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CONTROLLABILITY TO TRAJECTORIES FOR SOME PARABOLIC
SYSTEMS OF THREE AND TWO EQUATIONS BY ONE CONTROL

FORCE

ASSIA BENABDALLAH ∗, MICHEL CRISTOFOL † , PATRICIA GAITAN ‡ , AND LUZ DE

TERESA §

Abstract. We present a controllability result for a class of linear parabolic systems of 3 equa-
tions. To prove the result, we establish a global Carleman estimate for the solutions of a system
of 2 coupled parabolic equations with first order terms. We also obtain stability results for the
identification of coefficients of the systems are also obtained.

Key words. Control, observability, Carleman estimates, reaction diffusion systems, inverse
problems.

AMS subject classifications. 93B05, 93B07, 35K05, 35K55, 35R30.

1. Introduction and notations. The controllability of linear ordinary differ-
ential systems is a well understood subject. In particular, if n,m ∈ N with n,m ≥ 1
and A ∈ L(Rn) and C ∈ L(Rm, Rn), then the linear ordinary differential system
Y ′ = AY +Cu is controllable at time T > 0 if and only if the Kalman rank condition

rank [A |C] = rank
[
An−1C |An−2C | · · · |C

]
= n,(1.1)

is satisfied (see for example [18, Chapter 2, p. 35]).
In the last ten years there has being an increasing interest in the study of null

controllability and inverse problems for systems of parabolic equations. To the best
of our knowledge most of the existing results in the litterature deal with zero order
coupling systems or constant coefficients (see for instance [23], [1] [7], [2], [3], [9],
[13], [15], [4], [5], [6] and [14]). In these papers, almost all the results have been
established for 2× 2 systems where the control is exerted on the first equation. The
most general results in this context seem to be those in [14], [4] and [5]. In [14], the
authors study a cascade parabolic system of n equations (n ≥ 2) controlled with one
single distributed control. In [4] and [5], the authors provide necessary and sufficient
conditions for the controllability of n × n parabolic linear systems with constant
or time-dependent coefficients. The main goal of our work is to propose sufficient
conditions to control 3× 3 parabolic linear systems with non constant coefficients by
one control. They generalize the Kalman condition obtained for parabolic systems
with constant coefficients in [4]. The main ingredient of the proof is a Carleman
estimate for a 2 × 2 reaction-convection-diffusion system. This Carleman estimate
allows us to derive a new controllability result for such systems and a stability estimate
for identifications of coefficient of 3× 3 or 2× 2 systems.

Let Ω ⊂ Rn, n ≥ 1 be a bounded connected open set of class C2. Let T > 0 and
let ω be an open non empty subset of Ω. We define ΩT = Ω× (0, T ), ωT = ω× (0, T )
and ΣT = ∂Ω× (0, T ). Our main objective is to establish new controllability results
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for coupled parabolic equations with one distributed control force in ωT . To be more
precise, let us consider second order elliptic self adjoint operators given by

div(Hl∇) =
n∑

i,j=1

∂i
(
hlij(x)∂j

)
, l = 1, 2, 3,(1.2)

with {
hlij ∈W 1,∞(Ω),

hlij(x) = hlji(x) a.e. in Ω,

and the coefficients hlij satisfying the uniform elliptic condition

n∑
i,j=1

hlij(x)ξiξj ≥ h0|ξ|2, ∀ξ ∈ Rn, a.e. in Ω, l = 1, 2, 3,(1.3)

for a positive constant h0. Let (aij)1≤i,j≤3 ∈ C4(ΩT ) (this assumption can be weak-
ened see Remark 3.5). We consider the following 3× 3 reaction-diffusion system

∂ty = (L+A)y + Cf1ω in ΩT ,
y = 0 on ΣT ,
y(·, 0) = y0(·) in Ω,

(1.4)

where

L =

 div(H1∇) 0 0
0 div(H2∇) 0
0 0 div(H3∇)

 ,

A = (aij)1≤i,j≤3, C = (1, 0, 0)t ∈ L
(
R,R3

)
, f ∈ L2(ΩT ) and y0 = (y0,i)1≤i≤3 ∈

L2(Ω)3. In (1.4), y = (yi)1≤i≤3 is the state variable while 1ω denotes the characteristic
function of the open subset ω.

We will say that (1.4) is null controllable if for all initial data in L2(Ω)3 there
exists f ∈ L2(ΩT ) such that the solution of (1.4) satisfy y(·, T ) = 0. In [4] it has been
proved, among other results, that if all the coefficients (aij) are constant and if there
exists d1 ∈ R such that d1H1 = H2 = H3, then System (1.4) is null controllable if and
only if the algebraic Kalman condition, det [A |C] 6= 0, is satisfied. Our main interest
is to remove the assumption that the coefficients have to be constant.

The main result of this paper is
Theorem 1.1. Suppose that a21, a31 are time independent, that there exists

j ∈ {2, 3} such that |aj1(x)| ≥ C > 0 for all x ∈ ω and that H2 = H3. Let j be as
before. We define kj = 6

j ,

Bkj
:= −2H2

(
∇akj1 −

akj1

aj1
∇aj1

)
,

and

bj =
2H2∇aj1(∇akj1aj1−∇aj1akj1)

a2
j1

+
akj1div(H2∇aj1)−aj1div(H2∇akj1)

aj1
− (−1)j det[A |C]

aj1
.
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Assume that either
1. Bkj

= 0 and bj 6= 0 on ωT ,
or
2. ∂ω ∩ ∂Ω = γ , |γ| 6= 0, and Bkj · ν 6= 0, on γ .
Then, for all y0 ∈ (L2(Ω))3, there exists f ∈ L2(ΩT ) such that the corresponding
solution of (1.4) satisfies y1(·, T ) = y2(·, T ) = y3(·, T ) = 0.

Remark 1.2.
1. If all the coefficients are constant, Bkj

= 0 for all j ∈ {2, 3}, then assumptions
of Theorem 1.1 are reduced to bj 6= 0 and more precisely to det[A|C] 6= 0. So
we recover the condition obtained in [5].

2. Furthermore, it is not difficult to construct an example where the algebraic
Kalman rank condition is not satisfied but assumption 2 of Theorem 1.1 is
verified. For example, take Ω any smooth domain in R2 containing ω = {y <
−1, (x − 2)2 + (y + 1)2 < 1} and γ = [1, 3] × {−1}. Take now a32 = a23 =
a22 = a33 = 0, a31(x, y) = −y2, a21 = x+ y and H1 = H2 = H3 = Id. Then
a31 6= 0 in ωT , but det[A,C] = 0 in Ω. Moreover, we have(

∇a21 −
a21

a31
∇a31

)
· ν(x) = 2x− 1 > 0, on γ.

So assumption 2 of Theorem 1.1 is satisfied.
The proof of Theorem 1.1 uses in an essential way a new Carleman inequality

for two coupled reaction-diffusion-convection equations. This inequality allows us to
prove a new controllability result for such a system (see Section 2).

Our controllability result does not need restrictive assumptions such as for cascade
systems or constant coefficients. In the case of constant coefficients, we recover the
Kalman’s criterion proved in [4]. In Section 2, we derive a controllability result for a
class of 2×2 reaction-diffusion-convection systems. In [15], the author studies the null
controllability of systems of two parabolic equations, where the coupling terms are
first order space derivatives in one equation and second order space derivatives in the
other. The results of [15] cannot be derived as a particular case of ours. The reverse
holds true as well. They are independent results, proved with different techniques,
both aiming for a better understanding of the complexity of Carleman estimates for
coupled equations and their controllability and identification consequences.

The results in this paper are inspired in related research results that can be found
in [6] where similar systems are studied under the same conditions. However, we
obtain a null controllability result while in [6] the authors obtain an approximate
controllability result.

A large area of applications in ecology and biology requires the identification of co-
efficients for reaction-diffusion systems. Starting with the pioneer work of Bukhgeim-
Klibanov [8], Carleman estimates have been successfully used for the uniqueness and
stability for determining coefficients. Often, it is difficult to observe all the com-
ponents for reaction-diffusion systems, thus the increasing interest in reducing the
number of observed components. There are very few research papers devoted to this
problem. We can refer to [9], [6], for 2 × 2 parabolic systems and to [17] for Lamé
sytems. We use our new Carleman estimate for 2 × 2 parabolic systems with advec-
tion terms to prove, for a 3 × 3 reaction-diffusion system, a stability result for three
coefficients (one in each equation). We only observe one component and we need the
knowledge of the solution at a fixed time T ′ ∈ (0, T ) and all the domain Ω and these
three coefficients on ω. We generalize for a n× n parabolic system: a stability result
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for n coefficients observing only n−2 components with the partial knowledge of solely
three coefficients.

The paper is organized as follows. In Section 2 we prove a new controllabil-
ity result for a 2 × 2 reaction-diffusion-convection system. This section contains the
main ingredient of this paper: a new Carleman estimate for 2× 2 reaction-diffusion-
convection systems with only one observation. In Section 3 we prove our main result:
Theorem 1.1. To prove this, we establish an observability estimate for the correspond-
ing adjoint system. This Carleman estimate for 3×3 reaction-diffusion systems follows
from the previous one for 2 × 2 reaction-diffusion-convection systems. We conclude
in Section 4 with some applications to inverse problems and generalizations for more
than 3 equations.

2. Controllability for a 2 × 2 reaction-diffusion-convection system. In
this section we present a null controllability result for coupled parabolic systems.
We consider the case of two coupled reaction-diffusion-convection equations and we
control one of them. Let us consider

∂ty1 = div(H1∇y1) + a11 y1 + a12 y2 +A11 · ∇y1 +A12 · ∇y2 + fχω in ΩT ,
∂ty2 = div(H2∇y2) + a21 y1 + a22 y2 +A21 · ∇y1 +A22 · ∇y2 in ΩT ,
y1(·, t) = y2(·, t) = 0 on ΣT ,
y1(·, 0) = y0

1(·), y2(·, 0) = y0
2(·) in Ω.

(2.1)
with aij ∈ C4(ΩT ) and Aij ∈ C1(ΩT )n for i, j = 1, 2 (here again this regularity can be
weakened see Remark 3.5). We say that system (2.1) is null controllable if for every
initial data (y0

1 , y
0
2) ∈ (L2(Ω))2 there exists f ∈ L2(ωT ) such that the corresponding

solution of (2.1) satisfies

y1(T ) = y2(T ) = 0.

The first controllability result we obtain is the following one :
Theorem 2.1. Let us assume that A21 is time independent on ωT and that ω of

class C2, ω ⊂ Ω is such that for some γ ⊂ ∂Ω, |γ| 6= 0 with γ ⊂ ∂ω∩∂Ω we have that
|A21(x) · ν(x)| 6= 0 for every x ∈ γ. Furthermore, assume that A21|ω ∈ W 3,∞(ω)n.
Then, System (2.1) is null controllable at time T > 0.

As in the scalar case the null controllability of (2.1) is equivalent to the obtention
of an observability inequality for the adjoint system (2.3) (see e.g [12], [11], [10]).
That is, Theorem 2.1 is equivalent to prove the following result:

Theorem 2.2. Under the assumptions of Theorem 2.1 there exits C > 0 such
that ∫

Ω

(
|ϕ1(0)|2 + |ϕ2(0)|2

)
dx ≤ C

∫ T

0

∫
ω

|ϕ1|2dxdt(2.2)

holds true for any solution of
−∂tϕ1 = div(H1∇ϕ1) + (a11 −∇ ·A11)ϕ1 + (a21 −∇ ·A21)ϕ2 −A11 · ∇ϕ1 −A21 · ∇ϕ2 in ΩT ,
−∂tϕ2 = div(H2∇ϕ2) + (a12 −∇ ·A12)ϕ1 + (a22 −∇ ·A22)ϕ2 −A12 · ∇ϕ1 −A22 · ∇ϕ2 in ΩT ,
ϕ1(·, t) = ϕ2(·, t) = 0 on ΣT ,
ϕ1(·, T ) = ϕT1 (·), ϕ2(·, T ) = ϕT2 (·) in Ω.

(2.3)
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2.1. Proof of the controllability result. We prove Theorem 2.1 assuming
that Theorem 2.2 holds true. The proof of Theorem 2.2 uses the Carleman inequal-
ity proved in the next subsection. So we first state the Carleman inequality, prove
Theorem 2.2, and conclude the section with the proof of the Carleman inequality, i.e
Theorem 2.5.

Proof. [Proof of Theorem 2.1]
We now prove Theorem 2.1 using (2.2). They are several ways to prove it. We use

the most direct technique. Let V = L2(Ω)×L2(Ω), and let G and L be the following
linear mappings:

L : L2(ωT )→ V f 7→ (y1(T ), y2(T ))

where (y1(·), y2(·)) is the corresponding solution of (2.1) with (y0
1 , y

0
2) = (0, 0), and

G : V → V (y0
1 , y

0
2) 7→ (y1(T ), y2(T ))

where (y1(·), y2(·)) solves (2.1) with f = 0. Then Theorem 2.1 is equivalent to the
inclusion

R(G) ⊂ R(L).(2.4)

Both G and L are V -valued, bounded linear operators. So (2.4) holds if and only if,
for every (ϕT1 , ϕ

T
2 ) ∈ V ,

‖G∗(ϕT1 , ϕT2 )‖V ≤ C‖L∗(ϕT1 , ϕT2 )‖L2(ωT )(2.5)

for some constant C > 0. A simple computation shows that

G∗(ϕT1 , ϕ
T
2 ) = (ϕ1(x, 0), ϕ2(x, 0)), L∗(ϕT1 , ϕ

T
2 ) = ϕ11ωT

where ϕ1 and ϕ2 solve the adjoint system (2.3). Hence (2.5) is just (2.2) and Theorem
2.1 is proved.

2.2. A new Carleman estimate for a 2× 2 reaction-diffusion-convection
system with one observation. We consider the following reaction-diffusion-convection
system: 

∂tu = div(H1∇u) + au+ bv +A · ∇u+B · ∇v + f in ΩT ,
∂tv = div(H2∇v) + cu+ dv + C · ∇u+D · ∇v + g in ΩT ,
u(·, t) = v(·, t) = 0 on ΣT ,
u(·, 0) = u0(·), v(·, 0) = v0(·) in Ω.

(2.6)

Recall that for a, b, c, d ∈ L∞(ΩT ) and A,C,D ∈ L∞(ΩT )n, B ∈ L∞(Ω)n and for
u0, v0 ∈ L2(Ω), f, g ∈ L2(ΩT ) the reaction-diffusion-convection system (2.6) admits
a unique solution (u, v) ∈ C([0, T ];L2(Ω))2 ∩ L2(0, T ;H1

0 (Ω))2. Moreover, if u0, v0 ∈
H2(Ω) ∩ H1

0 (Ω), then (u, v) ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω))2 ∩ C1([0, T ];L2(Ω))2. This

result can be obtained in a classical way, see for example [20].
In order to prove (2.2), our main interest is to derive an observability estimate for

(u, v) solutions of (2.6) by solely the observation of u in ωT . First of all let us recall
the notations for Carleman’s estimates (see [12] and [16]).
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Let β ∈ C2(Ω) be the function constructed by Fursikov and Imanuvilov in [12]
such that β ≥ 0 in Ω̄, |∇β| > 0 in Ω \ ω and define by


η(x, t) :=

e2λK − eλβ(x)

t(T − t)
, ∀(x, t) ∈ ΩT ,

ρ(t) :=
eλβ(x)

t(T − t)
, ∀t ∈ (0, T ),

(2.7)

where

K ≥ ‖β‖L∞(Ω)(2.8)

is a fixed constant whose choice will be specified later. We introduce the functional

I(τ, ϕ) =

∫∫
ΩT

(sρ)τ−1e−2sη

(
|ϕt|2 +

∑
1≤i≤j≤n

∣∣∂2
xixj

ϕ
∣∣2 + (sλρ)2 |∇ϕ|2 + (sλρ)4 |ϕ|2

)
dxdt.

(2.9)

Assumption 2.3.
1. Let ω ⊂ Ω be a non-empty subdomain of class C2 with ∂ω ∩ ∂Ω = γ and |γ|
6= 0,

2. |B(x) · ν(x)| 6= 0, x ∈ γ,
3. H1|ω ∈ W 2,∞(ω)n

2
, B|ω ∈ W 2,∞(ω)n, A|ωT

∈ L∞(0, T ;W 1,∞(ω))n and
b|ωT

∈W 2,∞(ωT ).
We first recall a Carleman inequality for a single parabolic equation. That is, for

a ∈ L∞(ΩT ), A ∈ L∞(ΩT )n, H ∈ W 1,∞(Ω)n
2
, let R = div(H∇) + A · ∇ + a and

I(τ, ϕ) defined by (2.9) we have the following result
Theorem 2.4. Let ω ⊂ Ω open and non empty, τ ∈ R. Then, there exist two

positive constants s0, C0 (which only depend on Ω, ω, T , H, A, a and τ) such that for
every ϕ ∈ L2(0, T ;H1

0 (Ω)) with ∂tϕ±Rϕ ∈ L2(ΩT ), the following Carleman estimate
holds

I(τ, ϕ) ≤ C̃0

(∫∫
ΩT

(sρ)τe−2sη |∂tϕ±Rϕ|2 dxdt+ λ4

∫∫
ωT

(sρ)τ+3e−2sη |ϕ|2 dxdt
)
,

(2.10)
for all s ≥ s0 and η, ρ defined in (2.7) with K > 0 satisfying (2.8). The proof of this
result can be found in [16]. The new Carleman estimate for a 2×2 reaction-diffusion-
convection system is:

Theorem 2.5. Under Assumption 2.3 there exist two positive constants s0, C
(which only depend on Ω, ω, a, b, c, d, A, B, C, D, H1, H2, τ1 and τ2) and a
constant K, satisfying (2.30), such that for every (u0, v0) ∈ L2(Ω)2 and |τ1− τ2| < 1,
the following Carleman estimate holds

I(τ1, u) + I(τ2, v) ≤ C
(
λ8

∫∫
ωT

e−2sα (sρ∗)τ
∗
|u|2dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |Qf |2dxdt+

∫∫
ΩT

e−2sη((sρ)τ1 |f |2 + (sρ)τ2 |g|2)dxdt
)

(2.11)

where Q is an appropriate operator defined in the Appendix (see (5.4)), η∗ = max
Ω

η,

η− = min
Ω
η, α = 4η− − 3η∗, ρ∗ = max

Ω
ρ and τ∗ = 4τ2 − 3τ1 + 15, for all s ≥ s0 and
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for all (u, v) solution of (2.6) and η defined by (2.7) .

We first prove Theorem 2.2 assuming that Theorem 2.5 holds true.
Proof. [Proof of Theorem 2.2]
We want to prove (2.2). We define u(t) = ϕ1(T − t), v(t) = ϕ2(T − t). Then, u

and v are solutions of (2.6) with a(x, t) = (a11(x, T − t)−∇ ·A11(x, T − t), b(x, t) =
(a21(x, T − t)−∇ ·A21(x, T − t)), A(x, t) = −A11(x, t−T ), B(x, t) = −A21(x, t−T ),
c(x, t) = (a12(x, T − t)−∇ ·A12(x, T − t), d(x, t) = (a22(x, T − t)−∇ ·A22(x, T − t)),
C(x, t) = −A12(x, t − T ), D(x, t) = A22(x, t − T ), f = g = 0 and initial conditions
u(0) = ϕT1 , v(0) = ϕT2 . We can then apply the results of Theorem 2.5 to ϕ1 and ϕ2

and get ∫∫
ΩT

e−2sηρ3(|ϕ1|2 + |ϕ2|2)dxdt ≤ C
∫∫

ωT

|ϕ1|2dxdt.

Note that C > 0 is a generic constant that may change from line to line. We
multiply the first equation in (2.3) by ϕ1 and the second equation by ϕ2 , we add the
two equations, we integrate by parts and apply Gronwall inequality, we then get that
for any 0 ≤ t < τ ≤ T∫

Ω

(|ϕ1(t)|2 + |ϕ2(t)|2)dx ≤ C
∫

Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dx.

This inequality implies on one hand that for τ > 0∫
Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C
∫

Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dx,

and on the other hand that∫
Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C(T )
∫ 3T/4

T/4

∫
Ω

(|ϕ1(τ)|2 + |ϕ2(τ)|2)dxdτ.(2.12)

Observe that, by construction, ρ3(t)e−2sη(t) ≥ C(T ) for t ∈ [T/4, 3T/4]. This fact
combined with (2.12) imply that∫

Ω

(|ϕ1(0)|2 + |ϕ2(0)|2)dx ≤ C
∫∫

ωT

|ϕ1|2dxdt.

Proof. [Proof of Theorem 2.5]
Consider ω̃ ⊂⊂ ω open and non empty. If |τ1 − τ2| < 1, a direct application of

Theorem 2.4 leads to

I(τ1, u) + I(τ2, v) ≤ C
(
λ4

∫∫
ω̃T

(sρ)τ1+3e−2sη|u|2dxdt + λ4

∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt

+

∫∫
ΩT

(sρ)τ1e−2sη |f |2 dxdt +

∫∫
ΩT

(sρ)τ2e−2sη |g|2 dxdt
)
.(2.13)

The main question is to get rid of the term∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt .
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As in ([2], [9]), one will use the first equation in order to derive a local observability
estimate for v with respect to u. In comparison with the previous results, the main
difficulty here is the presence of first order terms on v. Roughly speaking, the idea
used in ([2], [9]) is to transform locally (in ω × (0, T )) the first equation of (2.6) as
v = Lu where L is a partial differential operator (first order in time and second order
in space). In these cases, A = B = C = D = 0 and therefore the main assumption
for this solvability is that b 6= 0 in an open set ω′ × (0, T ) ⊂ ωT . In our case, this
condition is replaced by B · ν 6= 0 on γ × (0, T ) where γ is a part of the boundary of
Ω∩ω and requires ω to be a neighborhood of γ. With these assumptions, one can still
transform the first equation of (2.6) locally in space as v = Lu, but the operator L is
not a partial differential operator. With some technical computations, we are able to
still deduce a local observability estimate for v with respect to u:

Theorem 2.6. Let Assumption 2.3 be satisfied. Suppose that u ∈ C([0, T ];H2(Ω)∩
H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) and v satisfies{
bv +B · ∇v = ∂tu− div(H1∇u)− au−A · ∇u− f in ωT ,
v(·, t) = 0 on γT .

.

Then, for any ˜̃ω ⊂⊂ ω and for all ε > 0, there exists Cε > 0 such that

λ4

∫∫
˜̃ωT

(sρ)τ2+3e−2sη|v|2dxdt ≤ Cελ16

∫∫
ωT

e−2sα (sρ∗)τ
∗
|u|2dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |Qf |2dxdt+ εI(τ2, v),(2.14)

where Q is an appropriate operator defined in the Appendix (see (5.4)), η∗ = max
Ω

η,

η− = min
Ω
η, α = 4η− − 3η∗, ρ∗ = max

Ω
ρ and τ∗ = 4τ2 − 3τ1 + 15, for all s ≥ s0 and

η defined by (2.7).
Proof. [Proof of Theorem 2.6 ] In order to make the proof clearer to the reader,

we are going to prove Theorem 2.6 in the simplest case where

Ω = (0, 1)× Ω′, ω = (0, ε)× ω′(2.15)

with ω′ ⊂ Ω′ ⊂ Rn−1, 0 < ε < 1, and

B(x) = (1, 0, ..., 0).(2.16)

In this case γ = {0} × ω′. As we will show in Remark 2.8, the general case comes
down to this simplest one. With these assumptions, the first equation of (2.6) has the
particular form

∂x1v + bv = ∂tu− div(H1 · ∇u)− au−A · ∇u− f,(2.17)

with

x = (x1, x
′).(2.18)

We will denote γT := γ × (0, T ).
The proof of the Theorem will be done in 3 steps



9

• Step 1 : An equation for v
One can define the following operator

L := ∂x1 + b,(2.19)

with D(L) = {v ∈ L2(0, T );H1(ω)); v(0, x′, t) = 0 on γT ). (L,D(L)) is an
unbounded invertible operator from L2(ωT ) to L2(ωT ). For w ∈ L2(ωT ),
direct computations give that

L−1(w)(x, t) = e

∫ x1

0
b(y1,x

′,t)dy1

∫ x1

0

e
−
∫ y1

0
b(x1,x

′,t)dx1w(y1, x
′, t)dy1.(2.20)

For, p, q ∈ L∞(ωT ), let us define

K(p, q)w(x, t) = p(x, t)
∫ x1

0

q(y1, x
′, t)w(y1, x

′, t)dy1.(2.21)

Note that K(p, q) ∈ L(L2(ωT )) and L−1 = K(p, q) with

p(x, t) = e

∫ x1

0
b(y1,x

′,t)dy1 , q(x, t) = e
−
∫ x1

0
b(y1,x

′,t)dy1 .(2.22)

Moreover under Assumption 2.3, we have p, q ∈W 2,∞(ωT ). As it will be clear
in the sequel, we need to compute the effect of the composition of operators
as K(p, q) on partial differential operators.
We summarize here these computations:

1. For p, q, e ∈ L∞(ωT ), w ∈ L2(ωT )

K(p, q)(ew) = K(p, qe)w.(2.23)

2. For p, q ∈ W 1,∞(ωT ) and E ∈ L∞(0, T ;W 1,∞(ω)), 2 ≤ i ≤ n and
w ∈ H1(ωT ), we have

K(p, q)(E∂x1w)(x, t) = −K(p, ∂x1 (Eq)w)(x, t) + pqEw(x, t)− p(x, t)(qEw)(0, x′, t),
K(p, q)(E∂xiw)(x, t) = ∂xiK(p,Eq)w(x, t)−K(∂xip,Eq)w(x, t)−K(p, ∂xi (Eq))w(x, t),

K(p, q)(∂tw)(x, t) = ∂tK(p, q)w(x, t)−K(∂tp, q)w(x, t)−K(p, ∂tq)w(x, t).
(2.24)

3. For p, q ∈ W 2,∞(ωT ), H ∈ L∞(0, T ;W 1,∞(ω)), 1 ≤ i ≤ n and w ∈
L2(0, T ;H2(ω)), we have
K(p, q)(∂xi (H∂xiw))(x, t) = K(p, q∂xiH)∂xiw(x, t) +K(p,Hq)∂2

xi
w(x, t),

K(p, q)∂2
x1
w(x, t) = K(p, ∂2

x1
q)w(x, t)− (p∂x1qw)(x, t)

+(pq∂x1w)(x, t) + p(x, t)(w∂x1q − q∂x1w)(0, x′, t),

K(p, q)(∂2
xi
w)(x, t) = ∂2

xi
K(p, q)w(x, t)− 2∂xiK(∂xip, q)w(x, t)− 2∂xiK(p, ∂xiq)w(x, t)

+K(∂2
xi
p, q)w(x, t) + K(p, ∂2

xi
q)w(x, t) + 2K(∂xip, ∂xiq)w(x, t).(2.25)

Lemma 2.7. Let H1, A, b, B satisfy Assumption 2.3, p, q defined in (2.22).
Then there exist (pi, qi)2≤i≤n ∈W 2,∞(ωT )2(n−1), (p̃i, q̃i)1≤i≤n ∈W 1,∞(ωT )2n,
k ∈ L∞(ωT ) such that, for any u ∈ C([0, T ];H2(Ω)∩H1

0 (Ω))∩C1([0, T ];L2(Ω)),
the solution v of (2.6) satisfies for every (x, t) ∈ ωT :

v(x, t) = ∂tK(p̃1, q̃1)u(x, t) +

n∑
i=2

∂2
xi
K(pi, qi)u(x, t) +

n∑
i=2

∂xiK(p̃i, q̃i)u(x, t)

+K(p, aq)u(x, t) + k(x, t)u(x, t) +K(p, q)f(x, t) + pq(x, t)h1(0, x
′, t)∂x1u(0, x

′, t).
(2.26)
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Proof. [Proof of the Lemma 2.7] It is a direct consequence of (2.23), (2.24)
and (2.25).

• Step 2: An observability inequality for v with two observations: u
on ωT and ∂νu on γ × (0, T ).
Let ˜̃ω ⊂⊂ ω̃ ⊂⊂ ω, and ξ ∈ C∞(Ω) a cut-off function, such that

ξ(x) = 1,∀x ∈ ˜̃ω
ξ(x) = 0,∀x /∈ ω.(2.27)

We multiply (2.26) by (sρ)τ2+3ξe−2sηv and we integrate on ΩT .∫∫
ΩT

(sρ)τ2+3ξe−2sηv2dxdt =
∫∫

ΩT

(sρ)τ2+3ξe−2sηv∂tK(p̃1, q̃1)udxdt

+
∫∫

ΩT

(sρ)τ2+3ξe−2sηv

n∑
i=2

∂2
xi
K(pi, qi)udxdt

+
∫∫

ΩT

(sρ)τ2+3ξe−2sηv

n∑
i=2

∂xi
K(p̃i, q̃i)udxdt

+
∫∫

ΩT

(sρ)τ2+3ξe−2sηvK(p, aq)udxdt+
∫∫

ΩT

(sρ)τ2+3ξe−2sηvkudxdt

+
∫∫

ΩT

(sρ)τ2+3ξe−2sηvL−1fdxdt+
∫∫

ΩT

(sρ)τ2+3ξe−2sηvp∂x1u(0, x′, t)dxdt.

We estimate each term of the right hand side of the previous equality. For
example for the first one, using the definition of I(τ2, v), Cauchy-Schwartz
and Young inequalities, we can write :

λ4

∫∫
ΩT

(sρ)τ2+3ξe−2sηv∂tK(p̃1, q̃1)udxdt = λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sηv

)
K(p̃1, q̃1)udxdt,

then

|λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sηv

)
K(p̃1, q̃1)udxdt| ≤ |λ4

∫∫
ΩT

∂t
(
(sρ)τ2+3ξe−2sη

)
vK(p̃1, q̃1)udxdt|

+|λ4

∫∫
ΩT

(sρ)τ2+3ξe−2sη∂t (v)K(p̃1, q̃1)udxdt|

≤ εI(τ2, v) + λ4sτ2+4

∫∫
ΩT

(ρ)τ2+5ξe−2sη(K(p̃1, q̃1)u)2dxdt

+λ8sτ2+7

∫∫
ΩT

(ρ)τ2+7ξe−2sη(K(p̃1, q̃1)u)2dxdt

≤ Cελ8sτ2+7‖p‖2∞‖q‖2∞

∫ T

0

∫
ω′
ξe−2sη(ρ)τ2+7

(∫ x1

0

|u|2(y1, x
′, t)dy1

)
dx′dt+ εI(τ2, v)

≤ Cελ8sτ2+7

∫ T

0

∫
ω′

(∫ ε

0

e−2sη(ρ)τ2+7dx1

)
dx′dt+ εI(τ2, v)

≤ Cελ8sτ2+7

∫ T

0

∫
ω′

[∫ ε

0

|u|2(y1, x
′, t)

(∫ 1

0

e−2sη(ρ)τ2+7dx1

)
dy1

]
dx′dt+ εI(τ2, v)

≤ εI(τ2, v) + Cελ
8sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt

with M(x′, t) =
∫ 1

0
ρτ2+7e−2sηdx1.
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After technical calculations, we keep the higher exponents for s and λ, we
obtain:

λ4

∫∫
˜̃ωT

(sρ)τ2+3e−2sη |v|2dxdt ≤ εI(τ2, v)

+Cε

(
λ8 sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt+ λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |L−1f |2dxdt

+λ4

∫ T

0

∫
ω′

∫ 1

0

(sρ)τ2+3e−2sη |∂x1u(0, x′, t)|2dx1dx
′dt

)
.

(2.28)

• Step 3: Estimate of the boundary term
Observe that for any f and h in H2(ω),∫

ω

∂x1f(hf)dx = −1
2

∫
ω

|f |2∂x1(h)dx+
1
2

∫
ω′

(|f |2h)(ε)dx′ − (|f |2h)(0).

We apply this formula for f = ∂x1u, f = u and h such that h(ε) = 0. If we
denote N(x′, t) =

∫ 1

0
ρτ2+3e−2sηdx1, n∗ = 2τ2 − τ1 + 7 then we have

λ4

∫∫
ωT

(sρ)τ2+3e−2sη|∂x1u(0, x
′, t)|2dxdt

= λ4sτ2+3

∫ T

0

∫
ω′

(∫ 1

0

(ρ)τ2+3e−2sηdx1

)
|∂x1u(0, x

′, t)|2dx′dt

= λ4sτ2+3

∫ T

0

∫
ω′
N(x′, t)|∂x1u(0, x

′, t)|2dx′dt

= −λ4sτ2+3

∫∫
ΩT

∂2
x1u∂x1uξN(x′, t)dxdt− 1

2
λ4

∫
ΩT

|∂x1u|
2N(x′, t)∂x1ξdxdt

≤ ε
∫∫

ΩT

(sρ)τ1−1e−2sη∗ |∂2
x1u|

2dxdt+λ8Cε s
n∗
∫∫

ωT

ρ−τ1+1e2sη∗N2(x′, t)|∂x1u|
2dxdt

For the first term in the right hand side of the previous estimate, we obtain∫∫
ΩT

(sρ)τ1−1e−2sη∗ |∂2
x1
u|2dxdt ≤ I(τ1, u).

For the second one, we have

λ8

∫∫
ωT

ρ−τ1+1sn
∗
e2sη

∗
N2(x′, t)|∂x1u|

2dxdt ≤ λ8

∫∫
ωT

ρ−τ1+1sn
∗
e2sη

∗
N2(x′, t)u∂2

x1
udxdt

+λ8

∫∫
ωT

∂x1

(
ρ−τ1+1sn

∗
e2sη

∗
N2(x′, t)

)
∂x1 (

u2

2
)dxdt

:= P1 + P2

Using Young estimate, for the first term P1, we have

P1 ≤ εI(τ1, u) + λ16Cε

∫∫
ωT

ρ−3τ1+3s4τ2−3τ1+15e6sη∗N4(x′, t)|u|2dxdt

≤ εI(τ1, u) + λ16Cε

∫∫
ωT

(sρ∗)4τ2−3τ1+15e−8sη−+6sη∗ |u|2dxdt.
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The last term will be bounded if

−4η− + 3η∗ < 0.(2.29)

For P2, we obtain

P2 ≤ εI(τ1, u) + Cελ
8

∫∫
ωT

ρ−3τ1+1s4τ2−3τ1+13e6sη∗N4(x′, t)|u|2dxdt

≤ εI(τ1, u) + Cελ
8

∫∫
ωT

(sρ∗)4τ2−3τ1+13e−8sη−+6sη∗ |u|2dxdt.

The last term is bounded under the same condition (2.29).
So if we come back to the definition of the weight function

η(x, t) =
e2λK − eλβ(x)

t(T − t)
,

assumption (2.29) is checked for

K ≥ max{ 2ln2
‖β‖∞

, ‖β‖∞}.(2.30)

Finally, we obtain

λ4

∫ T

0

∫
ω′

(sρ)τ2+3e−2sη|∂x1u(0, x′, t)|2dx′dt(2.31)

≤ Cελ16sτ
∗
∫∫

ωT

ρ3−3τ1e6sη∗N4(x′, t)|u|2dxdt+ εI(τ1, u).

So, using (2.28) and (2.31), we obtain

λ4

∫∫
ω̃T

(sρ)τ2+3e−2sη|v|2dxdt ≤ Cελ16 sτ
∗
∫∫

ωT

ρ3−3τ1e6sη∗N4(x′, t)|u|2dxdt,

+Cε λ8 sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt,

+λ4

∫∫
ωT

e−2sη(sρ)3+τ2 |L−1f |2dxdt

+εI(τ1, u) + εI(τ2, v).

Moreover

λ16sτ
∗
∫∫

ωT

ρ3−3τ1e6sη∗N4(x′, t)|u|2dxdt + λ8sτ2+7

∫∫
ωT

M(x′, t)|u|2dxdt

≤ λ16sτ
∗
∫∫

ωT

ρ3−3τ1 (ρ∗)4τ2+12 e−2sα|u|2dxdt,

and the proof of Theorem 2.6 is complete for the case where B = (1, 0, ..., 0).

Remark 2.8.
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1. Note that for more general vector field B we obtain, by a change of variables,
a similar equation:

∂x1 ṽ + bṽ = ∂tũ− div(H · ∇ũ)− E · ∇ũ− eũ− f̃ .

The proof is given in Appendix.
2. Observe that in the case B and b are such that for some subset O ⊂ ω,

B|O = 0 and b|O 6= 0 the proof is much more simpler.
Finally using Theorem 2.6 in (2.13), we obtain Theorem 2.5.

3. Carleman Estimate for 3× 3 Systems.

3.1. Statement of the problem. In this section we prove the main result
of this paper, i.e., Theorem 1.1, that is the null controllability under appropriate
conditions of the 3× 3 reaction-diffusion system


∂ty = (L+A)y + Cf1ω in ΩT ,
y = 0 on ΣT ,
y(·, 0) = y0(·) in Ω,

(3.1)

where,

L =

 div(H1∇) 0 0
0 div(H2∇) 0
0 0 div(H2∇)

 ,

A = (aij)1≤i,j≤3, C = (1, 0, 0)t ∈ L
(
R,R3

)
, f ∈ L2(ΩT ) and y0 = (y0,i)1≤i≤3 ∈

L2(Ω)3.
As in the two dimensional case the result is reduced to proving an observability
inequality to the adjoint system to (3.1). That is, consider

−∂tϕ1 = div(H1∇ϕ1) + a11ϕ1 + a21ϕ2 + a31ϕ3 in ΩT ,
−∂tϕ2 = div(H2∇ϕ2) + a12ϕ1 + a22ϕ2 + a32ϕ3 in ΩT ,
−∂tϕ3 = div(H2∇ϕ3) + a13ϕ1 + a23ϕ2 + a33ϕ3 in Ω,
ϕ1 = ϕ2 = ϕ3 = 0 on ΣT ,
ϕ1(·, T ) = ϕT1 , ϕ2(·, T ) = ϕT2 , ϕ3(·, T ) = ϕT3 , in Ω

(3.2)

Then, Theorem 1.1 is equivalent to the following result:
Theorem 3.1. Suppose that aij ∈ C4(ΩT ), Suppose that a21, a31 are time

independent, that there exists j ∈ {2, 3} such that |aj1(x)| ≥ C > 0 for all x ∈ ω. For
such j we define kj = 6

j ,

Bkj := −2H2

(
∇akj1 −

akj1

aj1
∇aj1

)
,

and

bj =
2H2∇aj1(∇akj1aj1 −∇aj1akj1)

a2
j1

+
akj1div(H2∇aj1)− aj1div(H2∇akj1)

aj1
− (−1)j

det [A |C]

aj1
.

Assume that either
1. Bkj

= 0 and bj 6= 0 on ωT ,
or
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2. ∂ω ∩ ∂Ω = γ , |γ| 6= 0, and Bkj
· ν 6= 0, on γ,

Then, there exists C > 0 such that for every (ϕT1 , ϕ
T
2 , ϕ

T
3 ) ∈ L2(Ω)3 the corresponding

solution to (3.2 satisfies:∫
Ω

(|ϕ1(x, 0)|2 + |ϕ2(x, 0)|2 + |ϕ3(x, 0)|2)dx ≤ C
∫∫

ωT

|ϕ1(x, t)|2dxdt.(3.3)

Observe that the case Bkj
(x, t) = 0 and bj(x, t) 6= 0 was already treated in [3].

The really new result is the case Bkj
·ν(x) 6= 0, on γ. Inequality (3.3) will be deduced

by an appropriate Carleman estimate (as in the two dimensional case treated below).
So, the next subsection is devoted to the proof of this Carleman inequality.

3.2. A new Carleman estimate for a 3×3 reaction-diffusion system with
one observation. In view of applications regarding inverse problems we will consider
the following 3 × 3 reaction-diffusion system (which is the adjoint system of system
(3.1)) where (f, g, h) ∈ L2(Ω)3.

Let (aij)1≤i,j≤3 ∈ C4(ΩT ), Hl = (hlij)1≤i,j≤3, 1 ≤ l ≤ 2 defined by (1.2) and
(1.3). We consider the following system:

∂tu = div(H1∇u) + a11u+ a21v + a31w + f in ΩT ,
∂tv = div(H2∇v) + a12u+ a22v + a32w + g in ΩT ,
∂tw = div(H2∇w) + a13u+ a23v + a33w + h in Ω,
u = v = w = 0 on ΣT ,
u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0, in Ω.

(3.4)

Uniqueness, existence and stability results for (3.4) can be proved by classical theory
(e.g., [20]). In particular, (3.4) admits an unique solution (u, v, w) ∈ C([0, T ];L2(Ω))3∩
L2(0, T ;H1

0 (Ω))3.
Moreover, if u0, v0, w0 ∈ H2(Ω)∩H1

0 (Ω), then (u, v, w) ∈ C([0, T ];H2(Ω)∩H1
0 (Ω))3∩

C1([0, T ];L2(Ω))3 and we will call it strong solution.
The Carleman estimate (2.11) allows us to perform a new Carleman estimate for

this 3× 3 reaction-diffusion-system. First of all, let us precise the assumptions on the
coefficients of system (3.4).

Assumption 3.2.

1. a21 and a31 do not depend on time t,
2. ω ⊂ Ω is a non-empty subdomain of class C2 with ∂ω ∩ ∂Ω = γ and |γ| 6= 0,
3. There exists j ∈ {2, 3} such that |aj1(x)| ≥ C > 0 for all x ∈ ω and for

kj =
6
j

|(H2

(
∇akj1 −

akj1

aj1
∇aj1

)
) · ν)(x))| 6= 0, on γ,

4. Let H2|ω ∈ (W 3,∞(ω))n
2
.

Remark 3.3. In this result, we are again assuming that Bkj
6= 0 in ωT . The

Carleman inequality is still true in the other case and it was already proved in [3].
We obtain the following theorem :

Theorem 3.4. Under Assumption 3.2 there exist a positive function β ∈ C2(Ω)
(only depending on Ω and ω) and two positive constants s0, C (which only depend on
Ω, ω, (aij)(1≤i,j≤3), τ), a constant K (see (3.9)) such that for every (u0, v0, w0) ∈
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L2(Ω)3, (f, g, h) ∈ L2(ΩT )3, the following Carleman estimate holds

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)τ+31e(−4sα+2sη)(|u|2 + |f |2)dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qg|2 + |Qh|2)dxdt(3.5)

+
∫∫

ΩT

e−2sη(sρ)τ (|f |2 + |g|2 + |h|2)dxdt
)
.

for s ≥ s0 and all (u, v, w) solution of (3.4), η defined by (2.7), and Q defined in
(5.4), α = 4η− − 3η∗, η∗ = max

Ω
η, η− = min

Ω
η and ρ∗ = max

Ω
ρ.

Proof. [Proof of Theorem 3.4 ] The proof is done in three steps:
1. We first prove a Carleman estimate with three observations taking sets ˜̃ω ⊂⊂
ω̃ ⊂ ω, such that γ̃ = ∂ω̃ ∩ ∂Ω ⊂ γ and dist (∂ω̃\γ̃, ∂ω\γ) > 0 (this is
necessary technicality that allows to construct ξ satisfying (2.27). A direct
application of Theorem 2.4 leads to

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ4

∫∫
˜̃ωT

(sρ)τ+3e−2sη |u|2dxdt

+λ4

∫∫
˜̃ωT

(sρ)τ+3e−2sη |v|2dxdt +λ4

∫∫
˜̃ωT

(sρ)τ+3e−2sη |w|2dxdt

+

∫∫
ΩT

(sρ)τ e−2sη |f |2 dxdt+

∫∫
ΩT

(sρ)τ e−2sη |g|2 dxdt+

∫∫
ΩT

(sρ)τ e−2sη |h|2 dxdt
)
,

for any ˜̃ω ⊂⊂ Ω. The main question is to get rid of∫∫
˜̃ωT

(sρ)τ+3e−2sη|v|2dxdt+
∫∫
˜̃ωT

(sρ)τ+3e−2sη|w|2dxdt.

2. We eliminate two observations. Let

z = a21v + a31w in ωT .(3.6)

Suppose, for example, that Assumption 3.2 is satisfied for j = 3. If (u, v, w)
is a strong solution of System (3.4), then z defined by (3.6) satisfies:

{
∂tu = div(H1∇u) + a11u+ z + f in ωT ,
∂tz = div(H2∇z) +A · ∇z + az + eu+B · ∇v + bv +G in ωT ,

(3.7)

with

b = 2H2∇a31

(
∇a21a31 −∇a31a21

a2
31

)
+
a21div(H2∇a31)− a31div(H2∇a21)

a31

−a
2
21a32 + a31a21a33 − a31a21a22 − a2

31a23

a31
,

B = −2H2

(
∇a21 − a21

a31
∇a31

)
,

(3.8)

A = −2H2
∇a31

a31
, a = 2

(H2∇a31) · ∇a31

a2
31

− div(H2∇a31)
a31

+
a21a32 + a31a33

a31
,
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e = a12a21 + a13a31, G = a21g + a31h.

We first use Theorem 2.6 to estimate v by z, u and G. Then with Assump-

tion 3.2 and (3.6), we have w =
z − a21v

a31
. Therefore v and w will be estimated

by z (and u,G). It will remain to estimate z by u. Of course, all these esti-
mates are locally (in ωT ). We apply Theorem 2.6 to the second equation of
(3.7), we obtain:

λ4

∫∫
˜̃ωT

(sρ)τ+3e−2sη |v|2dxdt ≤ Cε λ16

∫∫
ω̃T

e−2sα (sρ∗)τ+15|z|2dxdt

+Cλ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qu|2 + |Qg|2 + |Qh|2)dxdt

+εI(τ, v).

Now we are going to estimate the local observation in z by the local observa-
tion in u using the first equation of (3.7). For this, we multiply this equation
by λ16(sρ∗)τ+15ξe−2sαz where ξ is defined in (2.27) and we integrate on ωT .

λ16

∫∫
ω̃T

(sρ∗)τ+15e−2sα|z|2dxdt

≤ λ16

(∫∫
ωT

(sρ∗)τ+15e−2sαz(x, t)ξ(∂tu− div(H1∇u)− a11u− f)dxdt
)
.

Using integrations by part we obtain

λ16

∫∫
ω̃T

e−2sα (sρ∗)τ+15 |z|2dxdt ≤ εI(τ, z)

+Cελ32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα+2sη)(|u|2 + |f |2)dxdt.

The integral in the right hand side of the previous inequality is bounded if:

8η− − 7η∗ > 0.

In others terms we need

K ≥ max{ 3 ln 2
‖β|∞

, ‖β‖∞}.(3.9)

Finally we obtain :

I(τ, u) + I(τ, v) + I(τ, w) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα(t)+2sη)(|u|2 + |f |2)dxdt

+λ4

∫∫
ωT

e−2sη(sρ)3+τ (|Qg|2 + |Qh|2)dxdt

+

∫∫
ΩT

e−2sη(sρ)τ (|f |2 + |g|2 + |h|2)dxdt

)
.
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Remark 3.5. Following the proofs presented here it is clear that the regularity
assumptions on ajk and Ajk are not optimal. We took much more regularity than the
necessary for simplicity. In fact, in Theorem 1.1 we can assume that ajk ∈ L∞(ΩT )
for every j, k ∈ {1, 2, 3}, akj |ωT

∈ W 2,∞(ωT ) for every j, k ∈ {2, 3} and ak,1|ω ∈
W 4,∞(ω) for k ∈ {2, 3}. In that case, one can consider the following system:

∂ty1 = div(H1∇y1) + F (y1, y2, y3) + χωf in ΩT ,
∂ty2 = div(H2∇y2) + a21y1 + a22y2 + a23y3 in ΩT ,
∂ty3 = div(H2∇y3) + a31y1 + a32y2 + a33y3 in Ω,
y1 = y2 = y3 = 0 on ΣT ,
y1(·, 0) = y0

1 , y2(·, 0) = y0
2 , y3(·, 0) = y0

3 , in Ω.

(3.10)

If F is assumed to be globally Lipschitz with respect to each variable, and a21, a31 and
ω satisfy Assumption 3.2, then System (3.10) is null controllable at time T > 0.

4. Applications and Generalizations.

4.1. Generalization for n × n reaction diffusion systems for n ≥ 3. The
results of Section 3 can be generalized to n×n parabolic systems controlled by (n−2)
controls. Consider A = (alm)1≤l,m≤n a matrix of order n with alm ∈ C4(ΩT ). For
j 6= k ∈ {1, ..., n} consider Cjk = (ρ1, ρ2, ..., ρn)t with ρl = el (where (e1, ..., en) is
the euclidian basis of Rn) except for the two indexes j, k where ρj = ρk = 0. We
assume that j, k can be chosen in such a way that there exists i 6= j, i 6= k such that
|aji(x, t)| ≥ C > 0 for all (x, t) ∈ ωT . We denote B := −2

(
∇aki − aki

aji
∇aji

)
and

b = 2∇aji

(
∇akiaji −∇ajiaki

a2
ji

)
+
aki∆aji − aji∆aki

aji

−
a2
kiaji + ajiakiajj − ajiaki1akk − a2

jiakij

aji
.

Furthermore, we assume that B(x, t) = 0 and b(x, t) 6= 0 on ωT , or that all the
following conditions are checked

1. am,k = 0 for m 6= k, j, i.
2. am,j = 0 for m 6= k, j, i.
3. aki and aji are time independent.
4. ∂ω ∩ ∂Ω = γ , |γ| 6= 0,
5. B · ν(x) 6= 0, on γ.

Theorem 4.1. Under the previous assumptions, the following system in L2(Ω×
(0, T ))n.  ∂tY = ∆Y +AY + CjkUχω in ΩT ,

Y (., t) = 0 on ΣT ,
Y (., 0) = Y0(.) in Ω.

(4.1)

is null controllable.
Proof. Controllability of System (4.1) is equivalent to the following observability

estimate:

∃C > 0; ‖Φ(T )‖2L2(Ω)n ≤ C
n∑

l=1,l 6=j,k

∫∫
ωT

|φl(t)|2dt,
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for all Φ = (φ1, ..., φn)t solution of the adjoint system:{
∂tΦ = ∆Φ +A∗Φ in ΩT ,
Φ(., t) = 0 on ΣT .

(4.2)

By scalar Carleman estimate applied to each equations of System (4.2), we obtain

l=n∑
l=1

I(τ, φl) ≤ C
l=n∑
l=1

∫∫
ωT

(sρ)τ+3e−2sη|φl(x, t)|2dxdt.(4.3)

So (φi, φj , φk) satisfies
∂tφi = ∆φi +

∑n
l=1 aliφl in ΩT ,

∂tφj = ∆φj + aijφi + ajjφj + akjφk in ΩT ,
∂tφk = ∆φk + aikφi + ajkφj + akkφk in ΩT ,
Φ(., t) = 0 on ΣT ,
Φ(., 0) = Φ0(.) in Ω,

(4.4)

satisfy the following Carleman estimate:

I(τ, φi) + I(τ, φj) + I(τ, φk) ≤ C
(
λ32

∫∫
ωT

s(τ+33)(ρ∗)(τ+31)e(−4sα(t)+2sη)(|φi|2 + |f |2)dxdt

+

∫∫
ΩT

e−2sη(sρ)τ |f |2dxdt
)
.(4.5)

where f =
∑n
l=1,l 6=i,j,k aliφl. It is now straightforward to see that a combination of

(4.3 and (4.5 gives

l=n∑
l=1

I(τ, φl) ≤ C
l=n∑

l=1;l 6=k,j

∫∫
ωT

(sρ)τ+3e−2sη|φl(x, t)|2dxdt.

Classical energy estimates give now the observability inequality and therefore the null
controllability result.

Remark 4.2. Observe that the use of Carleman inequality (1.1) involves terms
that include the operator Q defined in (5.4). This imposes the previous conditions 1
and 2 on the coefficients amk and amj for m 6= i, j, k.

All the regularity assumptions of System (4.1) can be weakened at it has been
pointed out in Remark 3.5.

4.2. Inverse Problems. This subsection is devoted to the question of the iden-
tification of coefficients for a reaction-diffusion system of n equations (n ≥ 3) in a
bounded domain, with the main particularity that we observe only (n − 2) compo-
nents of the system. The key ingredient is the stability result for 3 × 3 reaction
diffusion systems and the case of n equations is a direct consequence, so let us focus
for n = 3.

Consider the following 3×3 reaction-diffusion system where (aij)1≤i,j≤3 ∈ C4(Ω)9:
∂tU = ∆U + a11U + a21V + a31W in ΩT ,
∂tV = ∆V + a12U + a22V + a32W in ΩT ,
∂tW = ∆W + a13U + a23V + a33W in ΩT ,
U = k1, V = k2, W = k3 on ΣT ,
U(., 0) = U0 V (., 0) = V0 and W (., 0) = W0 in Ω.

(4.6)
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Let (Ũ , Ṽ , W̃ ) be solution of

∂tŨ = ∆Ũ + a11Ũ + ã21Ṽ + a31W̃ in ΩT ,
∂tṼ = ∆Ṽ + a12Ũ + a22Ṽ + ã32W̃ in ΩT ,
∂tW̃ = ∆W̃ + ã13Ũ + a23Ṽ + a33W̃ in ΩT ,
Ũ = k1, Ṽ = k2, W̃ = k3 on ΣT ,
Ũ(., 0) = U0, Ṽ (., 0) = V0 and W̃ (., 0) = W0 in Ω.

(4.7)

with ãij ∈ C4(Ω)9. Following the method developped in [6] and [9], from Carleman
estimate (3.5), we obtain the following identifiability and Lipschitz stability estimate
for three coefficients (one in each equation) (e.g. a21, a32, a13) by the observation of
only one component on ω assuming the knowledge of these coefficients on ω for any
subset ω of Ω.

Theorem 4.3. Assume that Assumption 3.2 is checked. Assume that there exists
ε > 0 such that k1, k2, k3 ∈ H1(0, T ;H2+ε(∂Ω)) ∩ H2(0, T ;Hε(∂Ω)), U0, V0,W0 ∈
H2(Ω). Suppose that (ãij) are such that there exist C > 0 and T ′ ∈ (0, T ) such that
|Ũ(., T ′)| ≥ C in Ω, |Ṽ (., T ′)| ≥ C in Ω, |W̃ (., T ′)| ≥ C in Ω. Assume that aij = ãij
on ω for (i, j) ∈ {(2, 1), (3, 2), (1, 3)}.
Then there exists κ > 0 such that

‖a21 − ã21‖2L2(Ω) + ‖a32 − ã32‖2L2(Ω) + ‖a13 − ã13‖2L2(Ω) ≤ κ
(
‖∂t(U − Ũ)‖2L2(ωT )

+‖(U − Ũ)(T ′)‖2H2(Ω) + ‖(V − Ṽ )(T ′)‖2H2(Ω) + ‖(W − W̃ )(T ′)‖2H2(Ω)

)
.(4.8)

Remark 4.4. As for subsection 4.1, the previous result can be extended to the
identification of n coefficients by (n − 2) locally observations for a (n × n) reaction
diffusion system. We need only the knowledge of 3 coefficients on ω. Indeed, follow-
ing the previous method for a (3 × 3) system, consider a (n × n) reaction diffusion
system like (4.1) and fix three components (e.g. y1, y2, y3) , the three first associated
equations and three coefficients inside to recover. Assuming the knowledge of these
three coefficients on the set of observation ω and using the previous Carleman esti-
mate, we derive easily a stability estimate similar to (4.8) for n coefficients, one in
each equation, by the observation of only n− 2 components (y1, and (yi)i≥3) without
anymore assumption on the coefficients to recover.
All the regularity assumptions of System (4.1) can be weakened at it has been pointed
out in Remark 3.5.

5. Appendix . Let us briefly show how one can tranform (2.6) to the form
(2.17). This idea is to make a change of variables such that B · ∇ is transformed in
∂ξ where (ξ, σ) denotes the new variable. From Assumption 2.3, there exists Ξ > 0
such that the following map is well defined:

Λ :
(0,Ξ)× γ → Ω

(ξ, σ) 7→ Λ(ξ, σ) = x

where

dx

dξ
(ξ) = B(x(ξ)) and x(0) = σ,

and ω1 := Λ((0,Ξ)× γ) ⊂ ω.
One has ∂ω1 ∩ ∂Ω = ∂ω ∩ ∂Ω = γ. We have to define the derivative with respect to
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one point of γ. To do this, we consider a parametering of γ ∈ C2. The new map, still
denoted Λ, will be defined on (0,Ξ)×O, where O is the open set of Rn−1 where we
define the parametering. We denote (ξ, σ) the new variables where σ = (σ1, ..., σn−1).
It is easy to check that

∂ξΛ = B ◦ Λ.

It is not difficult to show that under Assumption 2.3, the map Λ ∈ W 2,∞(ω1). It is
onto from (0,Ξ)× γ to ω1 and Λ−1 ∈W 2,∞(0,Ξ)×O).

If we set

ṽ = v ◦ Λ ,

we have

∂ξ ṽ = (∇v ◦ Λ)∂ξΛ = (B · ∇v) ◦ Λ.

Define the operator (L,D(L)) with

Lv = B∇v + bv, D(L) = {v ∈ H1(ω1) ; v|γ = 0}.

From the first equation of (2.6), one has

Lv = ∂tu− div(H1 · ∇u)− au−A · ∇u− f.(5.1)

By the change of variables, L is transformed in

L̃ṽ = ∂ξ ṽ + b̃ṽ,(5.2)

D(L̃) = {ṽ ∈ H1((0,Ξ)× γ) ; v(0, σ) = 0, (σ, t) ∈ O}.

where b̃ = b◦Λ. Denote ũ = u◦Λ, f̃ = f ◦Λ, it is clear that there exist a n×n matrix
H = (hi,j), a vector field E = (Ei), a scalar field e such that (5.1) is transformed into

L̃ṽ = ∂tũ− div(H · ∇ũ) + E · ∇ũ+ eũ− f̃ .(5.3)

The equation (5.3) with L̃ defined by (5.2) has the form (2.17). Then we apply L̃−1

to (5.3) and obtain an equation for ṽ similar to (2.26). Then we multiply this last
equation by ((sρ)τ2+3ξe−2sηv) ◦ Λ|Jac(Λ)|, where Jac(Λ) denotes the Jacobian of Λ
and we integrate on (0,Ξ)×O × (0, T ).

Like this, we get∫∫∫
(0,Ξ)×O×(0,T )

((sρ)τ2+3ξe−2sη◦Λ)|ṽ|2|Jac(Λ)|dξdσdt =
∫∫

ΩT

(sρ)τ2+3ξe−2sη|v|2dxdt.

Therefore, we obtain (2.14) with

Qf(x, t) = (L̃−1f̃) ◦ Λ−1(x, t),(5.4)

with L̃ and f̃ defined previously.
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tion with a nonlinear term involving the state and the gradient, Nonlinear Anal. 57, no. 5-6
(2004), 687–711.

[8] A.L. Bukhgeim and M.V. Klibanov, Uniqueness in the large of a class of multidimensional
inverse problems, Soviet Math. Dokl., 17 (1981), 244-247.

[9] M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a 2X2 reaction-diffusion
system using a Carleman estimate with one observation, Inverse Problems, 22 (2006),
1561-1573.

[10] A. Doubova, E. Fernández-Cara, M. González-Burgos, E. Zuazua, On the controllability
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