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Abstract
String instruments are usually composed of several strings connected to a vibrating body allowing

efficient sound radiation. For some special string tunings, sympathetic vibrations can occur: if one

string is excited, some others are also excited via the body.

In order to investigate this phenomenon, an analytical model of a simplified generic string in-

strument has been developed. The body of the instrument is represented by a beam clamped at

both ends, to which several strings are attached. The state vector formalism and the transfer

matrix method are used to describe the propagation of bending and extensional waves in each

sub-structure (strings and beam). Coupling conditions between sub-structures take into account

the angle formed by the beam and the strings. This leads to a linear system from which the normal

modes of the assembly are computed. Numerical computations are carried out in the case of the

beam-2 strings assembly and mode shapes are classified thanks to a criterion, the kinetic energy ra-

tio (KER). Four kinds of modes may be identified: beam modes, string modes, beam-string modes

and string-string modes. The latter are responsible for sympathetic response. An experimental

modal analysis carried out on a clamped beam equiped with two strings confirms our theoretical

results.

PACS numbers: 43.40.Cw, 43.75.Gh
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I. INTRODUCTION

String instruments are usually composed of several strings connected to a vibrating body

allowing efficient sound radiation. The plane part of this vibrating body is called soundboard

and is generally a stiffened and tapered plate of complex shape, made from different mate-

rials. When no dampers are applied to the strings, important coupling between them can

occur via the soundboard: if one string is excited, other strings can vibrate and contribute

significantly to the musical sound. This phenomenon is known as sympathetic vibration and

is defined in the dictionary of acoustics [1] as “resonant or near-resonant response of a me-

chanical or acoustical system excited by energy from an adjoining system in steady-state

vibration”.

For some instruments such as the viola d’amore, the baryton or non-european instruments

like the sitar or the sarangi, sympathetic string vibrations result in a characteristic sound

quality: these instruments have additional strings designed to be sympathetically excited

by the main strings [2]. In the case of the violin, sympathetic vibration is highlighted in

[3]: “if one plays the D on the violin G string which matches the pitch of the open D string

and alternately damps and undamps the open D with a finger, the reading on the meter

can be observed to increase about 1-2 dB as the open string is damped. The effect is more

noticeable on a cello or bass”.

Numerous strings of the piano are organised in pairs or triplets (bichord or trichord)

in which the strings are almost tuned in unison. The coupling of these strings has been

investigated in [4, 5, 6]: a model for the normal modes of strings pairs has been developed

taking into account mistuning from unison and the finite admittance of the bridge at the

connection point of the strings. The role of string’s polarization is also pointed out: resistive

and reactive parts of the admittance may differ for ‘horizontal’ and ‘vertical’ vibration.

With this ‘anisotropic boundary conditions’, interactions in the time domain between normal

modes lead to beats and double decay rates in the aftersound. Since the hammer excites

simultaneously the group of two (or three) strings, the tone does not involve as such a

sympathetic vibration. This sympathetic vibration exists when the una corda pedal is used.

In this case, the hammer is mechanically shifted and only one string out of two (or two out

of three) is struck. Coupling between the initially excited string and the other string leads

then to sympathetic vibration [5].

Note that the sympathetic vibration effect has been included in time domain simulation

of piano tones to get realistic synthesis sound. For such simulations, a phenomenological

model of the coupling between strings is introduced and no physical model of the coupling

are described [7].

The harp is the main instrument to which this study can be applied. For this instrument,

the sympathetic vibration effect appears as soon as a string is excited because all the strings

are undamped. This effect remains even if the excited string is damped. Although this effect

is a fundamental characteristic of the instrument, the instrument maker has to design the
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harp in such a manner that sympathetic vibration remains reasonable. Note that the case

of the harp has some particularities: each string is tuned differently from the others and

no pair of strings exists. Different strings can interact even if they are connected to remote

points of the soundboard. In this case, the local admittance of the soundboard is not a

sufficient parameter and structure-borne sound inside the soundboard has to be taken into

account. The whole soundboard and the strings have to be studied as a coupled system.

The aim of this paper is to present a modelling of sympathetic vibration on a simplified

string instrument. The main application is related to the case of the harp but the formulation

can be adapted to the piano’s configuration. This model allows us to determine the normal

modes of a structure coupled to a great number of strings and to identify those which are

responsible for the sympathetic phenomenon.

The paper is structured as follows: first, the state vector formalism and the transfer

matrix method are presented and applied to obtain the normal modes of a beam-N strings

assembly. The case of a beam-2 strings assembly is then highlighted. Numerical results

for modes shapes of the assembly are given and classification of these modes is proposed

using an appropriated criterion. Experimental modal analysis is also performed on the

studied beam-2 strings assembly and confirms the theoretical results. Finally, the influence

of inharmonicity on the modes, responsible for sympathetic vibration, is studied.

II. MODEL OF A BEAM-N STRINGS ASSEMBLY

In order to investigate couplings between strings via the instrument’s soundboard, we

consider a simplified configuration: the soundboard is represented by a simple beam, on

which several strings are connected. Such a choice allows to describe the structure-borne

coupling in an analytical way. The aim of this section is to present a method for calculating

modes of a beam-N string assembly: the state vector formalism and the transfer matrix

method are applied in this context in order to obtain the normal modes (eigenfrequencies

and mode shapes) of the assembly.

A. Description of the assembly

The beam-N strings assembly is described in figure 1. This plane assembly is constituted

of a uniform, prismatic beam on which N different strings are connected. The beam is

supposed to be clamped at points A and B. The extremity Oi of the i-string (i=1...N) is

the string connection point to the beam. The other extremity Ci of the i-string is supposed

to be simply supported. The angle αi between the axis (A, xb) of the beam and the axis

(A, xsi) of the i-string induces coupling between longitudinal and bending vibrations in the

beam and in the i-string. In the case of the harp, this angle is about 40◦.

The chosen configuration is well adapted to the case of the harp: for this instrument, the
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strings are connected on the symmetry line of the soundboard, and thus its vibrations can

be modelled using an equivalent beam.

FIG. 1: Diagram of a clamped-clamped beam connected to several fixed strings. It includes local

coordinate sytems and the notation used.

B. Transfer Matrix for a uniform sub-structure

In harmonic regime (ejwt), the vibratory state of each sub-structure (string or beam) of

the assembly is described at any point of its neutral line by a state vector denoted by X (x)

whose components are kinematic and force variables [8, 9, 10]. The same generic name x is

used to denote the space coordinate in the beam and in the strings. It permits us to present

in the same manner the motion equations related to beam and to strings. In figure 1, the

coordinate x correspond to xb for the beam and to xsi for the i-string. For the i-string, the

state vector is the 4-by-1 vector,

X s(x) =


us(x)

ws(x)

Ns(x)

Qs(x)

 , (1)

where us, ws are the longitudinal and transversal displacements and Ns, Qs are the longitu-

dinal and transversal forces. In the beam, the state vector is the 6-by-1 vector:

X b(x) =



ub(x)

wb(x)

θb(x)

Nb(x)

Qb(x)

Mb(x)


, (2)

where ub(x), wb(x) and θb are respectively the longitudinal, transverse displacements and

the slope of the beam cross section (figure 2) and where Nb(x), Qb(x) and Mb(x) are re-
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spectively the longitudinal transverse forces and bending moment. Note that longitudinal

displacements are taken into account to ensure kinematic continuities.

The beam and strings bending motions are respectively described in the framework of the

elastic string’s theory [11] and of the Euler-Bernoulli beam model [12]. Extensionnal motions

are described in the framework of classical rod theory [12]. No dissipative phenomena are

included. For all these kinematic models, the equations of motion of a sub-structure (beam

or string) can be written as a first order differential matrix equation, called state equation,

dX (x)

dx
= H(ω)X (x). (3)

Matrix H(ω) is the characteristic matrix of the sub-structure. Since each sub-structure is

supposed to be uniform, the matrix H(ω) is a space invariant matrix depending only on the

angular frequency ω. The solution of (3) can be written [8, 9] as

X (x) = T(x, x0)X (x0), (4)

where T(x, x0) is the transfer matrix between the state vector at point x0 and the state

vector at point x. This transfer matrix can be straightforwardly determined from matrix H.

It is given by

T(x, x0) = EQ(x, x0)E
−1, (5)

where E is the matrix of eigenvectors of matrix N, defined by H = N. Matrix E obeys the

fundamental relationship,

NE = EΛ, (6)

where Λ is the diagonal matrix whose terms are the eigenvalues ((λk)k=1...N) of the matrix

N,

Λ = diag(λk). (7)

Each eigenvalue λk corresponds to a wavenumber. Since the beam and the strings have an

axial symmetry, these eigenvalues appear by pairs (λk,−λk) corresponding to wave propaga-

tion in two opposite directions. In relation (5), the matrix Q(x, x0) is the propagator matrix

given by

Q(x, x0) = diag
(
eλk(x−x0)

)
. (8)

For beam and string’s segments, the expression of the characteristic matrix H(ω) and the

transfer matrix T(x, x0) are given in appendices A and B.

C. Coupling equations at beam-string connection point

The connection between the beam and the i-string is shown in figure 2. Points O−
i and

O+
i are limit points of the connection volume belonging to the beam’s parts. Point Oi is the

limit point belonging to the i-string.
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FIG. 2: Connection between beam and string including local coordinate sytem and notations. In

grey, the connection volume, supposed to be very small.

Since the connection volume is supposed to be very small, kinematic continuity relations are

assumed:

ub(O
−
i ) = ub(O

+
i ) (9)

wb(O
−
i ) = wb(O

+
i ) (10)

θb(O
−
i ) = θb(O

+
i ) (11)

us(Oi) = us(O
+
i ) cos(αi) + ws(O

+
i ) sin(αi) (12)

ws(Oi) = −us(O
+
i ) sin(αi) + ws(O

+
i ) cos(αi). (13)

Mass and rotational inertia of the connection volume are ignored, it implies that the sum

of the force and of the moment continuity applied to the connection equal zero. Projecting

such relations on the local axis (xb, yb, z) leads to

Nb(O
+
i )−Nb(O

−
i ) + Ns(Oi) cos(αi)−Qs(Oi) sin(αi) = 0 (14)

Qb(O
+
i )−Qb(O

−
i ) + Ns(Oi) sin(αi) + Qs(Oi) cos(αi) = 0 (15)

Mb(O
+
i )−Mb(O

−
i ) = 0. (16)

Using the state vector formalism introduced in (1) and (2), coupling equations (9) to (16)

can be written on matrix forms as:

X b(O
+
i ) = X b(O

−
i ) + KiX s(Oi) (17)

and

LX s(Oi) + MiX b(O
+
i ) = 0, (18)

where

L =

(
1 0 0 0

0 1 0 0

)
, Mi =

(
cos(αi) sin(αi) 0 0 0 0

− sin(αi) cos(αi) 0 0 0 0

)
.
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and

Ki =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 − cos(αi) sin(αi)

0 0 − sin(αi) − cos(αi)

0 0 0 0


.

The matrices L and Mi are called continuity matrices. The matrix Ki is a coupling

matrix, depending on the connection angle αi, which is responsible for the coupling between

longitudinal and transverse motions in each string and in the beam.

D. Modes of the assembly

The state vector at one point of the assembly depends on the state vector on its boundary

points: A, B, C1, ..., CN . For these particular points, the number of state vector components

is 12+4N : 12 for the beam state vectors (X b(A) and X b(B)) and 4N for the N string state

vectors (X s(C1), ..., X s(Ci)). Half of these 12+4N state vector components are imposed by

boundary conditions. In the case of the clamped beam and of the fixed strings ends that are

considered here, every kinematic variables, indicated by index k (displacements and slopes),

are set to zero. Forces variables, indicated by index f (forces and moments) are unknown

and do not equal zero. Equations of the assembly impose 6+2N transfer relations between

the 6+2N components of the boundary state vectors.

A first set of 2N equations is given by the following relation, proved in appendix C, for

i = 1...N ,

LTs(Oi, Ci)X s(Ci) + MiTb(O
+
i , A)X b(A) +

i∑
j=1

[
MiTb(O

−
i , O+

j )KjTs(Oj, Cj)X s(Cj)
]

= 0.

(19)

A second set of 6 equations is obtained when the transfer relation between state vectors

X b(O
+
N) and X b(B), given by

X b(O
+
N) = T(xON

, xB)X b(B), (20)

is associated to the recurrence relation (C1), leading to:

X b(A)− Tb(A, B)X b(B) +
N∑

j=1

[
Tb(A, O+

j )KjTs(Oj, Cj)X s(Cj)
]

= 0. (21)

The set of 6+2N independent scalar relations given above may be written in matrix form
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as:

R


X b(A)

X b(B)

X s(C1)
...

X s(CN)

 =

(
R1 R2

R3 R4

)


X b(A)

X b(B)

X s(C1)
...

X s(CN)

 =



0
...
...
...

0


(22)

where

R1 =
(

I6 −Tb(A, B)
)

, (23)

R2 =
(

Tb(A, O+
1 )K1Ts(O1, C1) · · · Tb(A, O+

N)KNTs(ON , CN)
)

, (24)

R3 =

 M1Tb(O
+
1 , A) 0

...
...

MNTb(O
+
N , A) 0

 , (25)

R4 =


LTs(O1, C1) 0 · · · 0

M2Tb(O
−
2 , O+

1 )K1Ts(O1, C1) LTs(O2, C2) 0 · · · ...
... 0

MNTb(O
−
N , O+

1 )K1Ts(O1, C1) · · · MNTb(O
−
N , O+

N−1)KN−1Ts(ON−1, CN−1) LTs(ON , CN)

 .(26)

Thus, the 12+4N-by-1 vector of state vectors at the ends, explicited in the relation (22),

can be written on the following form taken into account the components set to zero because

of boundary conditions:


X b(A)

X b(B)

X s(C1)
...

X s(CN)

 =



X k
b(A)

X f
b (A)

X k
b(B)

X f
b (B)

X k
s(C1)

X f
s (C1)
...

X k
s(CN)

X f
s (CN)


=



0

X f
b (A)

0

X f
b (B)

0

X f
s (C1)
...

0

X f
s (CN)


=



03 · · · · · · · · · 03

I3 · · · · · · · · · ...

03 03 · · · · · · ...

03 I3 03 · · · ...
... 02 02 · · · ...
...

... I2 02
...

...
... 02

. . .
...

...
...

...
... 02

02 · · · · · · 02 I2




X f

b (A)

X f
b (B)

X f
s (C1)
...

X f
s (CN)

 = ZX f ,

(27)

where X f denotes the force variables of all state vectors at the boundaries. Therefore, 6+2N

relations remain along with the 6+2N unknown variables of state vectors and may be written

as

(R · Z) X f = RRX f = 0. (28)
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In the case of free vibrations, vector X f is not equal to zero and the matrix RR is not an

inversible matrix, implying:

det (RR(ω)) = 0. (29)

The angular eigenfrequencies ωi of the system are obtained from equation (29). For each

ωi, relation (28) provides the components of X f (with an unknown multiplicative factor)

from which we can perform all state vector components at any point on the assembly by

equations (C1) and (20) and thus obtain the associated mode shape.

III. THE BEAM-2 STRINGS ASSEMBLY CASE

Using the beam-N strings model presented in section II, a numerical application is carried

out in the case of the beam-2 strings assembly and validated by an experimental modal

analysis.

A. Description

The structure used in experimental and theoretical studies is presented in figure 3. It

is composed of 2 strings tuned on octave (the frequency of one almost equals the double

of the other one’s) at E2=82.4 Hz and E3=164.8 Hz on the equal temperament scale based

on A4=440 Hz. Note that such values correspond to fundamental frequencies of uncoupled

strings, allowing to determine the string’s tension if we assume that the beam behaves like

a fixed end. In order to avoid static deformation during the experiment, we choose to fix

the strings not only on either side of the beam but also close to each other, figure 3. The

strings and beam characteristics used in the numerical applications are presented in table I.

FIG. 3: Diagram of beam-2 strings tuned on octave.
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E2 string E3 string Beam

Length Ls = 0.57 m Lb = 1.315 m

Young Modulus Es = 210 GPa Eb = 71 GPa

Section A1 = 1.41 mm2 A2 = 0.45 mm2 Ab = 20×8 mm2

Mass per unit length ρ1 = 11 10−3 kg/m ρ2 = 3.7 10−3 kg/m ρb = 0.416 kg/m

Frequency f1 = 82.4 Hz f2 = 164.8 Hz

Angle α1 = -43◦ α2 = 43◦

Connection points A O1 = 0.54 m A O2 = 0.58 m

TABLE I: Parameters values of the beam-2 strings assembly.

B. Numerical results

1. Eigenfrequencies

Eigenfrequencies of the structure are computed from equation (29). The logarithm of

matrix RR determinant is shown in figure 4 as a function of frequency. Eigenfrequencies are

given by each drop of the curve. We thus obtain 14 eigenfrequencies in the frequency range

0-500 Hz, shown in table II. For high frequencies, above 750 Hz, a numerical divergence

occurs in the calculation of this determinant. As the frequency increases, the matrix RR

becomes ill-conditionned because of exponential terms with real argument present in the

propagator matrix Q, defined by (8). This limitation of the transfer matrix method is well

known and discussed, for example, in [8].

FIG. 4: Logarithm of the RR matrix determinant as function of frequency. Each drop corresponds

to an eigenfrequency.
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2. Modes shapes and orthogonality check

For each eigenfrequency, we perform mode shapes of the structure. Table II shows the

eigenfrequencies of modes and in figure 7-A are presented the corresponding mode shapes.

Note that because of the transfer matrix method’s frequency limitation, only transversal

modes are obtained (the first longitudinal mode is about 2000 Hz for a clamped beam with

the same characteristics as for the coupled one). To verify the validity of our calculation,

we perform an orthogonality test of the modal basis using the dot product matrix of modes.

This i-by-j Dot Product Matrix can be explicited for each term,

DPM(i, j) =
< Φi,Φj >

√
< Φi,Φi >

√
< Φj,Φj >

, (30)

where vector Φi is the mode shape i,

Φi =

(
u

w

)
i

(31)

whose components are longitudinial and transversal displacements, and where the dot prod-

uct is defined [12] by

< Φi,Φj >=

∫
S

ρS ΦT
i (x) Φj(x) dx. (32)

The dot product between modes i and j for a conservative structure (S) equals one when

i = j and otherwise equals zero. This is illustrated in figure 5, which shows the orthogonality

of modes.

FIG. 5: Dot product matrix for the 14 first theoretical modes of the assembly.
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Mode Freq. KERj(k) Kind Uncoupled freq. (Hz)

j (Hz) k=0 k=1 k=2 of mode Beam∗ E2 String E3 String Beam∗∗

1 60.25 100 0 0 Beam 24.85 76.98

2 82.35 0 100 0 String 82.40

3 114.95 100 0 0 Beam 68.50 141.18

4 164.45 6 25 69 String-String 164.80 164.80

5 164.80 0 63 37 String-String

6 174.20 99 0 1 Beam 134.30 212.72

7 247.10 0 100 0 String 247.20

8 292.95 99 1 0 Beam 222.00 389.34

9 329.30 11 0 89 Beam-String 331.60 329.60 329.60 418.72

10 329.70 3 97 0 String

11 335.95 97 0 3 Beam 331.60 418.72

12 412.00 2 98 0 String 412.00

13 492.10 91 9 0 Beam 463.15 690.04

14 494.40 1 25 74 String-String 494.40 494.40

TABLE II: Mode number, eigenfrequencies, kinetic energy ratio (k=0 for the Beam, k=1 for the

E2 string and k=2 for the E3 string) and kinds of modes computed for the beam-2 strings assembly

(left column). Eigenfrequencies of uncoupled sub-structures (beam∗, E2 string, E3 string) with

same characteristics as for coupled ones (middle column). Eigenfrequencies of beam constrained

by nodes at the positions of string supports (denoted beam∗∗), obtained by FEM (right column).

3. Definition of the criterion for modes classification

In order to classify modes of the assembly, we define an indicator, called kinetic energy

ratio (KER), allowing us to determine in which sub-structure the modal shape displacement

is the most important. Each sub-structure is indexed by k: k=0 for the beam, k=1 for the

E2 string and k=2 for the E3 string. For each mode Φj, we define

KERj(k) =

∫
k

ρk ω2
j ΦT

j (x)Φj(x) dx

3∑
r=1

∫
r

ρr ω2
j ΦT

j (x)Φj(x) dx

=

∫
k

ρkΦ
T
j (x)Φj(x) dx

3∑
r=1

∫
r

ρrΦ
T
j (x)Φj(x) dx

(33)

where ρk is the mass per unit length of the sub-structure and x is the generic space variable

defined in the section II.
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4. Modes classification

Modes of the studied structure are classified in four families depending on the relative

importance of KER for each sub-structure. This classification is qualitative. Note that

an arbitrary threshold on criterion KER could be defined to fix this classification in a

quantitative manner.

• Modes 1, 3, 6, 11, 13 are beam modes: beam KER is one order higher than the string

KER therefore the beam is the predominant sub-structure. If we compare beam modes

(table II left column) to uncoupled beam modes (middle column), we notice that the

beam-string coupling increases the beam mode’s eigenfrequencies: each string acts as

a stiffener [13]. Moreover, the first eigenfrequencies of an uncoupled beam constrained

by no displacement at the positions of string supports (table II right column) have the

same order of magnitude than those of the beam modes (left column). It indicates that

strings approximatively behave as rigid supports. However, the discrepancies between

the two sets of eigenfrequencies are all the more important as the frequency is high,

and show the importance of the beam-string coupling.

• Modes 2, 7, 10, 12 are string modes: E2 or E3 string KER is one order higher than

the two other KER therefore one string is the predominant sub-structure. In table II,

string mode frequencies are slightly affected by the beam. This shows that the beam

almost behaves like a fixed end for the strings.

• Modes 4, 5, 14 are string-string modes: both string KER are of the same order and

one order higher than beam KER, therefore the two strings are at the same time the

predominant sub-structures. Modes 4 and 5 almost correspond to the first mode of the

E3 string and the second mode of the E2 string. The difference is the relative phase

between strings: for mode 4, the two strings are in phase at their connection point on

the beam, whereas they are out of phase for mode 5 (figure 7-A). This explains the

small shift of frequency and the lower participation of the beam for mode 5. Mode 14

corresponds to the third mode of the E3 string and the sixth mode of the E2 string. The

out of phase corresponding mode cannot be found because of the frequency limitation

of our model.

• Mode 9 is a beam-string mode: both beam KER and E3 string KER are much higher

than E2 string KER therefore beam and E3 string are the predominant sub-structures.

Note that in association with mode 10, this mode should be expected to be a coupled

string-string mode, corresponding to the second mode of the E3 string and the fourth

mode of the E2 string.

13
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FIG. 6: E3 string initial shape ws(x, 0) obtained by plucking.

5. Definition of the sympathetic mode

We define the string-string mode as the Sympathetic Mode where strings KER have

the same order of magnitude and are much higher than the beam KER. This qualitative

definition of the sympathetic mode is consistent with the musician’s definition of sympathetic

vibrations: when one string is excited another string vibrates. Actually, according to the

modal superposition principle [12], the response of the structure in the time domain can be

obtained by summing the response of all modes,

q(x, t) =

(
u(x, t)

w(x, t)

)
=
∑

j

ajΦj(x) cos(ωjt), (34)

where t is the time and aj is the modal amplitude depending on the initial condition

aj =< q(x, 0),Φj >=

∫
S

ρS

(
u(x, 0)

w(x, 0)

)T

Φjdx. (35)

The initial velocities equalling zero, terms on the form sin(ωjt) do not exist in (34) as they

would be expected to, in the general case. The initial shape w(x, 0) of a string is given by

figure 6 in the case of string plucking. If this shape is such that aj does not equal zero, mode

j is excited. If this mode is a sympathetic mode, both strings will be excited at the same

time and the ratio of energy in each string is given by the KER.

14
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B
Mode 1 Mode 2

Mode 3

Mode 6

Mode 4

Mode 5

Mode 8Mode 7

Mode 11

Mode 9

Mode 12

A

Mode 5

Mode 1

Mode 4

Mode 8

Mode 3

Mode 6

Mode 9

Mode 11

Mode 2

Mode 10

Mode 7

Mode 12

Mode 13 Mode 14 Mode 14

Mode 13

Mode 13

FIG. 7: A-Theoretical mode shapes obtained by transfer matrix method. Mode number is associ-

ated to eigenfrequency shown in table II.

B-Experimental mode shapes obtained by modal analysis on 11 measurement points on the beam

and 3 on the string. Eigenfrequency of modes are shown in table III.
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C. Experimental modal analysis

1. Description of the experimental setup

FIG. 8: Experimental setup showing the beam-2 strings assembly and the moving laser vibrometer.

The beam-2 strings assembly presented in figure 3 is studied by modal testing in order

to confirm theoretical results.

The experimental setup is shown in figure 8. The beam is clamped onto a frame filled

with sand to avoid interference with assembly modes. The steel strings are fixed, on one

side, by a ring stuck in the beam, and on the other side, by a guitar tuning machine fixed

on the frame. A guitar tuning machine is used to tune the strings at E2 and E3.

The experimental modal testing consists in measuring the frequency response functions

between velocity and applied force at different points on the structure. From these data, we

may extract eigenfrequencies, mode shapes and damping parameters of the studied structure

using the Least Square Complex Exponential Method [14] as implemented in LMS software.

Because it is difficult to hit a string with a hammer, the hammer is used on one point of

the beam to excite our system while a laser vibrometer measures the velocity response at

all points: 11 on the beam and 3 on each string.

2. Results

In table III, the eigenfrequencies resulting from the modal analysis are presented in fre-

quency range 0-550 Hz. In order to compare experimental eigenfrequencies with theoretical

ones, we plot experimental against theoretical values, in figure 9. Each number of exper-

imental mode corresponds to the number of the associated theoretical mode, obtained by

studying mode shapes, (figure 7). Note that, in table III, a theoretical mode is missing,

mode 10. We suggest that this problem is due to E2 string measurements. In figure 9, we

show that there is a good agreement between measured and theoretical modes: the average

difference is about 8% with a maximum of about 25% for modes 3 and 8. However, a slight

16
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Mode Freq. KERj(k) Kind

j (Hz) k=0 k=1 k=2 of mode

1 52.01 100 0 0 Beam

2 82.70 21 79 0 Beam-String

3 86.31 88 12 0 Beam-String

6 135.30 98 1 1 Beam

4 165.10 6 1 93 String

5 167.00 0 85 14 String-String

8 218.45 99 1 0 Beam

7 250.16 3 97 0 String

11 314.42 99 0 1 Beam

9 330.24 0 0 100 String

12 418.04 1 99 0 String

13 442.09 99 1 0 Beam

14 496.10 14 35 50 Beam-String-String

TABLE III: Experimental eigenfrequencies, kinetic energy ratio and kinds of modes obtained by

modal analysis for 2 strings connected to the beam.

frequency deviation exists for beam modes and this suggests that the ideal clamped end

condition is not well satisfied in practice.

For each measured mode, the criterion KER, defined by equation (33), is also computed

from the mode shape and then the kind of mode is determined. For the last modes, mode 12

to 14, the two strings KER are questionable because of few measurement points on strings,

as shown in figure 9-B, and will not be discussed. Four kinds of mode are also obtained and

particularly, string-string modes, although only one string-string mode has been extracted:

mode 4.

The good agreement between experimental and theroretical results shows that the transfer

matrix method is a valuable approach for the vibratory behaviour of the studied structure,

and validates the proposed modes categorization.

D. Influence of inharmonicity on string-string mode

In order to investigate the sympathetic behaviour of the beam-2 strings model, we study

the influence of the inharmonicy of the two strings on the KER criterion of string-string

17



Le Carrou et al.: Modelling of sympathetic string vibrations

FIG. 9: Experimental eigenfrequencies as a function of theoretical eigenfrequencies. Mode number

correspond to table II theoretical results and table III experimental results.

modes. Inharmonicity quantifies how out-of-tune the strings are and is defined by

ε =
f2 − 2f1

2f1

, (36)

where f1 and f2 are the fundamental frequencies of the uncoupled E2 and E3 strings. For this

study, we fix f2 (f2 = 164.8 Hz) and only f1 is modified (from f1 = 80.4 Hz to f1 = 84.4 Hz).

For a set of strings pair’s frequencies, modes of the assembly are performed, by using the

theoretical approach given section II, and kinetic energy ratio of each sub-structure for four

modes are computed, see figure 10. Moreover we show the evolution of mode shapes for two

inharmonicities: ε = −0.6% and ε = 0.6% which respectively correspond to f1 = 82.9 Hz and

f1 = 81.9 Hz. These mode shapes allow us to link the kinetic energy ratio to its implications

for string-string modes when inharmonicity differs from zero.

In figure 10, the case studied in section III can be seen when the two strings are tuned on

octave, ε = 0, and the kinetic energy ratios of the two strings do not equal: 25% and 69%

for E2 string and E3 string respectively in the case of mode 4, 43% and 37% in the case of

mode 10, 0% and 89% in the case of mode 9 and 97% and 0% in the case of mode 10. To

obtain equal kinetic energy ratio for the two strings (close to 50%), the inharmonicity value

is approximatively 0.25% which corresponds in musical scale at 4 cents. In order to have the

two strings taking an equal part in the sympathetic mode, they must be 4 cents out-of-tune.

Note that this value is obtained for curves which have the same aspect, modes 4, 9 and 10,

but also for mode 5’s curve which is more disrupted. Actually, for this mode there are three

values in the case of equipartition of the strings’s kinetic energy ratios as shown in figure 10.

For modes 4, 5, 9, 10, the strings’s KER have the same evolution: while one of the

strings’s KER goes from 0% to 100% the other one goes from 100% to 0%. When the

strings’s KER switch, they have the same order of magnitude and thus the string-string

18
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FIG. 10: kinetic energy ratio, KERj(k) for each sub-structure k (k = 0 for the beam, k = 1 for

the E2 string and k = 2 for the E3 strings) in relation to inharmonicity (ε = f2−2f1

2f1
) on modes j

4, 5, 9 and 10. The two mode shapes corresponding to ε = −0.6% (f1 = 82.9 Hz) on the left and

ε = 0.6% (f1 = 81.9 Hz) on the right of each curves are shown.

mode may appear. Inharmonicity range of the strings’s KER switch is different for each

mode: mode 4 and 5 ranges are larger than mode 9 and 10. This fact can explain why in

the case studied in section III, ε = 0, string-string modes are not obtained for mode 9 and

10, section III B 4, for the strings are not exactly 4 cents out-of-tune.

Note that the beam can play an important part in the string-string mode. Actually,

for mode 5, the coupling with the beam is simultaneous with the strings’s KER switch.

Thus, at the switching moment it may be obtained not only sympathetic modes but also a

beam-string mode.
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IV. CONCLUSION

In order to consider the sympathetic phenomenon, an analytical model of a generic string

instrument, composed of a beam-N strings assembly, has been studied by means of the

transfer matrix approach, then the modal basis has been derived. A simplified system, a

beam-2 strings assembly, has been extensively analysed. One string being tuned on octave

away from the other (E2 and E3), several specific modes called “string-string modes” among

three other kinds of modes, are extracted from the modal basis. The modes have been

analysed and classified through the comparison of the kinetic energy ratio of each sub-

structure (E2 string, E3 string and beam). String-string modes are responsible for the

sympathetic phenomenon.

Furthermore, the modal basis of the beam-2 strings assembly has been extracted by

measurements. A good agreement between eigenfrequencies and mode shapes is highlighted

through theoretical results and experiments. Experimental results have been interpreted

in terms of kind of modes previously given, and string-string modes have been observed.

Moreover we have focussed our attention on the theoretical influence of string’s inharmonicity

on the string-string mode. On one hand, it is noticeable that the particular case of null

inharmonicity between the two strings, does not correspond to the equipartition of the

string’s kinetic energy ratios. On the other hand, the inharmonicity range in which the

string-string mode exists, when that the two string’s kinetic energy ratios have the same

order of magnitude, is narrow.

The model is one-dimensional and this fact is the main restriction for direct application to

a real string instrument. Other limitations are related to the conservative hypothesis, that

is retained for the normal mode computation. Moreother, torsional motions of the strings

are not taken into account. The limitation of the method is the numerical difficulties of the

transfer matrix method which occur at high frequencies.

The method and the results that we have presented are applicable to systems with many

strings comparable to real string instruments, such as the harp. Harp players are annoyed

by the acoustic consequence of the sympathetic phenomenon caused by the high number

of strings. A question is, how can this annoyance be reduced? A way to investigate this

problem is to do time domain simulations based on the modal basis of the string instrument,

and to show the influence of string-string modes on the radiated sound, for instance. A

parametric study of the different characteristics of the simplified instrument can be carried

out to see their influence on string-string modes.
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APPENDIX A: TRANSFER MATRIX OF A STRING’S SEGMENT

Each string is considered as perfectly flexible and stretched at tension T0 made from a

material whose Young’s modulus is Es and mass per unit length is ρs. The area of the cross

section is denoted As. Strings are submitted to longitudinal and transverse displacements

described by the equations of motion given by rod’s theory and by string’s theory [11]. These

equations may be written in state form (3), in which the characteristic matrix, is given by

Hs(ω) =


0 0 1/EsAs 0

0 0 0 1/T0

−ρsω
2 0 0 0

0 −ρsω
2 0 0

 , (A1)

and is associated to the state vector (1). Calculation of the eigenvalues of matrix Ns = −Hs

provides the wavenumbers of the longitudinal and transverse waves travelling in the strings:

kl, −kl, kt, −kt, where

kl = ω

√
ρs

EsAs

and kt = ω

√
ρs

T0

. (A2)

Transfer matrix between points at coordinates x and x0 is obtained from relation (5) as

Ts(x, x0) =


Ts11(x, x0) 0 Ts13(x, x0) 0

0 Ts22(x, x0) 0 Ts24(x, x0)

Ts31(x, x0) 0 Ts11(x, x0) 0

0 Ts42(x, x0) 0 Ts22(x, x0)

 , (A3)

where

Ts11(x, x0) = cos(kt(x− x0)), Ts13(x, x0) =
kt

ρsω2
sin(kt(x− x0)),

Ts22(x, x0) = cos(kf (x− x0)), Ts24(x, x0) =
kf

ρsω2
sin(kf (x− x0)),

Ts31(x, x0) = −ρsω
2

kt

sin(kt(x− x0)), Ts42(x, x0) = −ρsω
2

kf

sin(kf (x− x0)).

APPENDIX B: TRANSFER MATRIX OF A BEAM’S SEGMENT

The beam is supposed to be prismatic and made from material whose Young’s modulus

is Eb and mass per unit length is ρb. The area of the cross section is Ab and the second

moment of area is I. Transverse and longitudinal motions of the beam are respectively

described using Euler-Bernoulli theory and rod’s theory [12]. Using state vector formalism,

the equations of motion can be written on the form (3), in which the characteristic matrix
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is given by

Hb(ω) =



0 0 0 1/EbAb 0 0

0 0 1 0 0 0

0 0 0 0 0 1/EbI

−ρbω
2 0 0 0 0 0

0 −ρbω
2 0 0 0 0

0 0 0 0 −1 0


. (B1)

Bending and longitudinal waves propagate with wavenumbers kb, −kb, kb, −kb, kr, −kr,

where

kb =
√

ω 4

√
ρb

EbI
and kr = ω

√
ρb

AbEb

. (B2)

These six values are the eigenvalues of matrix Nb = −Hb. Calculation of the associated

eigenvectors gives the transfer matrix from relation (4). It is convenient to introduce the

Duncan’s functions [12], defined by the relations, in which ξ is a real parameter,

s1(ξ) = sin(ξ) + sinh(ξ)

c1(ξ) = cos(ξ) + cosh(ξ)

s2(ξ) = − sin(ξ) + sinh(ξ)

c2(ξ) = − cos(ξ) + cosh(ξ),

(B3)

to express the transfer matrix,

Tb(x, x0) =



Tb11(x, x0) 0 0 Tb14(x, x0) 0 0

0 Tb22(x, x0) Tb23(x, x0) 0 Tb25(x, x0) Tb26(x, x0)

0 Tb32(x, x0) Tb22(x, x0) 0 Tb35(x, x0) Tb36(x, x0)

Tb41(x, x0) 0 0 Tb11(x, x0) 0 0

0 Tb52(x, x0) Tb53(x, x0) 0 Tb22(x, x0) Tb56(x, x0)

0 Tb62(x, x0) Tb63(x, x0) 0 Tb65(x, x0) Tb22(x, x0)


. (B4)

After calculations, we find:
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Tb11(x, x0) = cos(kt(x− x0)), Tb14(x, x0) =
1

ktEbAb

sin(kt(x− x0)),

Tb22(x, x0) =
1

2
c1(kf (x− x0)), Tb23(x, x0) =

kf
3EbI

2ρbω2
s1(kf (x− x0)),

Tb25(x, x0) = − kf

2ρbω2
s2(kf (x− x0)), Tb26(x, x0) = −

k2
f

2ρbω2
c2(kf (x− x0)),

Tb32(x, x0) =
ρbω

2

2kf
3EbI

s2(kf (x− x0)), Tb35(x, x0) = − 1

2k2
fEbI

c2(kf (x− x0)),

Tb36(x, x0) =
1

2kfEbI
s1(kf (x− x0)), Tb41(x, x0) = −AbEbkt sin(kt(x− x0)),

Tb52(x, x0) = −ρbω
2

2kf

s1(kf (x− x0)), Tb53(x, x0) = −
k2

fEbI

2
c2(kf (x− x0)),

Tb56(x, x0) = −kf

2
s2(kf (x− x0)), Tb62(x, x0) =

ρbω
2

2k2
f

c2(kf (x− x0)),

Tb53(x, x0) =
kfEbI

2
s2(kf (x− x0)), Tb65(x, x0) = − 1

2kf

s1(kf (x− x0)).

APPENDIX C: DEMONSTRATION OF RELATION (19)

In this appendix we demonstrate the relation (19). This relation can be demonstrated

in two steps. The first step is the demonstration of the recurrence relation, defined by, for

i = 1...N ,

X b(O
+
i ) = Tb(O

−
i , A)X b(A) +

i∑
j=1

[
Tb(O

−
i , O+

j )KjTs(Oj, Cj)X s(Cj)
]
. (C1)

• We verify the relation (C1) for i=1. In that case (C1) is written as

X b(O
+
1 ) = Tb(O

−
1 , A)X b(A) + Tb(O

−
1 , O+

1 )K1Ts(O1, C1)X s(C1). (C2)

As X b(O
−
1 ) = T(O−

1 , A)X b(A) , Tb(O
−
1 , O+

1 ) = I6 and X s(O1) = Ts(O1, C1)X s(C1),

X b(O
+
1 ) = X b(O

−
1 ) + K1X s(O1) (C3)

in accordance with (17), the relation (C2) is true.

• We assum that the relation (C1) is valid for the i-string , we show that this relation

C1) is still valid for the i + 1-string . Let’s consider the coupling relation (17) induced

by the connection between the beam and the i + 1-string,

X b(O
+
i+1) = X b(O

−
i+1) + Ki+1X s(Oi+1), (C4)

and taking the form of

X b(O
+
i+1) = Tb(O

+
i+1, O

+
i )X b(O

+
i ) + Ki+1Ts(Oi+1, Ci+1)X s(Ci+1). (C5)
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As we have the relation (C1), the relation (C2) is equivalent to

X b(O
+
i+1) = Tb(O

−
i+1, O

+
i )Tb(O

−
i , A)X b(A) +

i+1∑
j=1

(
Tb(O

−
i+1, O

+
j )KjTs(Oj, Cj)X s(Cj)

)
(C6)

since we have Tb(O
−
i+1, A) = Tb(O

−
i+1, O

+
i )Tb(O

−
i , A), relation (C6) gives

X b(O
+
i+1) = Tb(O

−
i+1, A)X b(A) +

i+1∑
j=1

(
Tb(O

−
i+1, O

+
j )KjTs(Oj, Cj)X s(Cj)

)
(C7)

Relation (C7) proves that (C1) is valid for i+1 string.

• Finally, we prove the relation (C1), for i = 1...N :

X b(O
+
i ) = Tb(O

−
i , A)X b(A) +

i∑
j=1

[
Tb(O

−
i , O+

j )KjTs(Oj, Cj)X s(Cj)
]
. (C8)

The second step is the insersion in the coupling relation (18) of the recurrence relation

(C1). These two relations, (18) and (C1), along with the transfer relation between state

vectors X s(Oi) and X s(Ci), given by

X s(Oi) = T(xOi
, xCi

)X b(Ci), (C9)

leads us to obtain the relation (19).
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