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The

 

spectral

 

properties

 

of

 

an

 

active

 

single-mode

 

microring

 

resonator

 

are

 

investigated

 

in

 

the

 

frame

 

of

 

the

 

generalized

 

transfer

 

function

 

(GTF)

 

approach,

 

as

 

derived

 

from

 

extended

 

scattering

 

and/or

 

transfer

 

matrix

 

formalism.

 

Spontaneous

 

emission,

 

looked

 

upon

 

as

 

the

 

driving

 

source

 

of

 

the

 

radiation,

 

is

 

described

 

in

 

a

 

semi-classical

 

way

 

in

 

the

 

spectral

 

domain.

 

The

 

internal

 

and

 

emitted

 

fields

 

are

 

filtered

 

into

 

the

 

resonance

 

modes

 

of

 

the

 

whole

 

structure.

 

The

 

generalized

 

transfer

 

function

 

expresses

 

the

 

spectral

 

density

 

of

 

internal

 

saturating

 

intensity

 

and

 

includes

 

all

 

essential

 

mechanisms

 

at

 

work

 

in

 

a

 

laser

 

oscillator:

 

gain,

 

losses

 

and

 

sources.

 

The

 

active

 

zone

 

is

 

saturated

 

through

 

amplified

 

spontaneous

 

emission

 

(ASE),

 

integrated

 

over

 

its

 

whole

 

spectral

 

range.

 

Continuously

 

valid

 

across

 

threshold,

 

the

 

method

 

enables

 

one

 

to

 

derive

 

in

 

a

 

simple

 

way

 

the

 

main

 

steady-state

 

properties

 

of

 

the

 

laser

 

oscillation,

 

with

 

the

 

pumping

 

rate

 

as

 

the

 

only

 

external

 

parameter.

1. Introduction

In the past few years, optical open resonators based on total

internal reflection (TIR) such as microspheres, microdisks or micr-

orings have been subject to numerous studies [1,2]. The unique

combination of strong temporal and spatial confinement of light

makes these systems particularly attractive, not only for funda-

mental research [3,4] but also as new building blocks for fiber op-

tics and photonic applications [5]. For instance, a review of

photonic structures based on highly integrated passive coupled

microrings can be found in Refs. [6,7]. Naturally enough, active

structures have also been heavily investigated. Since the observa-

tion of the first continuous-wave (CW) laser oscillation in a large

solid-state Nd:YAG sphere [8], laser action has been demonstrated

in many different rare-earth-doped glass spheres [9,10], as well as

semiconductor microdisks [11,12] or microrings [13].

As soon as optical gain is involved, spontaneous emission is

known to play quite important a role: far from being a mere noise

to be avoided, it acts as the very driving source of the electromag-

netic field. In that respect, the laser behavior of single-mode Fabry–

Perot (FP) resonators is well depicted in the spectral domain by the

semi-classical generalized transfer function (GTF) [14,15]. The GTF

expresses the spectral density of the internal field, where the gain,

the source and the refractive index of the active zone are uniformly

saturated through amplified spontaneous emission (ASE), longitu-

dinally averaged and integrated over its whole spectral range.

Assuming the total saturating intensity as the only internal param-

eter, a self-consistent calculation enables one to derive the total

power as well as the lineshape of the emitted radiation, as func-

tions of the pumping level.

In its turn, the GTF of a one-dimensional active cavity can be

conveniently established in the frame of the extended (3 � 3)

transfer matrix formalism. This elegant way of dealing with inter-

nal sources had been originally proposed by Weber and Wang

[16,17] for investigating active distributed feedback (DFB) devices,

and further developed by one of us well into the laser regime. An

analytical expression for the GTF is easily derived in terms of struc-

tural parameters, leading to a self-consistent calculation of all

parameters as soon as the saturation of the active medium is cor-

rectly taken into account [18,19].
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Considering the enormous potential of such a formalism for the

active FP cavity, or more generally for any kind of one-dimensional

resonator, including multisection structures, it seemed natural to

investigate its adaptation to active resonators with other geome-

tries. The transposition is not straightforward, though: from a

physical point of view, a ring resonator differs from a FP cavity

by its traveling wave behaviour (quite different from the standing

wave pattern). Above all, from a technical point of view, because of

its loop topology, a ring cannot be decomposed into cascadable

matrices. Therefore, a specific approach is needed: in that respect,

‘‘extended scattering parameters” (as introduced hereafter) appear

as a useful tool for expressing the relationships between the rele-

vant waves that travel inside the ring resonator, with the sponta-

neous contributions included.

The present work is devoted to the specific case of an active sin-

gle-mode microring resonator, coupled to a passive straight wave-

guide that acts as input/output ports. We would like to emphasise

that the main appeal of our model lies with its astounding simplic-

ity. Besides, it can be used to describe, indifferently, either a selec-

tive amplifier (below threshold) or a laser oscillator (above

threshold). We show how the spontaneous field generated by an

active zone is coupled into the resonance modes of the structure,

that eventually determine the spectral lineshape. We give simple

and generic expressions for the spontaneous contributions in

terms of equivalent fields that couple into the mode. Since we

are mainly concerned with structural properties, no restriction is

made a priori regarding the materials themselves. For the sake of

simplicity, thermal effects are not considered until the very end:

an external control of temperature is therefore implicitly assumed.

Our paper is organized as follows. In Section 2, we recall the

main features of the ‘‘classical” transfer function of the device.

The spectral density of emitted radiation is derived in the frame

of extended transfer and/or scattering matrix formalisms including

sources. The spectral density of internal saturating field, or gener-

alized transfer function, is exposed in Section 3; the effect of mate-

rial dispersion is illustrated on a concrete example, since we

present a complete self-consistent determination, in normalized

parameters, of the threshold-crossing in a ring filled with an homo-

geneously broadened atomic gain medium. We derive analytical

expressions that remain continuously valid across threshold. Possi-

ble further developments and perspectives, such as thermal effects,

extended cavity schemes, a structure made of a ring connected to

two parallel straight waveguides or the case of optical seeding,

are briefly outlined, along with conclusions, in Section 4.

2. Transfer function and extended matrix formalism

2.1. Classical transfer function

Consider a ring resonator (of propagation constant bR and

perimeter LR) coupled to a straight waveguide (of propagation con-

stant bS and length LS), as depicted in Fig. 1a. Both waveguides are

supposed transversally single-mode, and we neglect polarization

effects, so that the waves are purely scalar. Time dependence is ta-

ken as expðþixtÞ.
Following Yariv [20], we use simple analytical formulas based

on structural parameters. One key element is the linear coupler be-

tween the rectilinear waveguide and the ring, seen as a four-port

network (Fig. 1b). It is completely determined by three parameters

tc , t0c , and kc . Let us call g2 ¼ ðtct0c � k
2
c Þ; c ¼ expðgRLR=2Þ and

expð�iRe½bR�LRÞ are the amplitude and phase change over the ring,

respectively, with gR its modal gain. This expression remains valid

whatever the gain or loss level: c ¼ 1 in a transparent medium,

c > 1 in an amplifier, c < 1 in case of absorption. Internal ports 3

and 4 are connected through:

a3 ¼ b4 c exp �iRe bR½ �LRð Þ; ð1aÞ
a4 ¼ b3 c exp �iRe bR½ �LRð Þ: ð1bÞ

Between remaining ports 1 and 2, the complex transmittance tR
reads:

tR ¼ tc � g2 c exp �iRe bR½ �LRð Þ
1� t0c c exp �iRe bR½ �LRð Þ : ð2Þ

Without loss of generality, we can shift the reference planes in

order for the coupler to be completely localized at abscissa zc . In

that case, it is legitimate to assume that t0c ¼ t�c ¼ gs0 expð�iucÞ,
where s0 denotes the value of jtcj in the lossless coupler, whereas

g2 becomes a real number at most equal to unity, representative

of the coupler losses. With U ¼ Re½bR�LR þuc the overall

phase change over a round-trip, the denominator DR ¼ ½1�
s0 gc expð�iUÞ� presents the typical signature of a spectrally selec-

tive resonance. The ‘‘classical” transfer function in intensity

TR ¼ jtRj2 can be expressed as

TR Uð Þ ¼ g2 1þ T0 � 1

1þmR sin
2
U=2ð Þ

( )

; ð3aÞ

T0 ¼ s0 � gc
1� s0gc

� �2

; ð3bÞ

mR ¼ 4s0gc

1� s0gcð Þ2
: ð3cÞ

The whole system is thus completely determined by four inde-

pendent parameters only: ðg; s0; c;UÞ, with ðg2 T0Þ the transmis-

sion at resonance and mR a factor of spectral selectivity.
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Fig. 1. Single-mode ring waveguide connected to a single-mode straight wave-

guide. (a) Geometrical configuration. (b) Notations for the coupler seen as a four-

port network.
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In absence of net losses or gain, the ring resonator is purely

dephasing ðgc ¼ 1 ) 8U; TR ¼ 1Þ, and its phase is a non-linear

function of U.

We draw in Fig. 2 the normalized transfer function TRðUÞ=g2 for

a given value of coupling s0, and different values of gc, which rep-

resents the net amplitude change over a round-trip. For values of

gc smaller than unity, the ring exhibits losses, especially important

at resonance ðU � 0 ½2p�Þ where TR reaches its minimum ðT0 < 1Þ;
structural transparency is obtained for gc ¼ 1 and actual amplifi-

cation for gc > 1.

The resonance width itself is conditioned by the selectivity fac-

tormR, that is by s0 gc (Eq. (3)). As soon as mR is much greater than

unity, 1=jDRj2 is well approximated by a Lorentzian lineshape:

writing the phase as U ¼ 2qpþ dU around a resonance (where q

is an integer), we get:

1

jDRj2
� 1=ðs0gcÞ

dU2 þ ð4=mRÞ

( )

/ D
2
R

dU2 þ D
2
R

; ð4aÞ

DR ¼ 2
ffiffiffiffiffiffiffi

mR

p ¼ ð1� s0gcÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

s0gc
p : ð4bÞ

Since phase U depends almost linearly on angular frequency x,

the spectral transfer function TRðxÞ exhibits also a Lorentzian line-

shape of half-width at half-maximum CR (HWHM), upsurging from

a constant plateau. In spectral terms, CR ¼ DRðc=ngLRÞ, where

ng ¼ neff þxðoneff=oxÞ is the group index, and c=ðng LRÞ the free

spectral range (FSR) of the ring resonator. Around a resonance fre-

quency x0, the quality factor of the cavity is defined as

Q ¼ ðx0=CRÞ.
In the amplification regime, the higher gc, the higher the max-

imum transmission ðT0 > 1Þ, the sharper the resonance. This holds

true up to the oscillation: the classical threshold condition is

reached for c ¼ cth ¼ 1=ðgs0Þ. Mathematically, the linewidth

should tend towards zero and T0 towards the infinite at threshold;

but this un-physical divergence does not actually occur, because of

saturation mechanisms that will be commented upon below.

The main effect of losses inside the coupler is twofold, as illus-

trated in Fig. 3: (i) the transmission is affected (g2 T0 at resonance,

g2 off-resonance); (ii) the line-width is broadened. The first point

proves especially interesting since a fitting value of g2 can be ad-

justed experimentally on an actual device, by measuring the off-

resonance transmission.

The transfer function, and especially the resonance expressed

by denominator DR, plays an important role in determining the

spectral properties of the fields emitted by an active ring resonator

with embedded sources.

2.2. Extended matrix formulations

When internal sources are taken into account, the relationship

between input and output waves is no longer linear (as in Eq.

(1)), because of the intrinsic contribution of the active zone. In or-

der to take the latter into account, we write:

a3 ¼ b4 c exp �iRe bR½ �LRð Þ þ uþð Þ; ð5aÞ
a4 ¼ b3 c exp �iRe bR½ �LRð Þ þ u�ð Þ; ð5bÞ

where ðuþÞ and ðu�Þ represent the equivalent fields of spontaneous

emission that couple into the ring mode at both ‘‘ends” of the active

zone [21]; the sign ðþ=�Þ is relative to the direction of propagation

along the z-axis at the level of the coupler. Their phase is a random

value that cannot be determined experimentally. They are defined

through their average quadratic properties:

uþð Þj j2
D E

¼ u�ð Þj j2
D E

; ð6aÞ

uþð Þ u�ð Þ�h i � 0: ð6bÞ

They can be related to the ‘‘intrinsic” spectral intensity IUðxÞ
generated in the active zone, that is the intensity that would be

coupled into the mode after a single loop [22]:

IUðxÞ ¼ �0
2
c neff u�� ��

�

�

�

2
D E

; ð7aÞ

¼ bsp �hx rspðxÞ exp gR LRð Þ � 1

gR

; ð7bÞ

where neff is the effective index of the ring, rspðxÞ the spectral rate

of spontaneous emission per unit volume [in s�1:ðrad=sÞ�1:m�3] and

bsp the fraction of spontaneous emission that couples into the ring

mode. Note that IUðxÞ is completely determined by the optical

properties of the active zone. Besides, if we assume gR LR 	 1 (a

quite reasonable assumption in most practical cases), then IU is sim-

ply proportional to the perimeter LR of the active ring:

IUðxÞ � bsp �hx rspðxÞLR: ð8Þ

This value should not be confused with that of the actual field

that accumulates inside the cavity. When the four-port system is

compacted into a two-port network, the relationship between in-

put and output waves at remaining ports 1 and 2 takes the follow-

ing form:

Fig. 2. Classical transfer function of the micro-ring. Normalized transmission

TRðUÞ=g2 with s0 ¼ 0:9, for gc ¼ 0:95 (absorption), 1 (transparency), 1.05 and 1.1

(amplification): The higher the net gain, the sharper the resonance.

−1 −0.5 0 0.5 1
−10
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η2
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η2
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Fig. 3. Effects of coupling losses on the classical transfer function of an otherwise

lossy ring: s0 ¼ 0:9; c ¼ 0:95 for g2 ¼ 1 (lossless coupler, straight line) and g2 ¼ 0:5

(�3 dB coupler, dashed line). Far from resonance, the transmission reaches

asymptotically its highest possible value g2; its absolute minimum at resonance

is g2 T0 .
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b1 ¼ tR a2 þ u�ð Þkc=DR; ð9aÞ
b2 ¼ tR a1 þ uþð Þkc=DR; ð9bÞ

which can also be written as an extended (3 � 3) scattering matrix

relationship:

b1

b2

1

0

B

@

1

C

A
¼

0 tR ðu�Þkc=DR

tR 0 ðuþÞkc=DR

0 0 1

0

B

@

1

C

A

a1

a2

1

0

B

@

1

C

A
: ð10Þ

The background output source terms ðu�Þkc=DR are the waves

that come out of the ring even when no wave is going in

ða1 ¼ a2 ¼ 0Þ. We would like to point out that they are simply ex-

pressed as the product of the relevant equivalent field by the out-

coupling coefficient kc , projected into the resonance of the ring

(made manifest by the denominator DR). In other words, whatever

the intrinsic spectral behavior of spontaneous emission, emitted

fields bear the spectral signature of the resonance. This was to be

expected: as observed in its time by Kastler on a Fabry–Perot,

the radiation emitted by active atoms placed inside a cavity has

to be coupled into its transfer function [23]. A ring resonator

should not be different.

From the point of view of the straight waveguide, the above is

even best expressed in terms of extended (3 � 3) transfer matrix

formalism [16–19,22]. The structure with the co- and contraprop-

agating fields is schematically depicted in Fig. 4. The main interest

of this formulation is that extended transfer matrices retain their

cascadability. This property will be taken advantage of in Section

4. Whatever the boundary conditions, extended transfer matrix

½R� of the active ring connects the co-and contrapropagating waves

between both abscissas z�c and zþc :

Fþ
1

F�
1

1

0

B

@

1

C

A
¼

R11 0 R13

0 R22 R23

0 0 1

0

B

@

1

C

A

Fþ
2

F�
2

1

0

B

@

1

C

A
: ð11Þ

This gives exactly the same information as that provided by Eq.

(10). We would like to emphasize that the first four coefficients

ðR11;R12;R21;R22Þ of transfer matrix ½R� are exactly the same as that

of the usual ð2� 2Þ transfer matrix, according to the notations of

Yariv and Yeh [24]. In the present case, the only non-vanishing

coefficients ðR11;R22Þ are related to the transfer function tR of the

ring resonator:

R11 ¼ 1=tRð Þ; ð12aÞ
R22 ¼ tR; ð12bÞ

whereas the source terms ðR13;R23Þ in the third column are written

as:

R13 ¼ � 1=tRð Þ uþð Þ kc=DRð Þ; ð13aÞ
R23 ¼ u�ð Þ kc=DRð Þ: ð13bÞ

Not surprisingly, we recover the background fields ðB�
1 ;B

þ
2 Þ

emitted at abscissas zc and zþc when no input field is present by

applying the proper boundary conditions ðFþ
1 ¼ F�

2 ¼ 0Þ:

B�
1 ¼ R23 ¼ u�ð Þ kc=DRð Þ; ð14aÞ

Bþ
2 ¼ �R13=R11 ¼ uþð Þ kc=DRð Þ: ð14bÞ

As pointed out before, emitted fields appear filtered by the res-

onance of the cavity.

3. Generalized transfer function and threshold-crossing

3.1. Generalized transfer function

We have established the expression of the output fields; let us

now concentrate on the internal fields BþðsÞ and B�ðsÞ circulating
inside the ring, where s is a curvilinear abscissa varying in the

interval ½0; LR�, according to the notations of Fig. 5. Both BþðsÞ and
B�ðsÞ can be easily expressed in terms of the equivalent fields

ðuþ
P Þ, ðu�

P Þ, ðuþ
Q Þ and ðu�

Q Þ generated by the active zones represented,

respectively, by partial matrices ½PðsÞ� (of length s) and ½QðsÞ� (of
length LR � s):

BþðsÞ ¼ 1

DR

uþ
P

� �

þ uþ
Q

� 	

t0c exp �ibR sð Þ
n o

; ð15aÞ

B�ðsÞ ¼ 1

DR

u�
Q

� 	

þ u�
P

� �

t0c exp �ibR LR � sð Þð Þ
n o

: ð15bÞ

Note that each field Bþ or B� takes the simple form of the ‘‘sin-

gle-pass” linear combination of its relevant components, suitably

projected into the resonance through the unmistakable denomina-

tor DR. It should be noted that the equivalent fields ðuþÞ and ðu�Þ, at
both ends of the ring, are themselves expressed as weighted linear

combinations of these partial (s-dependent) components:

uþð Þ ¼ uþ
Q

� 	

þ uþ
P

� �

exp �ibR LR � sð Þð Þ; ð16aÞ

u�ð Þ ¼ u�
P

� �

þ u�
Q

� 	

exp �ibR sð Þ: ð16bÞ

Neglecting any standing wave pattern, as usual for a ring reso-

nator, the local value of internal intensity is proportional to

hjBþðsÞj2 þ jB�ðsÞj2i, where the brackets denote a time average.

The spatially averaged spectral density of intensity IAVðxÞ of the

intracavity field is readily obtained by integration along the curvi-

linear coordinate s, leading to

IAVðxÞ ¼ 2 IUðxÞ
DRj j2

1� g2 s20
gR LR

� �

� 1� s20 g
2 c2

c2 � 1

� �
 �

: ð17Þ

Fig. 4. Notations for extended Transfer Matrix Formalism connecting the co- and

contrapropagating waves supported by the straight waveguide: (a) Input/output

waves connected through ports (1) and (2) of the system ring + coupler; (b)

background output waves ðB�
1 ; B

þ
2 Þ outcoupled from the system when no ingoing

wave is present ðFþ
1 ¼ F�

2 ¼ 0Þ.
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This quantity constitutes the generalized transfer function (GTF)

of the active ring resonator. Before proceeding further, we would

like to comment upon its form. The GTF is proportional to the

intrinsic intensity 2 IUðxÞ generated along the active zone (the fac-

tor 2 accounts for the two directions of propagation), corrected by

a factor that is specific to the ring configuration, and projected into

the resonance through the denominator jDRj2. Besides, it can be

noted that in the vicinity of the threshold, the second term under

brackets becomes vanishingly small as 1� s20 g
2 c2 cancels out.

As a result, the GTF can be written as:

IAVðxÞ ¼ IUðxÞFðxÞ
DRðxÞj j2

; ð18Þ

where FðxÞ is a slowly-varying function containing mostly opto-

geometrical terms. Note that it takes the same general form as in

a Fabry–Perot resonator, except for the detail of the function

FðxÞ. The main result can be stated as follows: the spectral behavior

of the internal field is completely determined by the denominator

DRðxÞ. This is especially important as far as gain saturation is con-

cerned, as will become immediately apparent.

3.2. Threshold-crossing in an homogeneously broadened atomic

medium

Up to now, we have not explicitly considered material disper-

sion; but since we work in the spectral domain, the chromatic

dependence of the optical parameters is implicitly taken into ac-

count, all the same. For the sake of illustration, let us investigate

the case of a ring where the gain comes from an homogeneously

broadened atomic transition characterized by angular frequency

xA and HWHM CA, well described by its complex susceptibility

v ¼ v0 þ iv00 [25]:

v0 ¼ v0

X

X2 þ 1þ Y


 �

¼ X v00; ð19aÞ

v00 ¼ v0

1

X2 þ 1þ Y


 �

; ð19bÞ

where X is the reduced detuning with respect to the center

frequency:

X ¼ x�xA

CA

� �

; ð20Þ

Y is a dimensionless saturation parameter (proportional to the total

saturating intensity, it will be taken as a measure of the normalized

laser intensity), v0 a monotonously increasing function of the

pumping level (we assume v0 	 1). Real and imaginary parts are

drawn in Fig. 6 for two values of the saturation parameter. It should

be noted that the saturation affects not only the gain (through

Im½v�), but also the index (through Re½v�), thus the precise value

of the cavity resonance, that is the laser line, at angular frequency

xL. We propose ourselves to derive the spectral and energetic prop-

erties of the laser across threshold, by using the GTF of the ring res-

onator. Since the medium is homogeneously broadened, the laser

operates in a longitudinal single-mode regime, in the close vicinity

of xL. The useful part of the GTF is reduced to a single Lorentzian

lineshape, according to Eq. (4a). Apart from the specificity of the

ring geometry, we follow closely an approach already exposed in

[26].

Let us write the effective index and the modal gain of the ring as

nR ¼ nH þ v0=2; ð21aÞ
gR ¼ xA=cð Þv00; ð21bÞ

and vth the value reached by v00 at the classical threshold. Refractive

index nH of the host medium is assumed constant over the gain

spectral range, defining the ‘‘cold cavity” background (nR ¼ nH if

v0 ¼ 0). The pumping level can be measured by reduced parameter

jP ¼ ðv0=vthÞ, which reaches unity at threshold.

For the sake of generality, let us work in reduced frequencies:

x ¼ xLR=c, xA ¼ xALR=c, nA ¼ CALR=c, so that X ¼ ðx� xAÞ=nA. In

the feeble-loss approximation, the GTF IAVðxÞ is written under its

reduced form yðxÞ, well approximated by a Lorentzian:

Fig. 5. (a)–(b) Notations for the internal fields: BþðsÞ and B�ðsÞ propagate in both

directions inside the ring, at curvilinear abscissa s in the interval ½0; LR�. (c) The ring

itself can be decomposed into two active zones, respectively represented by partial

matrices ½PðsÞ� and ½QðsÞ�, generating their own equivalent fields ðuþ
P Þ, ðu�

P Þ, ðuþ
Q Þ and

ðu�
Q Þ. Both ends are connected through the coupler.

Fig. 6. Real and imaginary parts of normalized susceptibility in an homogeneously

broadened atomic medium subject to population inversion, for two levels of the

saturation parameter: Y = 0 (straight line), Y = 1 (dotted line). Imaginary part is

responsible for the Lorentzian gain, real part for the S-like dispersion. The laser line

is schematically plotted for comparison.
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yðxÞ ¼ y xLð Þ n2L

x� xLð Þ2 þ n2L
; ð22Þ

much sharper than the atomic line ðnL 	 nAÞ, as schematically

shown in Fig. 6; by integrating over its whole spectral range, we ob-

tain immediately:

Y ¼
Z

yðxÞdx ¼ yðxLÞpnL: ð23Þ

The problem consists in determining simultaneously the laser

frequency xL, the total intensity Y and the linewidth nL as a function

of the only accessible experimental parameter: the pumping level

jP .

Susceptibility describes the material parameters; besides, opti-

cal intensity Y evolves according to

dY=dtð Þ ¼ vg gR � gthð Þ Y þ SY ; ð24Þ

where vg is the group velocity and SY a source term. The spectral

rate of spontaneous emission, assumed to be proportional to v00,

exhibits the same kind of Lorentzian behavior. Of course, it is also

subject to saturation. In steady-state regime, we obtain therefore:

Y ¼ SY=vg

gth � gRð Þ ¼
jv00

vth � v00
� � ; ð25Þ

where j is a constant that characterizes the coupling of spontane-

ous emission into the mode, and v00 should be evaluated at (as yet

unknown) laser frequency xL, which depends on a phase condition:

n xLð ÞxL ¼ 2qp ð26Þ

or (q is an integer)

xL nH þ XL
v00

2

� 

¼ 2qp: ð27Þ

Introducing parameters ðxL=nAÞ � ðxA=nAÞ ¼ ðxA=CAÞ ¼ QA

(quality factor of the atomic transition), X0 (resonance of the ‘‘cold”

cavity) and B ¼ QA nth=ð2nHÞ, one can establish two relationships

between the laser frequency ðXLÞ and its power ðYÞ as a function

of pumping ðjPÞ, depending on three parameters only ðj;X0;BÞ:

XL 1þ jP
B

X2
L þ 1þ Y

 !" #

� X0; ð28Þ

Y ¼ j jP

X2
L þ 1þ Y � jP

: ð29Þ

Let us examine successively the case where the cavity is tuned

or detuned with respect to the atomic transition. If both are tuned

to the same frequency ðX0 ¼ 0Þ, the laser radiation coincides ex-

actly with the line center ðxL ¼ x0 ¼ xAÞ, and intensity Y is solu-

tion to a simple second-order equation:

Y2 þ Y 1� jPð Þ � j jP ¼ 0: ð30Þ

Neglecting the source term ðj ¼ 0Þ, we recover exactly the lim-

iting cases for a classical laser behavior: below threshold,

jP < 1;Y ¼ 0; above threshold, jP > 1;Y ¼ jP � 1. Actually, the tran-

sition across threshold is continuous, as illustrated in Fig. 7 for sev-

eral values of j.
If the cavity is detuned with respect to the atomic transition

ðX0–0Þ, intensity Y is the only physical solution to a fourth-order

equation:

0 ¼ Y2 þ Y 1� jPð Þ � j jP

h i

Y ð1þ BÞ þ j½ �2 þ Y Y þ jð Þ2 X2
0: ð31Þ

As far as frequency is concerned, XL and X0 share the same sign,

with jXLj < jX0j. The laser line lies somewhere between the ‘‘cold

cavity” resonance and the atomic transition:

0 <
XL

X0

¼ jþ Y

jþ Y 1þ Bð Þ < 1: ð32Þ

This is the well-known phenomenon of frequency-pulling, but

we would like to point out that our approach enables one to follow

continuously the emission frequency as a function of the pumping

level: ðXL=X0Þ evolves from 1 at Y ¼ 0 to 1=ð1þ BÞ for Y 
 j.
Besides, reduced linewidth (as compared to that at transpar-

ency), as shown in Fig. 8, is given by

nL

ntr
¼ j

ðjþ YÞ : ð33Þ

It should be noted that in a strong enough laser regime ðY 
 jÞ,
the product ðY nLÞ tends toward a constant, according to the classi-

cal Schawlow–Townes formula:

This detailed example illustrates the high potential of the GTF

formalism, as applied to threshold-crossing in single-mode micror-

ing geometries. In a semiconductor, a similar approach can be fol-

lowed. As far as the optical properties of the active material are

concerned, two levels of approximation can be considered [19].

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

i
p

χ
‘‘/

χ
th

, 
Y

κ = 10
−1

κ = 10
−2

κ ≈ 0

χ’’/χ
th

Y

Fig. 7. Threshold-crossing in a microring resonator with an homogeneously

broadened atomic transition, as a function of normalized pumping level jP .

Normalized gain G ¼ ðv00=vthÞ and photonic intensity Y, for j ¼ 0;10�1;10�2.

0 0.5 1 1.5 2
−40

−30

−20

−10

0

j
p

ξ L
/ξ

tr

κ = 10
−1

κ = 10
−2

κ = 10
−3

κ = 10
−4

Fig. 8. Threshold-crossing in a microring resonator with an homogeneously

broadened atomic transition, as a function of normalized pumping level jP . Reduced

linewidth W ¼ ðnL=ntrÞ (with respect to transparency value ntr), expressed in dB, for

j ¼ 10�1;10�2;10�3 and 10�4; note the high gain of coherence that goes with the

passage across threshold.
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At the simplest level, the effective index, the modal gain and the

spectral rate of spontaneous emission are supposed to be uniquely

determined by the carrier density N, assumed uniformly saturated

along the active zone. Within the framework of the rate equation

formalism, the steady-state value of N results from a balance be-

tween pumping and recombination processes. At a second level,

they can also depend on the total density of optical power, some-

times described through a single photonic parameter P (‘‘photonic

density”) [27].

The principles being thoroughly exposed, we explore in the last

section some further implications of the formalism.

4. Possible extensions, perspectives and conclusions

4.1. Extended cavity schemes

As an illustration of the potential of extended ð3� 3Þ transfer

matrix formalism, let us have a look at the extended microring cav-

ity as schematically depicted in Fig. 9, where the left arm of the

straight waveguide is terminated by a passive reflector, repre-

sented by its own transfer matrix ½A�.
Between abscissas z0 (before the first reflector) and zS (just after

the ring), matrix ½M� reads:

½M� ¼ ½A� eþibS d 0 0

0 e�ibS d 0

!

½R�; ð34Þ

where ½R� is given by Eq. (11) and

½A� ¼
A11 A12 0

A21 A22 0

0 0 1

0

B

@

1

C

A
: ð35Þ

Since part of the field is reflected back toward the ring on reflec-

tor ½A�, it seems only natural to expect a marked effect on the laser

threshold, the more pronounced as the reflection is higher. How-

ever, intuitions can be deceptive, sometimes: since M11 ¼
A11 R11 expðþibS dÞ, the classical threshold condition M11 ¼ 0 is

strictly equivalent to R11 ¼ 0. Funnily enough, the external mirror

has no effect whatsoever on the modal cartography (spectral posi-

tion of the oscillation modes and associated threshold gain). Of

course, for symmetry reasons, it would be the same if the reflector

were located on the right arm of the straight waveguide.

The effect of the reflector is to be looked for elsewhere: back-

ground fields ðB�
0 ;B

þ
S Þ emitted from the cavity at abscissas z0 and

zS when no input field is present ðFþ
0 ¼ F�

S ¼ 0Þ have become:

Bþ
S ¼ �M13=M11; ð36aÞ

B�
0 ¼ M23M11 �M13M21ð Þ=M11: ð36bÞ

Emitted fields appear filtered into the transfer function

t ¼ 1=M11 of the whole cavity. So is the internal field, as expressed

by the GTF. Source terms are also affected:

M13 ¼ R13A11 exp þibS dð Þ þ R23A12 exp �ibS dð Þ; ð37aÞ
M23 ¼ R13A21 exp þibS dð Þ þ R23A22 exp �ibS dð Þ: ð37bÞ

Extended ð3� 3Þ transfer matrix function (TMF) is thus an ele-

gant as well as powerful modeling tool, perfectly suited for inves-

tigating cascaded elements, such as chains of active ring resonators

connected to the same straight waveguide.

Besides, since transfer matrices do not depend upon the bound-

ary conditions (except insofar as gain saturation is concerned), it

provides us with a simple way of dealing with optical seeding,

where one (or several) external optical signal(s) is (are) injected

through one (or more) input ports. The GTF exhibits a composite

expression, with internal as well as external source terms, all af-

fected by specific weighting coefficients, but all projected into

the ‘‘classical” resonance through the common denominator DR.

4.2. Active ring connected to two passive straight waveguides

It so happens that a microring resonator is sometimes simulta-

neously coupled to two parallel straight waveguides (Fig. 10). In

the non-linear regime, care should be taken that the two halves

of the ring do not necessarily experience the same intensity, so that

differential saturation may break the symmetry. That is the reason

why the equivalent fields are defined independently, with each

section between two adjacent ports assumed uniformly saturated.

Subscript ‘‘g” is relative to the left-hand half (‘‘g” stands for

‘‘gauche” in French), subscript ‘‘d” to the right-hand half (‘‘droit”

in French). Applying the same approach as exposed in Section 2,

we derive eventually the extended scattering matrix of the reduced

four-port system:

b1

b2

b3

b4

1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

0 S12 S13 0 S15

S21 0 0 S24 S25

S31 0 0 S34 S35

0 S42 S43 0 S45

0 0 0 0 1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

a1

a2

a3

a4

1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð38Þ

with

S12 ¼
t1 � g2

1 t
0
2 cg exp �iug

� 	

cd exp �iudð Þ
DR

; ð39aÞ

S13 ¼ k1 k2 cd exp �iudð Þ
DR

; ð39bÞ

S15 ¼ u�
d

� � k1
DR

þ u�
g

� 	 k1 t
0
2 cd exp �iudð Þ

DR

: ð39cÞ

Fig. 9. Extended microring cavity, with a reflector on the left arm of the straight

waveguide, represented by its transfer matrix ½A�. The overall extended transfer

matrix ½M� of the whole system is simply given by a matrix product.

Fig. 10. Active microring coupled to two parallel (not necessarily identical) passive

straight waveguides. Parameters of the upper and lower couplers are ðk1; t1; t01Þ and
ðk2; t2; t02Þ respectively. The whole system is seen as a multiple-port network.
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The denominator is given by

DR ¼ 1� t01 t
0
2 cg exp �iug

� 	

cd exp �iudð Þ ð40aÞ

¼ 1� t01 t
0
2 c exp �iuð Þ; ð40bÞ

where u ¼ ug þud is the total phase change and c ¼ cg cd the total

amplitude change. The derivation of the other coefficients follows

the same line and is therefore left to the reader’s appreciation. So

is the extended ð5� 5Þ transfer matrix, enabling one to cascade suc-

cessive active rings and derive the overall GTF. We would like to

point out, once again, that the form taken by each S-parameter

(classical or extended) appears to the trained eye as highly predict-

able: the numerator indicates the direct single-path from one port

(or from one intrinsic contribution) to the output port under consid-

eration; then the expression is simply corrected through the

denominator that indicates the resonant behavior. Note that the

numerator of S12, slightly more complex than that of S13, expresses

the interference between the direct path and the loop path.

4.3. Conclusions and perspectives

The generalized transfer function of an active single-mode mic-

roring resonator (representing the spectral density of intracavity

field intensity) has been derived in the frame of extended Scatter-

ing and/or Transfer Matrix formulations. Spontaneous emission,

looked upon as the driving source of the radiation, is described in

a semi-classical way in the spectral domain. The internal and emit-

ted fields are filtered into the resonance modes of the whole struc-

ture. The generalized transfer function contains all essential

mechanisms at work in a laser oscillator: gain, losses and sources.

The active zone is saturated through amplified spontaneous emis-

sion, integrated over its whole spectral range. Continuously valid

across threshold, the method enables one to derive in a simple

way the main steady-state properties of the laser oscillation, with

the pumping rate as the only external parameter. In this approach,

the optical properties of the active medium (the gain, the source

and the refractive index) are supposed to be uniquely determined

by the steady-state value of the material parameters, assumed uni-

form along the active zone.

As far as thermal effects are concerned, they would modify not

only the optical properties, but also the very geometry of the res-

onator, because of thermal expansion [28]. If we can assume that

(i) temperature T is reasonably homogeneous at the scale of the

whole active waveguide; (ii) its variation is a known function of

the pumping level; then the same approach can nevertheless be

applied, since the spectral properties of the resonance mode re-

main uniquely determined by the given set of parameters.

Along with the GTF approach, extended Scattering and/or trans-

fer matrix formalisms constitute an elegant and powerful model-

ing tool for investigating a lot of configurations involving active

single-mode microring resonators. The above list of possible exten-

sions is far from exhaustive: to cite but a few others, dual-wave-

length lasing in whispering gallery mode rare-earth-doped

microspheres, or second harmonic generation in semiconductor

microdisks are currently under investigation.
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