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Time-Domain Analysis of Resonator Array Buffers
Yannick Dumeige

Abstract—We present design and time-domain simulations of
microresonator array optical delay lines. The proposed buffer
consists of an microresonator array unidirectionally
coupled via a straight bus waveguide. We show that the use of a
two-dimensional arrangement of resonators can compensate for
the high order of dispersion and more specifically the third-order
dispersion. Numerical calculations confirm that pulses can be
stored in microresonator arrays without appreciable distortion.
Finally, we briefly describe the detrimental effects of optical losses
and technological errors.

Index Terms—Coupled microresonators, optical delay lines.

I
NTEGRATED optical delay lines or buffers are key ele-

ments for a more complex system of optical signal pro-

cessing. Different schemes have been proposed; among them,

microresonator-based devices seem to provide a potential pho-

tonic circuit platform for this purpose [1]. The simplest and

generic structure consists of a single lossless resonator used as

an all-pass filter (APF) [2]. In this configuration, the resonator

introduces only a phase shift in the incident field, as sketched

in Fig. 1. Near its resonance angular frequency , the APF is a

very dispersive structure and strongly depends on the an-

gular frequency . Consequently, the APF allows optical pulses

to be delayed by an amount given by the frequency-dependent

group delay (Fig. 1). The main limitation of

this approach comes from the resonant feature of the delaying

process [2]. Higher orders of dispersion with , which

are defined by , strongly limit the bandwidth of

the pulses that can be delayed without distortion. To circumvent

this drawback, it has been proposed to use multistage APF by

forming side-coupled integrated space sequence of resonators

(SCISSOR) [3]. By using identical resonators, the total delay

is multiplied by and the fractional delay is increased. Alter-

natively, it has been proposed to cascade APF whose properties

are gradually tuned in order to flatten the group delay [2], [4]. Fi-

nally, Khurgin has suggested canceling high orders of dispersion

by using arrays of coupled microresonators [5]. In this letter, we

present design and time-domain performances of arrays of cou-

pled microresonators used as optical buffers. We would like to

highlight the interest of arrays of resonators and the main limi-

tations of their practical use.

The proposed structure consists of an array of identical

columns of single-mode microrings of radius and effective

index , as represented in Fig. 2(a). Each column of the array
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Fig. 1. Microresonator APF side coupled to a bus waveguide. The APF induces
a phase shift ���� in an input field � ��� and introduces a group delay � on
an optical pulse � ��� of duration � . The delayed pulse is noted � ���.

Fig. 2. (a) Microresonator array optical buffer and its bus waveguide.
(b) Schematic representation of the unit cell.

represented in Fig. 2(b) is made up of a coupled resonator chain

and unidirectionally coupled to others by the straight bus wave-

guide. For , we obtain an SCISSOR [3], and the case of

has been recently studied [6]. The coupling coefficients

between resonators and for is . defined by

is assumed real and positive. Similarly, the cou-

pling coefficient between the bus waveguide and the first res-

onator is . The amplitude transfer function of the unit cell is

where we calculate by the recursive

relation

(1)

where and are the round-

trip amplitude attenuation and the phase shift. We define the fre-

quency detuning by . We will use a reference

structure with , m, and . With

the coupling coefficient given in Table I, we obtain a maximal

group delay ps [see Fig. 3(a)]. As represented in

Fig. 3(b), the third-order dispersion at resonance

for is very strong and negative. This is the first limitation

for pulse propagation since [5], [7]. It is possible to

cancel by using resonators in the unit cell [8]–[11].

For , the line Config. 1 in Table I gives the coupling coef-

ficients used to cancel with a maximal delay at resonance
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Fig. 3. (a) Group delay dispersion and (b) third-order dispersion introduced by
the unit cell. (c) A 30-ps-long input pulse and output pulse delayed by about
1920 ps for � � �. (d) Output pulses for the same input and the same delay as
in (c) in the cases � � � and � � �. In all the present calculations, we do not
consider losses �� � ��. For � � � and � � �, we used the sets of coupling
coefficients referring to Config. 1.

TABLE I
COUPLING COEFFICIENTS USED IN THE CALCULATIONS. CONFIGURATION 1 IS

USED FOR � � �� ps AND CONFIGURATION 2 FOR � � �� ps

of 12 ps (twice the delay for ). Fig. 3(a) and (b) also repre-

sents the group delay and the third-order dispersion for .

In our time-domain simulations, we will also use res-

onators. For , different ways can be adopted to cancel the

third-order dispersion such as circuit-based methods [9]; here

we used numerical optimization to calculate the values of the

coupling coefficients of the unit cell. The

objective function is defined by

(2)

where is the targeted delay over a bandwidth , then

. By minimizing , we obtain a flat group

delay for a bandwidth which also leads to the cancellation of

. The set of coefficients for noted in Config. 1 has

been calculated for GHz and ps. The corre-

sponding group delay and are given in Fig. 3(a) and (b),

respectively. Note that for each unit cell, we have chosen a

maximal delay proportional to in order to compare different

structures with the same number of resonators producing

the same optical delay. We have simulated the performances

of the different proposed structures in the time domain using

the model described by Pereira et al. in [12] by assuming that

the material dispersion is much weaker than the structural

one. The calculation consists of the propagation of an input

Fig. 4. (a) Group delay introduced by the unit cell for � � � and � � � in the
lossless case of Config. 2; we also recall the group delay for � � � in the case
of Config. 1. (b) Transmission of the unit cell with � � � dB/cm; for � � �
and � � �, we used the second configuration.

Gaussian optical pulse of intensity profile with an

amplitude , an angular frequency rad s ,

and a full-width at half-maximum by a one-dimensional

finite-difference method. First, we have chosen a total delay

of 1.920 ns corresponding to 1 320, 2 160, and 4 80

structures. For ps, the results are given in

Fig. 3(c) and (d). The structure strongly distorts the im-

pulsion due to its strong negative . On the other hand, for the

and structures, where the third-order dispersion

has been canceled, the pulses are delayed without distortion. To

show the real interest of using the device, one has to use

shorter pulses. With this in mind, we used pulses of temporal

width ps. We used the same structures but for

and ; we slightly changed the values of the coupling

coefficients (keeping the same group delay) in order to increase

their bandwidths. The corresponding coupling coefficients are

given in Table I (see the line called “Config. 2”). For ,

the optimization procedure has been used with GHz

and ps. Fig. 4(a) shows the group delay for the new

unit cells for and ; we also recall the group

delay dispersion for with the previous set of coupling

coefficient (Config. 1). In the two cases, the bandwidth has

been increased and ripples appear in the group delay dispersion.

For the time-domain simulations, we have chosen an overall

delay of 120 ps; thus we used the following structures: 1 20,

2 10, and 4 5. The thicker lines in Fig. 5(b)–(d) represent

the simulation results. In the present example, the

structure induces less distortion than the structure thanks

to its larger bandwidth for the same delay per resonator. For

, the pulse is still strongly distorted. In the lossless case,

the simulations using the previous set of coefficients show a

more pronounced distortion as represented in Fig. 5(c) and (d)

in dashed–dotted lines. For structures compatible with short

pulses ps , we have studied the impact of optical
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Fig. 5. (a) A 10-ps-long input pulse. Output pulses delayed by an amount of
about 120 ps in the lossless case and for � � � dB/cm: (b) � � �, (c) � � �,
and (d) � � �. For � � � and � � �, we have used the second configuration;
we also add the output pulses obtained with Config. 1 in the lossless case.

Fig. 6. Output pulses in the second configuration for � � � and � � �

with losses � � � dB/cm and technological errors: (a) considering errors of
amplitude � ��� in the intensity coupling coefficients; (b) considering errors
of amplitude �� in the ring radius.

losses and technological errors. Fig. 4(b) represents the in-

tensity transmission of the different unit cells for losses

equal to dB/cm. In this case, each unit cell not only

introduces delay in the propagation but also optical losses. The

temporal time-domain simulations given in Fig. 5(b)–(d) in

thin lines show that low losses do not add distortion but only

overall attenuation equal to . This strongly limits

in practice the use of high numbers of resonators. For insertion

losses as high as 10 dB ( dB/cm, , and ),

the pulses are not distorted using the same design. Note that

for a given delay, the overall attenuation is the same for ,

, and when the number of resonators is chosen.

Finally, we have studied the impact of both technological errors

in and in the coupling coefficients on the temporal profile

of the output pulse. Fig. 6(a) represents the output pulse after

propagation in a 4 5 structure where we added random devi-

ation from the nominal values in the coupling coefficients. The

mean maximal amplitude relative error is noted . These

simulations show that errors up to 10% in the intensity coupling

coefficients do not introduce too much additional distortion. We

carried out the same calculations by adding random deviation

to the values of the ring radii with a maximal amplitude .

The simulations presented in Fig. 6(b) show that errors about 4

nm in the radius size induce strong additional distortion in the

output pulse profile. For our values of and , these errors

give a resonance frequency mismatch around 50 GHz which is

one order of magnitude larger than what is reported in [13].

We have performed time-domain simulations of microres-

onator array buffers. For a given resonator number and

a given overall delay, two lines of resonators are suf-

ficient to cancel the third-order dispersion and to avoid pulse

distortion for sufficiently long pulses. For shorter pulses, an in-

crease in the number of lines allows the Gaussian shape of the

input pulses to be preserved. The main limitations of such a

buffer from a practical point of view come from optical losses

and resonator size fabrication tolerance (better than 4 nm for an

interference order about 100). In the chosen example, the rela-

tive coupling coefficient accuracy must be about 10%.
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