Time-Domain Analysis of Resonator Array Buffers Yannick Dumeige

Abstract-We present design and time-domain simulations of microresonator array optical delay lines. The proposed buffer consists of an microresonator array unidirectionally coupled via a straight bus waveguide. We show that the use of a two-dimensional arrangement of resonators can compensate for the high order of dispersion and more specifically the third-order dispersion. Numerical calculations confirm that pulses can be stored in microresonator arrays without appreciable distortion. Finally, we briefly describe the detrimental effects of optical losses and technological errors.

Index Terms-Coupled microresonators, optical delay lines. I NTEGRATED optical delay lines or buffers are key ele- ments for a more complex system of optical signal processing. Different schemes have been proposed; among them, microresonator-based devices seem to provide a potential photonic circuit platform for this purpose [START_REF] Xia | Ultracompact optical buffers on a silicon chip[END_REF]. The simplest and generic structure consists of a single lossless resonator used as an all-pass filter (APF) [START_REF] Lenz | Optical delay lines based on optical filters[END_REF]. In this configuration, the resonator introduces only a phase shift in the incident field, as sketched in Fig. 1. Near its resonance angular frequency , the APF is a very dispersive structure and strongly depends on the angular frequency . Consequently, the APF allows optical pulses to be delayed by an amount given by the frequency-dependent group delay (Fig. 1). The main limitation of this approach comes from the resonant feature of the delaying process [START_REF] Lenz | Optical delay lines based on optical filters[END_REF]. Higher orders of dispersion with , which are defined by , strongly limit the bandwidth of the pulses that can be delayed without distortion. To circumvent this drawback, it has been proposed to use multistage APF by forming side-coupled integrated space sequence of resonators (SCISSOR) [START_REF] Heebner | Slow' and 'fast' light in resonatorcoupled waveguides[END_REF]. By using identical resonators, the total delay is multiplied by and the fractional delay is increased. Alternatively, it has been proposed to cascade APF whose properties are gradually tuned in order to flatten the group delay [START_REF] Lenz | Optical delay lines based on optical filters[END_REF], [START_REF] Yang | Increasing the delay-time-bandwidth product for microring resonator structures by varying the optical ring resonances[END_REF]. Finally, Khurgin has suggested canceling high orders of dispersion by using arrays of coupled microresonators [START_REF] Khurgin | Expanding the bandwidth of slow-light photonic devices based on coupled resonators[END_REF]. In this letter, we present design and time-domain performances of arrays of coupled microresonators used as optical buffers. We would like to highlight the interest of arrays of resonators and the main limitations of their practical use.

The proposed structure consists of an array of identical columns of single-mode microrings of radius and effective index , as represented in Fig. 2

(a). Each column of the array

The author is with ENSSAT-FOTON (CNRS UMR 6082) Université de Rennes 1, 22300 Lannion, France (e-mail: yannick.dumeige@enssat.fr). , we obtain an SCISSOR [START_REF] Heebner | Slow' and 'fast' light in resonatorcoupled waveguides[END_REF], and the case of has been recently studied [START_REF] Mario | Optical buffer with higher delay-bandwidth product in a two-ring system[END_REF]. The coupling coefficients between resonators and for is . defined by is assumed real and positive. Similarly, the coupling coefficient between the bus waveguide and the first resonator is . The amplitude transfer function of the unit cell is where we calculate by the recursive relation [START_REF] Xia | Ultracompact optical buffers on a silicon chip[END_REF] where and are the roundtrip amplitude attenuation and the phase shift. We define the frequency detuning by . We will use a reference structure with , m, and . With the coupling coefficient given in Table I, we obtain a maximal group delay ps [see Fig. 3(a)]. As represented in Fig. 3(b), the third-order dispersion at resonance for is very strong and negative. This is the first limitation for pulse propagation since [START_REF] Khurgin | Expanding the bandwidth of slow-light photonic devices based on coupled resonators[END_REF], [START_REF] Melloni | Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures[END_REF]. It is possible to cancel by using resonators in the unit cell [START_REF] Madsen | Optical all-pass filters for phase response design with applications for dispersion compensation[END_REF]- [START_REF] Dumeige | Measurement of the dispersion induced by a slow-light system based on coupled active-resonator-induced transparency[END_REF]. For , the line Config. 1 in Table I gives the coupling coefficients used to cancel with a maximal delay at resonance ). Fig. 3(a) and (b) also represents the group delay and the third-order dispersion for . In our time-domain simulations, we will also use resonators. For , different ways can be adopted to cancel the third-order dispersion such as circuit-based methods [START_REF] Van | Circuit-based method for synthesizing serially-coupled microring filters[END_REF]; here we used numerical optimization to calculate the values of the coupling coefficients of the unit cell. The objective function is defined by [START_REF] Lenz | Optical delay lines based on optical filters[END_REF] where is the targeted delay over a bandwidth , then . By minimizing , we obtain a flat group delay for a bandwidth which also leads to the cancellation of . The set of coefficients for noted in Config. 1 has been calculated for GHz and ps. The corresponding group delay and are given in Fig. 3(a) and (b), respectively. Note that for each unit cell, we have chosen a maximal delay proportional to in order to compare different structures with the same number of resonators producing the same optical delay. We have simulated the performances of the different proposed structures in the time domain using the model described by Pereira et al. in [START_REF] Pereira | Gap-soliton switching in short microresonator structures[END_REF] by assuming that the material dispersion is much weaker than the structural one. The calculation consists of the propagation of an input Gaussian optical pulse of intensity profile with an amplitude , an angular frequency rad s , and a full-width at half-maximum by a one-dimensional finite-difference method. First, we have chosen a total delay of 1.920 ns corresponding to 1 320, 2 160, and 4 80 structures. For ps, the results are given in Fig. 3(c) and(d). The structure strongly distorts the impulsion due to its strong negative . On the other hand, for the and structures, where the third-order dispersion has been canceled, the pulses are delayed without distortion. To show the real interest of using the device, one has to use shorter pulses. With this in mind, we used pulses of temporal width ps. We used the same structures but for and ; we slightly changed the values of the coupling coefficients (keeping the same group delay) in order to increase their bandwidths. The corresponding coupling coefficients are given in Table I (see the line called "Config. 2"). For , the optimization procedure has been used with GHz and ps. Fig. 4(a) shows the group delay for the new unit cells for and ; we also recall the group delay dispersion for with the previous set of coupling coefficient (Config. 1). In the two cases, the bandwidth has been increased and ripples appear in the group delay dispersion. For the time-domain simulations, we have chosen an overall delay of 120 ps; thus we used the following structures: 1 20, 2 10, and 4 5. The thicker lines in Fig. 5(b)-(d) represent the simulation results. In the present example, the structure induces less distortion than the structure thanks to its larger bandwidth for the same delay per resonator. For , the pulse is still strongly distorted. In the lossless case, the simulations using the previous set of coefficients show a more pronounced distortion as represented in Fig. 5(c) and (d) in dashed-dotted lines. For structures compatible with short pulses ps , we have studied the impact of optical . This strongly limits in practice the use of high numbers of resonators. For insertion losses as high as 10 dB ( dB/cm, , and ), the pulses are not distorted using the same design. Note that for a given delay, the overall attenuation is the same for , , and when the number of resonators is chosen. Finally, we have studied the impact of both technological errors in and in the coupling coefficients on the temporal profile of the output pulse. Fig. 6(a) represents the output pulse after propagation in a 4 5 structure where we added random deviation from the nominal values in the coupling coefficients. The mean maximal amplitude relative error is noted . These simulations show that errors up to 10% in the intensity coupling coefficients do not introduce too much additional distortion. We carried out the same calculations by adding random deviation to the values of the ring radii with a maximal amplitude . The simulations presented in Fig. 6(b) show that errors about 4 nm in the radius size induce strong additional distortion in the output pulse profile. For our values of and , these errors give a resonance frequency mismatch around 50 GHz which is one order of magnitude larger than what is reported in [START_REF] Barwicz | Fabrication of add-drop filters based on frequencymatched microring resonators[END_REF].

We have performed time-domain simulations of microresonator array buffers. For a given resonator number and a given overall delay, two lines of resonators are sufficient to cancel the third-order dispersion and to avoid pulse distortion for sufficiently long pulses. For shorter pulses, an increase in the number of lines allows the Gaussian shape of the input pulses to be preserved. The main limitations of such a buffer from a practical point of view come from optical losses and resonator size fabrication tolerance (better than 4 nm for an interference order about 100). In the chosen example, the relative coupling coefficient accuracy must be about 10%.
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 1 Fig. 1. Microresonator APF side coupled to a bus waveguide. The APF induces a phase shift (!) in an input field E (!) and introduces a group delay on an optical pulse E (t) of duration T . The delayed pulse is noted E (t).
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 2 Fig. 2. (a) Microresonator array optical buffer and its bus waveguide. (b) Schematic representation of the unit cell.
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 3 Fig. 3. (a) Group delay dispersion and (b) third-order dispersion introduced by the unit cell. (c) A 30-ps-long input pulse and output pulse delayed by about 1920 ps for n =1. (d) Output pulses for the same input and the same delay as in (c) in the cases n = 2 and n =4. In all the present calculations, we do not consider losses ( =0).Forn =2and n =4, we used the sets of coupling coefficients referring to Config. 1.
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 4 Fig. 4. (a) Group delay introduced by the unit cell for n =2and n =4in the lossless case of Config. 2; we also recall the group delay for n =4in the case of Config. 1. (b) Transmission of the unit cell with =1dB/cm; for n =2 and n =4, we used the second configuration.
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 5 Fig. 5. (a) A 10-ps-long input pulse. Output pulses delayed by an amount of about 120 ps in the lossless case and for =1dB/cm: (b) n =1, (c) n =2, and (d) n =4.Forn =2and n =4, we have used the second configuration;we also add the output pulses obtained with Config. 1 in the lossless case.
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 6 Fig. 6. Output pulses in the second configuration for n =4and m =5 with losses =1dB/cm and technological errors: (a) considering errors of amplitude 1 jj in the intensity coupling coefficients; (b) considering errors of amplitude 1R in the ring radius.

TABLE I COUPLING

 I COEFFICIENTS USED IN THE CALCULATIONS.CONFIGURATION 1 IS USED FOR T =30ps AND CONFIGURATION 2 FOR T =10ps

of 12 ps (twice the delay for