusion-convection system is:
Theorem 2.6. Under Assumption 2.5 there exist three positive constants s0, λ0, C

(which only depend on Ω, ω, a, b, c, d, A, B, C, D, H1, H2, τ1 and τ2) and a con-
stant K, satisfying (2.23), such that for every (u0, v0) ∈ L2(Ω)2 and |τ1− τ2| < 1, the
following Carleman estimate holds

I(τ1, u) +I(τ2, v) ≤ C
(
λ8

∫∫
ωT

e−2sα (sρ∗)τ
∗
|u|2dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |Qf |2dxdt+

∫∫
ΩT

e−2sη((sρ)τ1 |f |2 + (sρ)τ2 |g|2)dxdt

)
(2.10)
where Q is an appropriate operator defined in the Appendix (see (6.5)), η∗ = max

Ω
η,

η− = min
Ω
η, α = 4η− − 3η∗, ρ∗ = max

Ω
ρ and τ∗ = 4τ2 − 3τ1 + 15, for all s ≥ s0,

λ ≥ λ0 for all (u, v) solution of (2.9) and η defined by (2.6) .
Remark 2.7. Here it is important to recall the results in [8] where the following

inequality for system (2.9) was proved.

I(τ, u) + I(τ, v) ≤

C

(
‖u‖2

W 2,1
2 (ωT )

+ ‖f‖2L2(ωT ) +

∫
ΩT

(sρ)τe−2sη(|f |2 + |g|2)

)
(2.11)

for all s ≥ s0 and where

W
m,m/2
2 (ΩT ) =

{
u : ΩT → IR; ∂αx ∂

αn+1

t u ∈ L2(ΩT ), for |α|+ 2αn+1 ≤ m
}
.

Note that (2.11) is a weaker Carleman estimate with respect to (2.10) since the norms
in the local terms of u are different. In particular the estimate (2.11) cannot imply null
controllability with controls in L2(ωT ) but just approximate controllability. Moreover
the stability results in [8] obtained for the inverse problem require stronger norms for
the observation. Our main contribution is then the obtention of a local L2 norm of u
in the right hand side of (2.10).

We first prove Theorem 2.3 assuming that Theorem 2.6 holds true.
Proof. [Proof of Theorem 2.3]
We want to prove (2.2). We define u(t) = ϕ1(T − t), v(t) = ϕ2(T − t). Then, u

and v are solutions of (2.9) with a(x, t) = (a11(x, T − t)−∇ ·A11(x, T − t), b(x, t) =
(a21(x, T − t)−∇ ·A21(x, T − t)), A(x, t) = −A11(x, t−T ), B(x, t) = −A21(x, t−T ),
c(x, t) = (a12(x, T − t)−∇ ·A12(x, T − t), d(x, t) = (a22(x, T − t)−∇ ·A22(x, T − t)),
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C(x, t) = −A12(x, t − T ), D(x, t) = A22(x, t − T ), f = g = 0 and initial conditions
u(0) = ϕT1 , v(0) = ϕT2 . We can then apply the results of Theorem 2.6 to ϕ1 and ϕ2

and get ∫∫
ΩT

e−2sηρ3(|ϕ1|2 + |ϕ2|2)dxdt ≤ C
∫∫

ωT

|ϕ1|2dxdt.

Note that C > 0 is a generic constant that may change from line to line. We
multiply the first equation in (2.3) by ϕ1 and the second equation by ϕ2 , we add the
two equations, we integrate by parts and apply Gronwall inequality, we then get that
for any 0 ≤ t < τ ≤ T∫

Ω

(|ϕ1(t)|2 + |ϕ2(t)|2)dx ≤ C
∫

Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dx.

This inequality implies on one hand that for τ > 0∫
Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C
∫

Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dx,

and on the other hand that∫
Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C(T )

∫ 3T/4

T/4

∫
Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dxdτ.(2.12)

Observe that, by construction, ρ3(t)e−2sη(t) ≥ C(T ) for t ∈ [T/4, 3T/4]. This fact
combined with (2.12) imply that∫

Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C
∫∫

ωT

|ϕ1|2dxdt.

Proof. [Proof of Theorem 2.6]
Consider ω̃ ⊂⊂ ω open and non empty. If |τ1 − τ2| < 1, a direct application of

Theorem 2.4 leads to

I(τ1, u) + I(τ2, v) ≤ C
(
λ4

∫∫
ω̃T

(sρ)τ1+3e−2sη|u|2dxdt + λ4

∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt

+

∫∫
ΩT

(sρ)τ1e−2sη |f |2 dxdt +

∫∫
ΩT

(sρ)τ2e−2sη |g|2 dxdt
)
.(2.13)

The main question is to get rid of the term∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt .

As in ([2], [13]), one will use the first equation in order to derive a local observability
estimate for v with respect to u. In comparison with the previous results, the main
difficulty here is the presence of first order terms on v. Roughly speaking, the idea
used in ([2], [13]) is to transform locally (in ω × (0, T )) the first equation of (2.9) as
v = Pu where P is a partial differential operator (first order in time and second order
in space). In these cases, A = B = C = D = 0 and therefore the main assumption
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for this solvability is that b 6= 0 in an open set ω′ × (0, T ) ⊂ ωT . In our case, this
condition is replaced by B · ν 6= 0 on γ × (0, T ) where γ is a part of the boundary of
Ω ∩ ω and requires ω to be a neighborhood of γ. With these assumptions, one can
still transform the first equation of (2.9) locally in space as v = Pu, but the operator
P is not a partial differential operator. With some technical computations, we are
able to still deduce a local observability estimate for v with respect to u:

Theorem 2.8. Under the assumptions of Theorem 2.6, suppose that
u ∈ C([0, T ];H2(Ω) ∩H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) and v satisfies{
bv +B · ∇v = ∂tu− div(H1∇u)− au−A · ∇u− f in ωT ,
v = 0 on γT .

Then, for any ˜̃ω ⊂⊂ ω and for all ε > 0, there exists Cε > 0 such that

λ4

∫∫
˜̃ωT (sρ)τ2+3e−2sη|v|2dxdt ≤ Cελ16

∫∫
ωT

e−2sα (sρ∗)τ
∗
|u|2dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |Qf |2dxdt+ εI(τ2, v),(2.14)

where Q is an appropriate operator defined in the Appendix (see (6.5)), η∗ = max
Ω

η,

η− = min
Ω
η, α = 4η− − 3η∗, ρ∗ = max

Ω
ρ and τ∗ := max{2τ2 − τ1 + 7, 1 − τ1, 4τ2 −

3τ1 + 15, τ2 + 3}, for all s ≥ s0, λ ≥ λ0 and η defined by (2.6).
Proof. [Proof of Theorem 2.8 ] In order to make the proof clearer to the reader,

we are going to prove Theorem 2.8 in the simplest case where

ΩT = (0, 1)× Ω′T , ωT = (0, ε)× ω′T , γ = {0} × ω′,

with ω′ ⊂ Ω′ ⊂ IRn−1, ε > 0 and B(x, t) = (1, 0, ..., 0, 0).
Note that for more general vector field B we obtain, by a change of variables, a

similar equation:

∂1ṽ + bṽ = ∂tũ− div(H∇ũ)− E · ∇ũ− eũ− f̃ .

The proof of this assertion is given in Appendix 6.1 so the general case comes down
to this simplest one.

With these assumptions, the first equation of (2.9) has the particular form

∂1v + bv = ∂tu− div(H1∇u)− au−A · ∇u− f,(2.15)

with x = (x1, x
′).

The proof of the Theorem will be done in 3 steps
• Step 1 : An equation for v

One can define the following operator

L := ∂1 + b,

withD(L) = {v ∈ L2(0, T );H1(ω)); v(0, x′, t) = 0 on γT ). Note that (L,D(L))
is an unbounded invertible operator from L2(ωT ) to L2(ωT ). For w ∈ L2(ωT ),
direct computations give that

L−1(w)(x, t) = e

∫ x1
0

b(y1,x
′,t)dy1

∫ x1

0

e
−
∫ y1
0

b(x1,x
′,t)dx1w(y1, x

′, t)dy1.
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For, p, q ∈ L∞(ωT ), let us define

K(p, q)w(x, t) = p(x, t)

∫ x1

0

q(y1, x
′, t)w(y1, x

′, t)dy1.

Note that K(p, q) ∈ L(L2(ωT )) and L−1 = K(p, q) with

p(x, t) = e
−
∫ x1
0

b(y1,x
′,t)dy1 , q(x, t) = e

∫ x1
0

b(y1,x
′,t)dy1 .(2.16)

Moreover under Assumption 2.5, we have p, q ∈W 2,∞(ωT ). As it will be clear
in the sequel, we need to compute the effect of the composition of operators
as K(p, q) on partial differential operators.
We summarize here these computations:

1. For p, q, e ∈ L∞(ωT ), w ∈ L2(ωT )

K(p, q)(ew) = K(p, qe)w.

2. For p, q ∈ W 1,∞(ωT ) and E ∈ L∞(0, T ;W 1,∞(ω)), 2 ≤ i ≤ n and
w ∈ H1(ωT ), we have

K(p, q)(E∂1w)(x, t) = −K(p, ∂1(Eq)w)(x, t)+pqEw(x, t)−p(x, t)(qEw)(0, x′, t),

K(p, q)(E∂iw)(x, t) = ∂iK(p,Eq)w(x, t)−K(∂ip,Eq)w(x, t)−K(p, ∂i(Eq))w(x, t),

K(p, q)(∂tw)(x, t) = ∂tK(p, q)w(x, t)−K(∂tp, q)w(x, t)−K(p, ∂tq)w(x, t).

3. For p, q ∈ W 2,∞(ωT ), H ∈ L∞(0, T ;W 1,∞(ω)), 1 ≤ i, j ≤ n and w ∈
L2(0, T ;H2(ω)), we have

K(p, q)(∂i(hij∂jw))(x, t) = K(p, q∂ihij)∂jw(x, t)+K(p, hijq)∂
2
i,jw(x, t),

In order to calculate the first term in the previous equation we use the
computations done in item 2. We have to develop the second term. To
do this we observe that

K(p, q)∂2
1w(x, t) = K(p, ∂2

1q)w(x, t)−(p∂1qw)(x, t)+(pq∂1w)(x, t)+p(x, t)(w∂1q−q∂1w)(0, x′, t),

and for 2 ≤ i, j ≤ n we have that

K(p, q)(∂2
i,jw)(x, t) = ∂2

i,jK(p, q)w(x, t)−K(∂ijp, q)w −K(p, ∂ijq)w
−K(∂ip, ∂jq)w(x, t)−K(∂jp, ∂iq)w(x, t)
−K(∂ip, q)∂jw(x, t)−K(∂jp, q)∂iw(x, t)−K(p, ∂iq)∂jw(x, t)−K(p, ∂jq)∂iw(x, t).

Furthermore for 1 ≤ j ≤ n

K(p, q)(∂2
1,jw)(x, t) = ∂j [K(p, q)∂1w(x, t)]−K(∂jp, q)∂1w(x, t)−K(p, ∂jq)∂1w(x, t).

Lemma 2.9. Let H1, A, b, B satisfy Assumption 2.5, p, q defined in (2.16).

Then there exist (pij , qij)2≤i,j≤n ∈W 2,∞(ωT )2(n−1)2 , (p̃i, q̃i)1≤i≤n ∈W 1,∞(ωT )2n,
k ∈ L∞(ωT ), Ei ∈W 1,∞(ΩT ), i = 1, · · · , n such that, for any u ∈ C([0, T ];H2(Ω)∩



11

H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), the solution v of (2.8) satisfies for every (x, t) ∈

ωT :

v(x, t) = ∂tK(p̃1, q̃1)u(x, t) +

n∑
i,j=2

∂2
i,jK(pij , qij)u(x, t) +

n∑
i=2

∂iK(p̃i, q̃i)u(x, t)

+

n∑
i=1

∂i(Eiu)(x, t) +K(p, aq)u(x, t) + k(x, t)u(x, t)

+K(p, q)f(x, t)− p(x, t)q(0, x′, t)h1
11(0, x′, t)∂1u(0, x′, t).

(2.17)

Proof. [Proof of the Lemma 2.9] It is a direct consequence of the previous
items taking into account that u vanishes on γ.

• Step 2: An observability inequality for v with two observations: u
on ωT and ∂νu on γ × (0, T ).

Let ˜̃ω ⊂⊂ ω̃ ⊂⊂ ω, and ξ ∈ C∞(Ω) a cut-off function, such that

ξ(x) =

{
1,∀x ∈ ˜̃ω
0,∀x /∈ ω.

(2.18)

We multiply (2.17) by (sρ)τ2+3ξe−2sηv and we integrate on ΩT .

∫∫
ΩT

(sρ)τ2+3ξe−2sηv2dxdt =

∫∫
ΩT

(sρ)τ2+3ξe−2sηv∂tK(p̃1, q̃1)udxdt

+

∫∫
ΩT

(sρ)τ2+3ξe−2sηv

n∑
i,j=2

∂2
i,jK(pij , qij)udxdt

+

∫∫
ΩT

(sρ)τ2+3ξe−2sηv

n∑
i=2

∂iK(p̃i, q̃i)udxdt

+

∫∫
ΩT

(sρ)τ2+3ξe−2sηv
n∑
i=1

∂i(Eiu)dxdt

+

∫∫
ΩT

(sρ)τ2+3ξe−2sηvK(p, aq)udxdt+

∫∫
ΩT

(sρ)τ2+3ξe−2sηvkudxdt

+

∫∫
ΩT

(sρ)τ2+3ξe−2sηvL−1fdxdt−
∫∫

ΩT

(sρ)τ2+3ξe−2sηvpq(0, x′, t)h1
11∂1u(0, x′, t)dxdt.

We estimate each term of the right hand side of the previous equality. For
example for the first one, using the definition of I(τ2, v), Cauchy-Schwartz
and Young inequalities, we can write :

λ4

∫∫
ΩT

(sρ)τ2+3ξe−2sηv∂tK(p̃1, q̃1)udxdt = λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sηv

)
K(p̃1, q̃1)udxdt,
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then∣∣∣∣λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sηv

)
K(p̃1, q̃1)udxdt

∣∣∣∣ ≤ ∣∣∣∣λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sη

)
vK(p̃1, q̃1)udxdt

∣∣∣∣
+

∣∣∣∣λ4

∫∫
ΩT

(sρ)τ2+3ξe−2sη∂t (v)K(p̃1, q̃1)udxdt

∣∣∣∣
≤ εI(τ2, v) + λ4sτ2+4

∫∫
ΩT

(ρ)τ2+5ξe−2sη(K(p̃1, q̃1)u)2dxdt

+λ8sτ2+7

∫∫
ΩT

(ρ)τ2+7ξe−2sη(K(p̃1, q̃1)u)2dxdt

≤ Cελ8sτ2+7‖p‖2∞‖q‖2∞
∫ T

0

∫
ω′
ξe−2sη(ρ)τ2+7

(∫ x1

0

|u|2 (y1, x
′, t)dy1

)
dx′dt+ εI(τ2, v)

≤ Cελ8sτ2+7

∫ T

0

∫
ω′

[∫ ε

0

|u|2(y1, x
′, t)

(∫ 1

0

e−2sη(ρ)τ2+7dx1

)
dy1

]
dx′dt+ εI(τ2, v)

≤ εI(τ2, v) + Cελ
8sτ2+7

∫∫
ωT

M(x′, t) |u|2 dxdt

with M(x′, t) =
∫ 1

0
ρτ2+7e−2sηdx1.

After technical calculations, we keep the higher exponents for s and λ, we
obtain:

λ4

∫∫
˜̃ωT (sρ)τ2+3e−2sη|v|2dxdt ≤ εI(τ2, v)

+Cε

(
λ8 sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt+ λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |L−1f |2dxdt

+λ4

∫ T

0

∫
ω′

∫ 1

0

(sρ)τ2+3e−2sη|∂1u(0, x′, t)|2dx1dx
′dt

)
.(2.19)

• Step 3: Estimate of the boundary term
Observe that for any f and h in H2(ω),∫

ω

hf∂1fdx = −1

2

∫
ω

|f |2∂1(h)dx+
1

2

∫
ω′

[(|f |2h)(ε)− (|f |2h)(0)]dx′.

(2.20)

We denote N(x′, t) =
∫ 1

0
ρτ2+3e−2sηdx1, n∗ = 2τ2 − τ1 + 7. We have

λ4
∫∫
ωT

(sρ)τ2+3e−2sη|∂1u(0, x′, t)|2dxdt = λ4sτ2+3
∫ T

0

∫
ω′

(∫ 1

0
(ρ)τ2+3e−2sηdx1

)
|∂1u(0, x′, t)|2dx′dt

= λ4sτ2+3
∫ T

0

∫
ω′
N(x′, t)|∂1u(0, x′, t)|2dx′dt.

We apply (2.20) with f = ∂1u, and h = Nξ and obtain

λ4
∫∫
ωT

(sρ)τ2+3e−2sη|∂1u(0, x′, t)|2dxdt =

2λ4sτ2+3
∫∫

ΩT
∂2

1u ∂1u ξN(x′, t)dxdt− λ4sτ2+3
∫

ΩT
|∂1u|2N(x′, t)∂1ξdxdt := I1 − I2.

From Young inequality, we deduce that

|I1| ≤ ε
∫∫

ΩT

(sρ)τ1−1e−2sη∗ |∂2
1u|2dxdt+

1

4ε
λ8sn

∗
∫∫

ωT

ρ−τ1+1e2sη∗ξ2N2(x′, t)|∂1u|2dxdt.
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The first term in the right hand side is estimated as follows∫∫
ΩT

(sρ)τ1−1e−2sη∗ |∂2
1u|2dxdt ≤ I(τ1, u).

For the second term, integrating by parts and using that (ξ u) vanishes at the
boundary of ω, we get

λ8

∫∫
ωT

ρ−τ1+1sn
∗
e2sη∗ ξ2N2(x′, t)|∂1u|2dxdt = −λ8

∫∫
ωT

ρ−τ1+1sn
∗
e2sη∗ ξ2N2(x′, t)u ∂2

1u dxdt

− λ8

∫∫
ωT

∂1

(
ρ−τ1+1sn

∗
e2sη∗ξ2N2(x′, t)

)
u ∂1udxdt

:= P1 + P2

As before, using Young estimate, for the first term P1, we have

|P1| ≤ ε2I(τ1, u) + λ16 1

4ε2

∫∫
ωT

ρ−3τ1+3s4τ2−3τ1+15e6sη∗N4(x′, t)|u|2dxdt.

Noting that

N(x, t) ≤ e−2sn−(ρ∗)τ2+3, ∀(x′, t) ∈ ω′T ,

we deduce that

|P1| ≤ ε2I(τ1, u) + λ16Cε

∫∫
ωT

(sρ∗)4τ2−3τ1+15e−8sη−+6sη∗ |u|2dxdt,

where Cε denotes a positive constant depending en ε. To estimate P2 we
use (2.20) with f = u and h = ∂1(ρ−τ1+1sn

∗
e2sη∗ ξ2N2(x′, t)). Taking into

account that fh vanishes on the boundary of ω, we obtain

P2 =
λ8

2

∫∫
ωT

∂2
x1

(
ρ−τ1+1sn

∗
e2sη∗ξ2N2(x′, t)

)
|u|2 dxdt.

It remains to estimate I2 of (2.21):

I2 = λ4sτ2+3

∫
ΩT

∂1u ∂1uN(x′, t)∂1ξdxdt.

Integrating by parts, and using that ∂1ξ u vanishes on the boundary of ω, we
get

I2 = −λ4sτ2+3

∫
ΩT

u ∂2
1uN(x′, t)∂1ξdxdt−λ4sτ2+3

∫
ΩT

u∂1uN(x′, t)∂2
1ξdxdt := J1+J2.

As previously,

|J1| ≤ εI(τ1, u) + λ8Cε s
n∗
∫∫

ωT

ρ−τ1+1e2sη∗(∂1ξ)
2N2(x′, t)|u|2dxdt.

Integrating by parts J2 and using that u∂2
x1
ξ vanishes on the boundary, we

obtain:

J2 =
λ4sτ2+3

2

∫
ΩT

|u|2N(x′, t)∂3
1ξdxdt.
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Summarizing all the previous estimates, we get that for all ε > 0 there exists
Cε > 0 such that

λ4

∫ T

0

∫
ω′

∫ 1

0

(sρ)τ2+3e−2sη|∂1u(0, x′, t)|2dx1dx
′dt ≤ εI(τ1, u)

+λ16Cε

∫∫
ωT

(sρ∗)4τ2−3τ1+15e−8sη−+6sη∗ |u|2dxdt

+
λ8

2

∫∫
ωT

|∂2
x1

(
ρ−τ1+1sn

∗
e2sη∗ξ2N2(x′, t)

)
| |u|2dxdt

+λ8Cε s
n∗
∫∫

ωT

ρ−τ1+1e2sη∗(∂1ξ)
2N2(x′, t)|u|2dxdt

+
λ4sτ2+3

2

∫
ΩT

|u|2N(x′, t)|∂3
1ξ|dxdt.

It remains to verify that the weights in the last 4 integrals are bounded. The
weight in the last integral is clearly bounded. Moreover, one has the following
lemma:
Lemma 2.10. Let a ∈ IR. There exist λ0 ∈ IR, s0 = s(λ0) such that

ρa e−sη ≤ 1 ∀λ ≥ λ0, s ≥ s0.(2.21)

See Appendix 6.2 for a proof.
Applying Lemma 2.10 with a = τ2 + 3, we deduce that N2(x′, t) ≤ e−3sη− .
So

λ8Cε

∫∫
ωT

sn
∗
ρ−τ1+1e2sη∗(∂1ξ)

2N2(x′, t)|u|2dxd ≤ λ8Cε

∫∫
ωT

sn
∗
ρ−τ1+1es(2η

∗−3η−)|u|2dxdt

where Cε denotes any constant depending on ε and independent on s, λ.
Moreover,

∂2
1

(
ρ−τ1+1sn

∗
e2sη∗ξ2N2(x′, t)

)
= sn

∗
N2(x′, t)e2sη∗∂2

1

(
ρ−τ1+1ξ2

)
,

and

|∂2
1ξ

2ρ−τ1+1| ≤ Cλ2ρ−τ1+1,

with C a constant depending on β and ξ. So

|∂2
1

(
ρ−τ1+1sn

∗
e2sη∗ξ2N2(x′, t)

)
| ≤ Csn

∗
λ2ρ−τ1+1es(2η

∗−3η−)

Choosing λ0 ≥ 1,the previous computations leads to:

λ4

∫ T

0

∫
ω′

∫ 1

0

(sρ)τ2+3e−2sη|∂1u(0, x′, t)|2dx1dx
′dt ≤ εI(τ1, u)

+λ16Cε

∫∫
ωT

(sρ∗)τ
∗
e−8sη−+6sη∗ |u|2dxdt,

where τ∗ := max{n∗, 1− τ1, 4τ2 − 3τ1 + 15, τ2 + 3}. The last step is to verify
that one can choose η such that

−4η− + 3η∗ < 0.(2.22)
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Recalling that

η(x, t) =
e2λK − eλβ(x)

t(T − t)
,

we obtain that assumption (2.22) is checked for

K ≥ max{ 2 ln 2

‖β‖∞
, ‖β‖∞}.(2.23)

Returning to (2.19) and noting that N ≤M , we obtain:

λ4

∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt≤ εI(τ1, u) + εI(τ2, v)

+Cελ
16

∫∫
ωT

(sρ)τ
∗
e−2sα|u|2dxdt

+Cε λ
8 sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt,

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |L−1f |2dxdt.

The proof is ended for the case where B = (1, 0, ..., 0) by noting that

λ8sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt ≤ λ16

∫∫
ωT

(sρ)τ
∗
e−2sα|u|2dxdt.

The proof in the general case is done transforming the general system to this simplest
one using the result in the Appendix 6.1

Finally using Theorem 2.8 in (2.13), we obtain Theorem 2.6.

3. Carleman Estimate for 3× 3 Systems.

3.1. Statement of the problem. In this section we prove the main result
of this paper, i.e., Theorem 1.1, that is the null controllability under appropriate
conditions of the 3× 3 reaction-diffusion system

∂ty = (L+A)y + Cf1ω in ΩT ,

y = 0 on ΣT ,

y(·, 0) = y0(·) in Ω,

(3.1)

where,

L =

 div(H1∇) 0 0
0 div(H2∇) 0
0 0 div(H2∇)

 ,

A = (aij)1≤i,j≤3, C = (1, 0, 0)t ∈ L
(
IR, IR3

)
, f ∈ L2(ΩT ) and y0 = (y0,i)1≤i≤3 ∈

L2(Ω)3. Note that in this system we are taking H2 = H3. The case in which all
the Hi are different is an open problem and is related with a controllability problem
of two parabolic equations with a second order coupling (see [21]). As in the two
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dimensional case the result is reduced to proving an observability inequality to the
adjoint system to (3.1). That is, consider

−∂tϕ1 = div(H1∇ϕ1) + a11ϕ1 + a21ϕ2 + a31ϕ3 in ΩT ,
−∂tϕ2 = div(H2∇ϕ2) + a12ϕ1 + a22ϕ2 + a32ϕ3 in ΩT ,
−∂tϕ3 = div(H2∇ϕ3) + a13ϕ1 + a23ϕ2 + a33ϕ3 in Ω,
ϕ1 = ϕ2 = ϕ3 = 0 on ΣT ,
ϕ1(·, T ) = ϕT1 , ϕ2(·, T ) = ϕT2 , ϕ3(·, T ) = ϕT3 , in Ω

Then, Theorem 1.1 is equivalent to the following result:
Theorem 3.1. Suppose that aij ∈ C4(ΩT ), and that there exists j ∈ {2, 3} such

that |aj1(x, t)| ≥ C > 0 for all (x, t) ∈ ωT . For such j we define kj = 6
j ,

Bkj := −2H2

(
∇akj1 −

akj1

aj1
∇aj1

)
,

bj =
2H2∇aj1(∇akj1aj1 −∇aj1akj1)

a2
j1

+
akj1div(H2∇aj1)− aj1div(H2∇akj1)

aj1

+
aj1∂tak1 − ak1∂taj1

aj1
− (−1)j

det [A |C]

aj1
.

Assume that ∂ω ∩ ∂Ω = γ , |γ| 6= 0, and Bkj · ν 6= 0, on γT . Then, there exists
C > 0 such that for every (ϕT1 , ϕ

T
2 , ϕ

T
3 ) ∈ L2(Ω)3 the corresponding solution to (3.1)

satisfies:∫
Ω

(|ϕ1(x, 0)|2 + |ϕ2(x, 0)|2 + |ϕ3(x, 0)|2)dx ≤ C
∫∫

ωT

|ϕ1(x, t)|2dxdt.(3.2)

Observe that the case Bkj (x, t) = 0 and bj(x, t) 6= 0 was already treated in [3].
The really new result is the case Bkj · ν 6= 0, on γT . Inequality (3.2) will be deduced
by an appropriate Carleman estimate (as in the two dimensional case treated below).
So, the next subsection is devoted to the proof of this Carleman inequality.

3.2. A new Carleman estimate for a 3×3 reaction-diffusion system with
one observation. In view of applications regarding inverse problems we will consider
the following 3 × 3 reaction-diffusion system (which is the adjoint system of system
(3.1)) where (f, g, h) ∈ L2(Ω)3.

Let (aij)1≤i,j≤3 ∈ C4(ΩT ), Hl = (hlij)1≤i,j≤3, 1 ≤ l ≤ 2 defined by (1.2) and
(1.3). We consider the following system:

∂tu = div(H1∇u) + a11u+ a21v + a31w + f in ΩT ,
∂tv = div(H2∇v) + a12u+ a22v + a32w + g in ΩT ,
∂tw = div(H2∇w) + a13u+ a23v + a33w + h in Ω,
u = v = w = 0 on ΣT ,
u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0, in Ω.

(3.3)

Uniqueness, existence and stability results for (3.3) can be proved by classical theory
(e.g., [26]). In particular, (3.3) admits an unique solution (u, v, w) ∈ C([0, T ];L2(Ω))3∩
L2(0, T ;H1

0 (Ω))3.
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Moreover, if u0, v0, w0 ∈ H2(Ω)∩H1
0 (Ω), then (u, v, w) ∈ C([0, T ];H2(Ω)∩H1

0 (Ω))3∩
C1([0, T ];L2(Ω))3 and we will call it strong solution.

The Carleman estimate (2.10) allows us to perform a new Carleman estimate for
this 3× 3 reaction-diffusion-system. First of all, let us precise the assumptions on the
coefficients of system (3.3).

Assumption 3.2.
1. ω ⊂ Ω is a non-empty subdomain of class C2 with ∂ω ∩ ∂Ω = γ and |γ| 6= 0,
2. There exists j ∈ {2, 3} such that |aj1(x, t)| ≥ C > 0 for all (x, t) ∈ ωT and

for kj =
6

j

H2

(
∇akj1 −

akj1

aj1
∇aj1

)
· ν 6= 0, on γT ,

3. Let H2|ωT ∈ (W 3,∞(ωT ))n
2

.
Remark 3.3. In this result, we are again assuming that Bkj 6= 0 in ωT . The

Carleman inequality is still true in the other case and it was already proved in [3].
We obtain the following theorem :

Theorem 3.4. Under Assumption 3.2 there exist a positive function β ∈ C2(Ω)
(only depending on Ω and ω) and three positive constants s0, λ0, C (which only depend
on Ω, ω, (aij)(1≤i,j≤3), τ), a constant K (see (3.7)) such that for every (u0, v0, w0) ∈
L2(Ω)3, (f, g, h) ∈ L2(ΩT )3, the following Carleman estimate holds

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)τ+31e(−4sα+2sη)(|u|2 + |f |2)dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qg|2 + |Qh|2)dxdt(3.4)

+

∫∫
ΩT

e−2sη(sρ)τ (|f |2 + |g|2 + |h|2)dxdt

)
.

for s ≥ s0, λ ≥ λ0 and all (u, v, w) solution of (3.3), η defined by (2.6), and Q defined
in (6.5), α = 4η− − 3η∗, η∗ = max

Ω
η, η− = min

Ω
η and ρ∗ = max

Ω
ρ.

Proof. [Proof of Theorem 3.4 ] The proof is done in three steps:

1. We first prove a Carleman estimate with three observations taking sets ˜̃ω ⊂⊂
ω̃ ⊂ ω, such that γ̃ = ∂ω̃ ∩ ∂Ω ⊂ γ and dist (∂ω̃\γ̃, ∂ω\γ) > 0 (this is
necessary technicality that allows to construct ξ satisfying (2.18). A direct
application of Theorem 2.4 leads to

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ4

∫∫
˜̃ωT (sρ)τ+3e−2sη|u|2dxdt

+λ4

∫∫
˜̃ωT (sρ)τ+3e−2sη|v|2dxdt +λ4

∫∫
˜̃ωT (sρ)τ+3e−2sη|w|2dxdt

+

∫∫
ΩT

(sρ)τe−2sη |f |2 dxdt+

∫∫
ΩT

(sρ)τe−2sη |g|2 dxdt+

∫∫
ΩT

(sρ)τe−2sη |h|2 dxdt
)
,

for any ˜̃ω ⊂⊂ Ω. The main question is to get rid of∫∫
˜̃ωT (sρ)τ+3e−2sη|v|2dxdt+

∫∫
˜̃ωT (sρ)τ+3e−2sη|w|2dxdt.
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2. We eliminate two observations. Let

z = a21v + a31w in ωT .(3.5)

Suppose, for example, that Assumption 3.2 is satisfied for j = 3. If (u, v, w)
is a strong solution of system (3.3), then z defined by (3.5) satisfies:

{
∂tu = div(H1∇u) + a11u+ z + f in ωT ,
∂tz = div(H2∇z) +A · ∇z + az + eu+B · ∇v + bv +G in ωT ,

(3.6)

with

b = 2H2∇a31

(
∇a21a31 −∇a31a21

a2
31

)
+
a21div(H2∇a31)− a31div(H2∇a21)

a31

+
a31∂ta21 − a21∂ta31

a31
− a2

21a32 + a31a21a33 − a31a21a22 − a2
31a23

a31
,

A = −2H2
∇a31

a31
, B = −2H2

(
∇a21 −

a21

a31
∇a31

)
,

a = 2
(H2∇a31) · ∇a31

a2
31

− div(H2∇a31)

a31
+
a21a32 + a31a33

a31
+
∂ta31

a31
,

e = a12a21 + a13a31, G = a21g + a31h.

We first use Theorem 2.8 to estimate v by z, u and G. Then with Assump-

tion 3.2 and (3.5), we have w =
z − a21v

a31
. Therefore v and w will be estimated

by z (and u,G). It will remain to estimate z by u. Of course, all these esti-
mates are locally (in ωT ). We apply Theorem 2.8 to the second equation of
(3.6), we obtain:

λ4

∫∫
˜̃ωT (sρ)τ+3e−2sη|v|2dxdt ≤ Cε λ16

∫∫
ω̃T

e−2sα (sρ∗)τ+15|z|2dxdt

+Cλ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qu|2 + |Qg|2 + |Qh|2)dxdt

+εI(τ, v).

Now we are going to estimate the local observation in z by the local observa-
tion in u using the first equation of (3.6). For this, we multiply this equation
by λ16(sρ∗)τ+15ξe−2sαz where ξ is defined in (2.18) and we integrate on ωT .

λ16

∫∫
ω̃T

(sρ∗)τ+15e−2sα|z|2dxdt

≤ λ16

(∫∫
ωT

(sρ∗)τ+15e−2sαz(x, t)ξ(∂tu− div(H1∇u)− a11u− f)dxdt

)
.

Using integrations by part we obtain

λ16

∫∫
ω̃T

e−2sα (sρ∗)τ+15 |z|2dxdt ≤ εI(τ, z)

+Cελ
32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα+2sη)(|u|2 + |f |2)dxdt.
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The integral in the right hand side of the previous inequality is bounded if:

8η− − 7η∗ > 0.

In others terms we need

K ≥ max{ 3 ln 2

‖β‖∞
, ‖β‖∞}.(3.7)

Finally we obtain :

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα(t)+2sη)(|u|2 + |f |2)dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qg|2 + |Qh|2)dxdt

+

∫∫
ΩT

e−2sη(sρ)τ (|f |2 + |g|2 + |h|2)dxdt

)
.

Remark 3.5. Following the proofs presented here it is clear that the regularity
assumptions on ajk and Ajk are not optimal. For simplicity, we asked for much
more regularity than the necessary. In fact, in Theorem 1.1 we can assume that
ajk ∈ L∞(ΩT ) for every j, k ∈ {1, 2, 3}, akj |ωT ∈ W 2,∞(ωT ) for every j, k ∈ {2, 3}
and ak,1|ωT ∈W 4,∞(ωT ) for k ∈ {2, 3}.

4. Applications and Generalizations.

4.1. Controllability to trajectories of class of 3× 3 nonlinear parabolic
systems. Theorem 4.1. Let akj |ωT ∈ W 2,∞(ωT ) for every j, k ∈ {2, 3} and
ak,1|ωT ∈ W 4,∞(ωT ) for k ∈ {2, 3}, a21, a31 and ω satisfy Assumption 3.2. Sup-
pose that F : IR3 → IR, is a locally Lipschitz function with respect to each variable.
Let 

∂ty1 = div(H1∇y1) + F (y1, y2, y3) + χωf in ΩT ,
∂ty2 = div(H2∇y2) + a21y1 + a22y2 + a23y3 in ΩT ,
∂ty3 = div(H2∇y3) + a31y1 + a32y2 + a33y3 in Ω,
y1 = y2 = y3 = 0 on ΣT ,
y1(·, 0) = y0

1 , y2(·, 0) = y0
2 , y3(·, 0) = y0

3 , in Ω.

(4.1)

Then there is ρ > 0 such that if
∥∥y0
i

∥∥
L∞(Ω)

≤ ρ for all 1 ≤ i ≤ 3, one can find

f ∈ L2(QT ) such that there exists (y1, y2, y3) solution of (4.1) satisfying:

y1(·, T ) = y2(·, T ) = y3(·, T ) = 0 in Ω.

Proof. The proof is by now classical. It is based on an observability estimate for
the linearized system. A inspection of the proof of Theorem 3.4 shows that we only
used the derivatives of the terms akj for k 6= 1. So the Carleman inequality for the
adjoint system to (3.1) remains valid when no other regularity assumptions are done
in a1k except that they belong to L∞(ΩT ). Then, the local exact controllability to
trajectories of system 4.1 follows from (3.4) and the Kakutani’s fixed point theorem
(see for example [15], [3], [19]).
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4.2. Generalization for n × n reaction diffusion systems for n ≥ 3. The
results of Section 3 can be generalized to n×n parabolic systems controlled by (n−2)
controls. Consider A = (alm)1≤l,m≤n a matrix of order n with alm ∈ C4(ΩT ). For
j 6= k ∈ {1, ..., n} consider Cjk = (ρ1, ρ2, ..., ρn)t with ρl = el (where (e1, ..., en) is
the euclidian basis of IRn) except for the two indexes j, k where ρj = ρk = 0. We
assume that j, k can be chosen in such a way that there exists i 6= j, i 6= k such that

|aji(x, t)| ≥ C > 0 for all (x, t) ∈ ωT . We denote B := −2
(
∇aki − aki

aji
∇aji

)
and

b = 2∇aji

(
∇akiaji −∇ajiaki

a2
ji

)
+
aki∆aji − aji∆aki

aji

+
aji∂taki − aki∂taji

aji
−
a2
kiaji + ajiakiajj − ajiaki1akk − a2

jiakij

aji
.

Furthermore, we assume that all the following conditions are checked
1. am,k = 0 for m 6= k, j, i.
2. am,j = 0 for m 6= k, j, i.
3. ∂ω ∩ ∂Ω = γ , |γ| 6= 0,
4. B · ν 6= 0, on γT .

Theorem 4.2. Under the previous assumptions, the following system in L2(Ω×
(0, T ))n.  ∂tY = ∆Y +AY + CjkUχω in ΩT ,

Y (·, t) = 0 on ΣT ,
Y (·, 0) = Y0(·) in Ω.

(4.2)

is null controllable.
Proof. Controllability of system (4.2) is equivalent to the following observability

estimate:

∃C > 0; ‖Φ(T )‖2L2(Ω)n ≤ C
n∑

l=1,l 6=j,k

∫∫
ωT

|φl(x, t)|2dxdt,

for all Φ = (φ1, ..., φn)t solution of the adjoint system:{
∂tΦ = ∆Φ +A∗Φ in ΩT ,
Φ(·, t) = 0 on ΣT .

(4.3)

By scalar Carleman estimate applied to each equation of system (4.3), we obtain

l=n∑
l=1

I(τ, φl) ≤ C
l=n∑
l=1

∫∫
ωT

(sρ)τ+3e−2sη|φl(x, t)|2dxdt.(4.4)

So (φi, φj , φk) satisfies
∂tφi = ∆φi +

∑n
l=1 aliφl in ΩT ,

∂tφj = ∆φj + aijφi + ajjφj + akjφk in ΩT ,
∂tφk = ∆φk + aikφi + ajkφj + akkφk in ΩT ,
Φ(·, t) = 0 on ΣT ,
Φ(·, 0) = Φ0(·) in Ω,
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satisfy the following Carleman estimate:

I(τ, φi) + I(τ, φj) + I(τ, φk) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα(t)+2sη)(|φi|2 + |f |2)dxdt

+

∫∫
ΩT

e−2sη(sρ)τ |f |2dxdt
)
.(4.5)

where f =
∑n
l=1,l 6=i,j,k aliφl. It is now straightforward to see that a combination of

(4.4) and (4.5) gives

l=n∑
l=1

I(τ, φl) ≤ C
l=n∑

l=1;l 6=k,j

∫∫
ωT

(sρ)τ+3e−2sη|φl(x, t)|2dxdt.

Classical energy estimates give now the observability inequality and therefore the null
controllability result.

Remark 4.3. Observe that the use of Carleman inequality (1.1) involves terms
that include the operator Q defined in (6.5). This imposes the previous conditions 1
and 2 on the coefficients amk and amj for m 6= i, j, k.

All the regularity assumptions of system (4.2) can be weakened at it has been
pointed out in Remark 3.5.

4.3. Inverse Problems. This subsection is devoted to the question of the iden-
tification of coefficients for a reaction-diffusion system of n equations (n ≥ 3) in a
bounded domain, with the main particularity that we observe only (n−2) components
of the system. Such reconstruction result can be applied to several models involving
3× 3 linear reaction-diffusion system. For example, it is a classical approach to treat
Prey-Predator models with prey-stage structure (see [30] and references therein).
In the literature, very few results exist concerning the reconstruction of coefficients
in parabolic systems. We can cite [31] in which the authors obtain the identification
of the principal part of a parabolic equation using a large set of inputs. In a previ-
ous result [8], the authors obtain the reconstruction of all the coefficients in a 2 × 2
reaction-diffusion-advection system by repeated measurements of one component. In
the following result our goal is to minimize the number of components involved for
the reconstruction of the coefficients in a n × n reaction-diffusion system. We claim
that the identification of n coefficients (one in each equation) via a Lipschitz inequal-
ity is possible basing ourselves on the local measurement of only n − 2 components.
However, we are able to reconstruct all the coefficients using well suited repeated
measurements of one (resp. n − 2) component(s) in a 3 × 3 (resp. n × n) linear
parabolic system. The main idea used for this task is similar as one used in [23] or in
[8]. Furthermore, the Carleman estimate obtained in [8] for a 3× 3 reaction-diffusion
system differs from one obtained in this paper by the norm used: W 2,1

2 (ωT ) is the
norm used in the first one and a L2 norm in the second one (see Remark 2.7). In view
of numerical implementations, Theorem 4.4 allows us to proceed with less computa-
tions and the convergence of a scheme based on a L2 norm is easier to obtain than for
a stronger norm. The key ingredient is the stability result for 3× 3 reaction diffusion
systems and the case of n equations is a direct consequence, so let us focus for n = 3.

For simplicity in the exposition of the following result we will consider the case in
which all the coefficients in the system are time independent. In fact this condition
is only used for the coefficients we want to recover.
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Consider the following 3×3 reaction-diffusion system where (aij)1≤i,j≤3 ∈ C4(Ω)9:
∂tU = ∆U + a11U + a21V + a31W in ΩT ,
∂tV = ∆V + a12U + a22V + a32W in ΩT ,
∂tW = ∆W + a13U + a23V + a33W in ΩT ,
U = k1, V = k2, W = k3 on ΣT ,
U(., 0) = U0 V (., 0) = V0 and W (., 0) = W0 in Ω.

Let (Ũ , Ṽ , W̃ ) be solution of

∂tŨ = ∆Ũ + a11Ũ + ã21Ṽ + a31W̃ in ΩT ,

∂tṼ = ∆Ṽ + a12Ũ + a22Ṽ + ã32W̃ in ΩT ,

∂tW̃ = ∆W̃ + ã13Ũ + a23Ṽ + a33W̃ in ΩT ,

Ũ = k1, Ṽ = k2, W̃ = k3 on ΣT ,

Ũ(., 0) = U0, Ṽ (., 0) = V0 and W̃ (., 0) = W0 in Ω.

with ãij ∈ C4(Ω)9. Following the method developped in [8] and [13], from Carleman
estimate (3.4), we obtain the following identifiability and Lipschitz stability estimate
for three coefficients (one in each equation) (e.g. a21, a32, a13) by the observation of
only one component on ω assuming the knowledge of these coefficients on ω for any
subset ω of Ω.

Theorem 4.4. Assume that Assumption 3.2 is checked. Assume that there exists
ε > 0 such that k1, k2, k3 ∈ H1(0, T ;H2+ε(∂Ω)) ∩ H2(0, T ;Hε(∂Ω)), U0, V0,W0 ∈
H2(Ω). Suppose that (ãij) are such that there exist C > 0 and T ′ ∈ (0, T ) such that

|Ũ(., T ′)| ≥ C in Ω, |Ṽ (., T ′)| ≥ C in Ω, |W̃ (., T ′)| ≥ C in Ω. Assume that aij = ãij
on ω for (i, j) ∈ {(2, 1), (3, 2), (1, 3)}.
Then there exists κ > 0 such that

‖a21 − ã21‖2L2(Ω) + ‖a32 − ã32‖2L2(Ω) + ‖a13 − ã13‖2L2(Ω) ≤ κ
(
‖∂t(U − Ũ)‖2L2(ωT )

+‖(U − Ũ)(T ′)‖2H2(Ω) + ‖(V − Ṽ )(T ′)‖2H2(Ω) + ‖(W − W̃ )(T ′)‖2H2(Ω)

)
.(4.6)

As for subsection 4.2, the previous result can be extended to the identification of
n coefficients by (n−2) local observations for a (n×n) reaction-diffusion system. We
need only the knowledge of 3 coefficients on ω. Indeed, following the previous method
for a (3 × 3) system, consider a (n × n) reaction-diffusion system like (4.2) and fix
three components (e.g. y1, y2, y3), the three first associated equations and three
coefficients inside to recover. Assuming the knowledge of these three coefficients on
the set of observation ω and using the previous Carleman estimate, we derive easily
a stability estimate similar to (4.6) for n coefficients, one in each equation, by the
observation of only n− 2 components (y1, and (yi)i≥3) without anymore assumption
on the coefficients to recover.
All the regularity assumptions of system (4.2) can be weakened at it has been pointed
out in Remark 3.5.

5. Comments. In this paper we presented only one result for a non linear case
of coupled equations, Theorem 4.1. In this result we assumed that F was globally
Lipschitz with respect to all its components. We think that this condition can be
weakened assuming some slightly superlinear growth as in [15]. However, even if it is
possible to obtain Carleman estimates with the explicit dependence of the L∞ norms
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of the terms a1k, we think that new technical difficulties may arose. To obtain the
superlinear grow result it is necessary to construct more regular solutions, and if this
can be done, clearly is a result out of the scope of this paper. It is worth mentioning
that in the case of cascade systems of two equations, this was done in [19]. Also, for
a particular non linear growing, in the case of two equations, Coron’s return method
was used in [12].

There are several open problems related with the controllability of scalar coupled
linear parabolic equations and of course related with other parabolic systems that
arise in other contexts as fluid dynamics. In this sense it is worth mentioning that
there is a vast literature in this subject and the inherent problems are of different
nature than the ones treated in this paper. To read about this interesting subject see
e.g. [17], [11] and the references therein.

On the other hand it is interesting to point out that the condition ∂Ω ∩ ∂ω = γ
with |γ| 6= 0 is used only to invert an operator of the form B · ∇+ .... We think that
there my exist other conditions that warranty the invertibility of this operator.

General results for controllability of reaction-diffusion-advection systems of more
that two equations are, as far as we know, open problems. Also to give necessary
conditions or new sufficient conditions for the controllability of n × n systems for
n > 3 is a challenging problem where even small progress is difficult.

6. Appendix.

6.1. The case of a general vector field B. Let us briefly show how one can
transform (2.9) to the form (2.15). Let (F,O) a C2-parameterization of γT (or a
subset of γT if necessary):

F :

{
O 7→ γT

(y1, ..., yn) 7→ (σ, t)
.

Let B̃ = (B, 0). From Assumption 2.5, there exists Ξ > 0 such that the following
map is well defined:

Λ :
(0,Ξ)×O → ΩT

(ζ, y) 7→ Λ(ζ, y),

where, for all y ∈ O,

dΛ

dζ
(ζ, y) = B̃(Λ(ζ, y)), Λ(0, y) = F (y)

and ω1,T := Λ((0,Ξ)×O) ⊂ ωT .
One has: ∂ω1,T ∩ ∂ΩT = ∂ωT ∩ ∂ΩT = γT (possibly choosing a subset of γT ).

By construction, we have ∂ζΛ = B̃ ◦ Λ.
Under Assumption 2.5, the map Λ is onto from (0,Ξ) ×O to ω1,T , Λ ∈ W 2,∞(ω1,T )
(cf item 3) and Λ−1 ∈W 2,∞((0,Ξ)×O) (cf item 2).
Moreover, if we set ṽ = v ◦ Λ , then ∂ζ ṽ = ( B · ∇v) ◦ Λ.
Let (L,D(L)) defined by Lv = B · ∇v + bv, D(L) = {v ∈ H1(ω1,T ) ; v|γT = 0}.
By the change of variables, L is transformed in

L̃ṽ = ∂ζ ṽ + b̃ṽ, D(L̃) = {ṽ ∈ H1((0,Ξ)×O) ; v(0, y) = 0, ∀y ∈ O},(6.1)

with b̃ = b ◦ Λ. Let

Lv = ∂tu− div(H1∇u)− au−A · ∇u− f, v ∈ D(L)(6.2)
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and denote ũ = u ◦ Λ, f̃ = f ◦ Λ.
Then, with the same change of variables and under Assumption 2.5 there exist

a n × n matrix H = (hi,j) ∈ W 2,∞(ωT )n
2

, a vector field E = (Ei) ∈ W 1,∞(ωT )n, a
scalar field e ∈ L∞(ωT ) such that (6.2) is transformed into

L̃ṽ = ∂tũ− div(H∇ũ) + E · ∇ũ+ eũ− f̃ , ṽ ∈ D(L̃).(6.3)

The equation (6.3) with L̃ defined by (6.1) has the form (2.15).
Moreover, in order to obtain (2.14) for a more general vector field B, note that∫∫∫

(0,Ξ)×O
((sρ)τ2+3ξe−2sη ◦ Λ)|ṽ|2|Jac(Λ)|dζdy =

∫∫
ΩT

(sρ)τ2+3ξe−2sη|v|2dxdt,(6.4)

where Jac(Λ) denotes the Jacobian of Λ and ξ the cut-off function defined in (2.18).

Now, we apply L̃−1 to (6.3) and obtain a relation for ṽ similar to (2.17). We multiply
each side by ((sρ)τ2+3ξe−2sηv) ◦ Λ|Jac(Λ)|, we integrate over (0,Ξ)×O and using
(6.4) we obtain (2.14) with

Qf(x, t) = (L̃−1f̃) ◦ Λ−1(x, t),(6.5)

with L̃ and f̃ defined previously.

6.2. Proof of Lemma 2.10. If a ≤ 0, the estimate (2.21) is satisfied for all
s, λ ≥ 0. Let us assume a > 0. Then:

ρa e−sη ≤ 1⇔ ea ln ρ−sη ≤ 1⇔ a ln ρ− sη < 0.

Let λ0 ≥ ln 2
β̄

with β∗ := maxx∈Ω̄ β(x), then using (2.7) we have

η(x, t) ≥ ρ∗, ∀λ ≥ λ0, ∀(x, t) ∈ ΩT .

So (2.21) holds if

a ln ρ∗ ≤ sρ∗.(6.6)

Using that for all λ ≥ λ0, one has

ρ∗ ≥ 4eλ0β−

T 2
:= ρ0,

with β− := minx∈Ω̄ β(x), we deduce that for all s ≥ max{ aT 2

4eλ0β− ,

a ln ρ0
ρ0
} := s0 we have

(6.6) and then (2.21) and the lemma is proved.
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[20] M. González-Burgos, L. de Teresa, Controllability results for cascade systems of m coupled
parabolic PDEs by one control force, To appear in Portugaliae Mathematica.

[21] S. Guerrero, Null controllability of some systems of two parabolic equations with one control
force, SIAM J. Control Optim. 46, no. 2 (2007), 379–394.

[22] O. Yu. Imanuvilov, M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev
spaces of negative order and exact controllability for semilinear parabolic equations,
Publ. Res. Inst. Math. Sci. 39, no. 2 (2003), 227–274.

[23] O. Yu. Imanuvilov, V. Isakov and M. Yamamoto, An inverse problem for dynamical Lamé
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