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Abstract – We theoretically propose a light-stopping process that uses loss and gain dynamical tuning in short coupled-resonator delay lines. 

The structure is made of four resonators and is optimized to avoid pulse distortion in the passive regime. The loss and gain modulations 

allow the resonant structure to be isolated from the access waveguide and the pulse to be stored. We demonstrate via numerical simulations 

the pulse storing process and show that this active delay line also induces nonlinear effects leading to pulse compression. This last property 

could be useful for pulse dispersion tailoring.

Introduction. – The possibility of slowing down or
storing light holds great interests in classical or quantum
optical communications [1,2]. In this context, integrated
optical delay lines or buffers are key elements for more
complex system of optical signal processing. In the
purpose to miniaturize the device, different schemes have
been proposed using electronic or photonic resonances.
Among them, microresonator-based devices seem to
provide a potential photonic circuit platform for this
purpose [3]. Nevertheless, resonant photonic structure
performances are intrinsically limited by the delay-
bandwidth product which states that the delay produced
by the resonant process is inversely proportional to the
resonance bandwidth [4]. Consequently, for a given pulse
duration the maximal distortion-free delay is fixed. To
overcome this strong limitation, some strategies have
been proposed and demonstrated. One first approach
consists in designing complex artificial photonic media
such as photonic crystal structures or coupled resonator-
based waveguides in order to flatten their group velocity
dispersion [4–7]. The recently proposed dynamical control
of the optical properties of resonant structures which
allows light-stopping is a powerful alternative [8–17].
This process relies on a photonic structure with an initial
state possessing a large bandwidth allowing the incident
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pulse to be briefly stored [18]. After the pulse has entirely
entered the structure, its group velocity is adiabatically
decreased. The pulse spectrum is strongly compressed,
which allows to stop it without distortion [19]. If the
process is reversible, the pulse can be released in principle
after an arbitrarily long delay. This light-stopping scheme
has been studied in Bragg or coupled microresonator peri-
odical structures [9,12,13,16]. From another point of view,
it has been shown that the use of arrays of active microres-
onators or lasers can be used to constitute almost lossless
delay lines [20–24]. In this paper, we propose to use a short
array of four active coupled microresonators instead of a
long chain of microresonators. This structure is used as an
all pass filter (APF) whose gain or optical losses can be
dynamically tuned. By using a particular coupling scheme,
the gain or loss changes will also modify the coupling of the
resonators with the access line. We will show as an example
whose parameters are compatible with III-V semiconduc-
tor technology, that light-stopping is possible using such a
very compact structure and that it could also be used for
tunable dispersion compensation or pulse compression.

Single microresonator APF. – In order to intro-
duce and to highlight the interest of using active coupled
microresonators, we start with a short review of the
single microresonator APF [4] properties which is also the
building block constituting the coupled structure. Thus
we consider the simplest structure that consists of a single
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Fig. 1: (Colour on-line) Single microresonator APF side
coupled to a bus waveguide. The APF induces a phase shift
φ(ω) in an input field Êin(ω) and introduces a group delay
τ0 = τg(0) on an optical pulse Ein(t) of duration T0. The
delayed pulse is noted Eout(t).

microring resonator made of a nondispersive material with
refractive index n. The ring perimeter is L= 2πR and
its angular resonant frequency is noted ω0 = 2πcM0/(nL)
(where M0 is a positive integer). The resonator is side
coupled to an access waveguide with an amplitude
coupling coefficient κ (related to ρ by κ2+ ρ2 = 1).
If we note the input and output fields, respectively,
Ein(t)e

−jω0t and Eout(t)e
−jω0t and their corresponding

inverse Fourier transforms Êin(ω) and Êout(ω), we have

Eout(t) =

∫ +∞

−∞

Êout(ω)e
−j(ω−ω0)t dω. (1)

The transfer function of the APF filter t=
√
Tejφ is

defined as

t(ω) =
Êout(ω)

Êin(ω)
=
ρ− aejϕ
1− ρaejϕ , (2)

where ϕ= nωL/c= ωτL is the one-round-trip accumulated
phase, τL is the round-trip duration, and a is the round-
trip amplitude attenuation. In the aim of optical func-
tion integration, we assume a highly resonant structure,
consequently ρ≈ 1 (here ρ is a positive real number).
If we consider the particular case of a lossless resonator
(a= 1), we obtain T (ω) = |t(ω)|= 1, and thus the device
only introduces a frequency-dependent phase shift:

φ(ω) = π+ϕ+2arctan
ρ sinϕ

1− ρ cosϕ, (3)

which can be expanded around ω0:

φ(ω) = π+ τ0 · (ω−ω0)+
+∞
∑

p=2

βp(ω0)

p!
(ω−ω0)p (2π), (4)

where τ0 = τg(ω0)≈ 2τL/(1− ρ) is the group delay intro-
duced at resonance by the filter calculated using

τg(ω) =
∂φ

∂ω
= τL

1− ρ2
1+ ρ2− 2ρ cosϕ ; (5)

βp = ∂
pφ/∂ωp for p� 2 are the higher dispersion orders.

Note that for the simple APF represented in fig. 1, the
even dispersion orders vanish since τg(ω) is a periodic even
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Fig. 2: (Colour on-line) Chain of active and passive micro-
resonators. The round-trip attenuations a1 and a2 of resonators
1 and 2 can be dynamically tuned. The two other resonators
are passive and their round-trip attenuation is kept equal to 1.

function. Neglecting these high-order dispersion terms, the
output field can be written as

Eout(t) =−
∫ +∞

−∞

Êin(ω)e
−j(ω−ω0)(t−τ0) dω. (6)

Consequently, |Eout(t)|2 = |Ein(t− τ0)|2 and the input
field is delayed without distortion by an amount τ0.
This is not valid for an incident field as a short pulse,
whose bandwidth is comparable to the full width at half-
maximum (FWHM), ∆ν ≈ (1− ρ)/(πτL): in this case, the
third-order dispersion β3(ω0) is no longer negligible which
leads to a strong distortion of the pulse. Thus in the case
of the single microring APF, for a given pulse bandwidth,
the maximal delay without too strong distortion is given
by the delay-bandwidth product: τ0∆ν = 2/π≈ 0.64. In
the case of a Gaussian input pulse of temporal width T0
centered at tc: Ein(t) =E0e

−2 ln 2(t−tc)
2/T 2

0 , the fractional
delay FD is given by τ0/T0 = 1/ln 2≈ 1.44. As already
noticed in the Introduction, this feature strongly limits
the use of single passive microresonators to buffer optical
bits. Moreover, since the delay is shorter than the whole
duration of the pulse, the pulse cannot be stored entirely
in the resonator, and the single resonator APF should
not be used for the all-optical light-stopping process.

Light-stopping process. – It is possible to increase
the device bandwidth in comparison with the single
resonator APF, and thus to improve the fractional delay
by coupling several lossless microresonators [5,6]. This will
be the starting point of our dynamic light-stopping process
which requires an initial state with a large bandwidth
allowing to temporarily store the incident pulse. The
proposed structure is shown in fig. 2. It consists of a
unidimensional array of four identical single mode micro-
rings of radius R≈ 9.67µm and effective index n= 2.5
whose common resonant wavelength is λ0 = 1.55µm as
represented in fig. 2. The coupling coefficient between
resonators i and i− 1 for i∈ {2, 3, 4} is κi. ρi defined by
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Fig. 3: (Colour on-line) Group delay introduced by the
microresonator array as a function of frequency in the initial
state. Note that in this case the structure is perfectly trans-
parent: αi = 0 for i∈ {1, 2, 3, 4}.

ρ2i +κ
2
i = 1 is assumed real and positive. Similarly, the

coupling coefficient between the bus waveguide and the
first resonator is κ1. The amplitude transfer function of
the unit cell is t=

√
Tejφ = t1, where we calculate t1 by

the recursive relation using eq. (2) [25]:

ti =
ρi− ti+1aiejϕ
1− ti+1ρiaiejϕ

. (7)

Here the round-trip amplitude attenuation in loop i,
ai, is related to the intensity loss coefficient αi by
ai = exp (αiπR) and ϕ still represents the round-trip
phase shift which is the same in the four resonators. In
the initial state all the resonators are lossless, thus αi = 0
for i∈ {1, 2, 3, 4}. Different ways such as circuit-based
methods [26] can be adopted to cancel the third-order
dispersion and to increase the bandwidth of the device
by optimizing the coupling coefficient values. Here we
used a numerical optimization to calculate the coupling
coefficients k= (κ1, κ2, κ3, κ4) of the structure. The
objective function ε is defined by

ε(k) =
∑

δ∈I

[τ0− τg(δ,k)]2 , (8)

where τ0 is the targeted delay over a bandwidth B, then
I = [−B/2, B/2]. By minimizing ε we obtain a flat group
delay for a bandwidth B which also leads to the cancel-
lation of β3(0). In the next section we will use T0 = 10ps
long Fourier transform pulses for the time domain simu-
lations. The bandwidth of such pulses is approximately
B = 40GHz: in this case, the optimization scheme gives
k= j(0.740, 0.233, 0.113, 0.074). The group delay and
βp(δ) for p= {2, 3} are given in figs. 3 and 4, respectively,
where we define the frequency detuning δ by ω= ω0+2πδ.
The maximal delay is τ0 = 24ps and the group delay band-
width is ∆ν = 120GHz. The simultaneous cancellations of
β2(0) and β3(0) lead to an increase of the delay-bandwidth
product up to 2.88. For a 10 ps long Gaussian pulse,

Fig. 4: (Colour on-line) Group delay dispersion β2 and third-
order dispersion β3 of the microresonators array in the initial
state (αi = 0 for i∈ {1, 2, 3, 4}).

Fig. 5: (Colour on-line) Transmission of the whole struc-
ture after dynamical tuning (α1 =−3.12× 10

3 cm−1, α2 =
9.15 cm−1, and α3 = α4 = 0).

the delay bandwidth ∆ν is about three times the pulse
bandwidth, and the FD is equal to 2.4. Consequently,
the proposed structure can be used to temporarily store
such a short 10 ps pulse. When the pulse has completely
entered the structure, the field is localized into resonators
2 and 4. By adiabatically decreasing a1, it is possible to
insulate resonators 2, 3, and 4 from the bus waveguide.
During this time, a2 is slightly increased in order to
compensate for the optical losses due to the coupling with
resonator 1. This scheme allows the pulse to be stored
inside resonators 2, 3, and 4. To achieve this, we assume
very high losses in resonator 1 α1 =−3.12× 103 cm−1 and
a small gain in resonator 2 α2 =−ln ρ2/(πR) = 9.15 cm−1
used to compensate for the losses induced by resonator 1.
Figures 5 and 6 represent the transmission of the struc-
ture and the associated group delay after the dynamical
tuning of α1 and α2: i) The transmission remains equal to
1 at resonance which insures that the process is lossless;
ii) the bandwidth is drastically reduced to few MHz which
will lead to a pulse spectrum compression [9]; and iii) the
group delay has been increased by more than 3 orders of
magnitude, and thus the pulse can be stored for a very
long time inside the resonator chain.
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Fig. 6: (Colour on-line) Group delay introduced by the
whole structure after dynamical (α1 =−3.12× 10

3 cm−1,
α2 = 9.15 cm

−1, and α3 = α4 = 0).
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Fig. 7: (Colour on-line) Coupling scheme using in the time
domain simulations. Ai(t, s) is the field envelope in the ring i
at the curvilinear abscissa s.

Time domain simulations. – We have checked both
the light-stopping process and the pulse releasing from
the device using the coupled mode theory in the time
domain [12,13,27,28]. The time variations of the field
envelope Ai(t, s) (where s is the curvilinear abscissa as
defined in fig. 7) in each half-microresonator is given by

Ai(s, t+ δt) =Ai(s− δs, t)ejηi(t)δs, (9)

where ηi(t) = nω0/c− jαi(t)/2. This finite difference
formulation of the wave equation slowly varying envelope
approximation is valid under the assumption of a non-
dispersive material. Thus, we implicitly consider that the
pulse propagates with a group velocity equal to the phase
velocity and that the group velocity dispersion (GVD) is
negligible. This assumption is often relevant for coupled
resonator structures since their structural dispersion is
several orders of magnitude higher than the material
dispersion [27,28]. The time and space steps are related
by δt= nδs/c with δs≈ 1.6µm. For the microring i,
the coupling between the other resonators (see fig. 7) is
taken into account in s= 0 for i∈ {2, 3, 4} by

Ai(0
+, t) = ρiAi(L

−, t)+ jκiAi−1(ℓ
−, t) (10)

Fig. 8: (Colour on-line) Light-stopping process simulation in
the time domain. (a) Input and output pulses when resonator
properties are dynamically tuned (noted dynamic). We also
represented the output pulse without adiabatic tuning (noted
static). (b) Temporal variations of the optical losses in the first
resonator and optical gain in the second resonator. The storing
duration is ∆t= 8.1tpass.

and in s= ℓ=L/2 for i∈ {1, 2, 3} by

Ai(ℓ
+, t) = ρi+1Ai(ℓ

−, t)+ jκi+1Ai+1(L
−, t). (11)

The injection of the input field and the calculation of the
output field are carried out using:

{

A1(0
+, t) = ρ1A1(L

−, t)+ jκ1Ein(t),

Eout(t) = ρ1Ein(t)+ jκ1A1(L
−, t).

(12)

Using this integration scheme and the coupling coeffi-
cients, we simulated the propagation of a T0 = 10ps long
input Gaussian pulse. As represented in fig. 8(a) in thin
line, without active modulation of the losses or gain
in resonators 1 and 2, the pulse is delayed by tpass =
23.2 ps≈ τ0 in good agreement with the stationary calcu-
lations. Note that the key point is that this static delay
(noted tpass) is much longer than the pulse duration which
allows the pulse to be temporarily stored inside the struc-
ture. Now we describe the light-stopping process that we
propose. When the pulse completely entered the structure
(t≈ 2.4tpass), we started to modulate adiabatically α1 and
α2 as it is shown in fig. 8(b). This dynamic tuning lasts
15 ps. At t≈ 3tpass, the pulse is stored inside resonators
2, 3, and 4. At t= 11.1tpass, we start to reverse the
loss/gain modulation and the stored pulse is released from
the system at t= 12.1tpass. Figure 9 represents the tempo-
ral profile of the input and the output pulses in the static
and dynamic configurations. Even in the static case, the
pulse is slightly distorted since it is very short. It would
be possible to reduce this residual distortion by adding
more resonators, but in this work we want to reduce the
number of resonators to the minimum. Nevertheless, the
dynamic process has not induced much distortion. It is
crucial to note that in the presented example the stor-
ing duration (∆t= 8.1tpass ≈ 188 ps) has been chosen in
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Fig. 9: (Colour on-line) Temporal profile comparison between
the input |Ein/E0|

2 and the output |Eout/E0|
2 pulses in the

static and dynamic cases for a storing duration ∆t= 8.1tpass.

Fig. 10: (Colour on-line) Temporal profile comparison between
the input |Ein/E0|

2 and the output pulses |Eout/E0|
2 in the

dynamic case for different values of storing duration (a) ∆t=
4.04tpass, (b) ∆t= 3.35tpass, (c) ∆t= 3.49tpass, and (d) ∆t=
3.78tpass.

order to minimize the pulse distortion. Other simulations
have shown that by increasing or decreasing the storing
time, the pulse periodically recovers its Gaussian shape.
This period is about a multiple of tpass. Between two
optimal values of the storing time, the pulse is strongly
distorted. This is illustrated by the results obtained for
different storing durations presented in fig. 10: (a) in this
example, the storing duration is half the previous one and
the pulse profile remains almost Gaussian (the tolerance
in the storing duration here is about 0.23tpass ≈ 5.3 ps);
(b) the pulse can be compressed due to the combination of
the dispersive properties of the delay line and the nonlin-
ear effects induced by the dynamic tuning process [17,29];
(c) and (d) depending on the value of the storing dura-
tion the effective dispersion properties of the structure
can be opposite. The interest of this effect is that in this
configuration, the nonlinear pulse compression does not
depend on the power of the pulse as is the case in pulse
compression based on the optical Kerr effect. Finally, in
fig. 11, we also present the output profile for a much longer

Fig. 11: (Colour on-line) Temporal profile comparison between
the input |Ein/E0|

2 and the output |Eout/E0|
2 pulses in the

dynamic case for a storing duration ∆t= 43.5tpass ≈ 1 ns.

storing duration ∆t= 43.5tpass ≈ 1 ns which is very similar
to those presented in fig. 9. This last result shows that in
our approach it is possible to reach a very high FD without
pulse distortion in really short resonant photonic struc-
tures. In the chosen example, the FD is about 100. In this
paper, we present the results for three particular values of
∆t: 4.04tpass in fig. 10, 8.1tpass in fig. 9, and 43.5tpass in
fig. 11, but it is possible in theory with the same structure
to discretely tune the storing duration. This is obtained
by changing the loss/gain modulation duration by step of
about tpass from 0 to an arbitrary high value without pulse
deformation.

Discussion. – In the simulations, we did not take
into account the noise induced by the spontaneous
emission in the second resonator. For small gain values
and not too long storing durations this effect is not
limiting [21,24,30], but for longer storing durations it
would be mandatory to take it into consideration [30].
The assumed values of absorption and gain are consistent
with III-V semiconductor devices [12,22]. It must be noted
that another limiting parameter would be the speed of
the loss/gain modulation which must be compatible with
the pulse duration to store. In this work, the modulation
speeds are consistent with loss switch based on the Stark
effect [12] and the gain recovery time measurement in
InAs/InGaAsP quantum dot amplifiers [31]. Still, in the
case of III-V semiconductors, the material GVD around
1 ps2/m is negligible for 10 ps pulses [32,33]. The GVD
induced by gain dispersion [32,34] can be evaluated about
60 ps2/m using a gain of 10 cm−1 and the parameters
given in ref. [32] for semiconductor amplifiers. This gives
a dispersion length of 60 cm, and thus a maximal storing
duration of 5 ns assuming a pulse propagation velocity
equal to c/n. Finally, the refractive index change due to
gain modulation has not been taken into account. This
phenomenon could lead to wavelength conversion during
the storing process [29]. The wavelength conversion occur-
ring during the storing process might be compensated
by the wavelength conversion during the release process.
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In a future more precise modeling of the process, this
effect would have to be taken into account.

Conclusion. – We have theoretically shown a light-
stopping process using a very compact sequence of
microresonators relying on the dynamic modulation of
optical losses and gain. This could not only be used as
a very integrated all-optical discretely tunable buffer,
but it could also be potentially used for reconfigurable
dispersion compensation applications or nonlinear optics
with low optical power. The simulations show that an
implementation of the process in III-V semiconductor
devices is compatible with 10 ps long pulses.
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