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Abstract:

In this paper, the interaction between the wallrations of a stretched elastic cylindrical

membrane and the inner acoustic field is considaretér plane wave approximation. Three
waves exist at low frequencies for this coupledesys The first of these, called Korteweg’s
wave, propagates mainly within the fluid and cqooesds to the acoustic plane wave which is
closely coupled to the wall vibrations. The two esttwaves mostly propagate within the
structure and correspond to coupled longitudiretftal motions: one corresponds to
predominant longitudinal motions in the membrane tire other exists only when tension is
applied to the membrane and is similar to a stbegding wave. A model for the dispersion
curves is presented and is experimentally validdtegarticular, the model and experiments
reveal that three frequency ranges exist for whinehpropagation of the Korteweg’s wave is
subsonic, evanescent and supersonic. The expedmealidation is achieved using the

acoustic impedance measurements for a stretchdaerumembrane. Assuming that the
vibratory and acoustic fields are dominated by wawe, the latter are described by using
only one dispersive wave, in this case, of equivaleave speed. The input acoustic
impedance curve can be fitted using this exprassibich only requires one equivalent

wave.
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1. Introduction

The vibroacoustics of cylindrical ducts have begtemsively studied throughout the
relevant literature since numerous applications@chanical engineering involve fluid-filled
pipes with yielding walls. Within the framework diin shell theories as described in [1],
wave propagation in fluid-filled cylindrical shelles been investigated in [2], [3], [4] and the
branches of the dispersion curves depending omthgal circumferential indices have been
presented. In the light fluid approximation, theprsion curves of the fluid-filled shell can
be interpreted as the juxtaposition of thevacuoshell dispersion branches and the acoustic
dispersion branches of the rigid walled tube. FeaJy fluid, the fluid loading term is of
importance such that it is not possible to interpie dispersion diagram in a similar manner
with this juxtaposition. In this case, the modeshaf coupled system differ greatly from the
acoustical modes of the rigid duct and the strattonodes of thén vacuoshell.

A strong interaction between fluid and structursoabccurs when the tube wall is
very flexible. This is the case for cylindrical hdr membranes submitted to a static tension
which are studied in this paper: attention is fecuen fluid-structure interaction between the
plane acoustic wave and the membrane breathingon®tA study of this configuration is
carried out using theoretical and experimental epgines and is structured as follows :
following a short bibliographical review (Sectiorilp a vibroacoustic model of a membrane
submitted to a static preload is described in $acB.2. A dispersion equation is derived
(Section 2.3) and free wave expansion is usednmpate the acoustic input impedance of the
tube (Section 2.4). In Section 3, measurementd@irtput impedance are presented and an
equivalent speed for the propagating waves withi@ $ystem is obtained. Finally, the

limitations of the model and the main results ammsarized in the conclusion.

2. Vibroacoustic model of a fluid filled rubber tube

2.1 Korteweg’'s model : Bibliographical review

Analytical vibroacoustic models of waveguides witielding walls are based on

assumptions related to the following three desiomgst that of the inner acoustic pressure,
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the wall motion and the fluid-structure interaatid’he description of the acoustic pressure
field can be achieved in the most general mannegusultimodal expansion as presented in
[2]. Descriptions of the wall motion can be achewesing 3D elasticity [5], Donnell’s thin
shell theory [2], Flugge-Timoshenko’s theory [4]embrane theory [6], or a local wall
admittance model [7]. A description of the fluidesiture interaction is generally based on a
continuity relation of the normal velocity. Howeye@n acoustic treatment on the walls can
also be modeled using appropriate wall impedance.

When considering the axisymmetric motions for thells and plane acoustic motion
for the inner fluid, it can be shown that the dispen equation for the fluid-filled shell has
five pairs of rootstA for each frequency, associated with five waveselleng in both
directions. The corresponding waves of the coupletiem are the quasi-plane acoustic wave
(Korteweg's wave), the speed of which is disturbgdvall vibration, and four waves which
mainly propagate within the structure : the tansicshell wave is completely uncoupled from
the fluid motion. A quasi-longitudinal wave prop&gg mainly within the shell. Two other
waves are longitudinal/flexural waves which mogtigpagate inside the shell and which are
evanescent below the shell’s ring frequency. Auls®n regarding dispersion curves for a
wide range of parameters is given in detail inff#] breathing modes (corresponding to the
circumferential ordem=0) and for bending modemgEl).

The first of these five waves, corresponding ® qiuasi plane acoustic wave can be
described without using shell theory for the dgamn of the wall : in a simplified way,
coupling can be described by a wall admittance yinglthat the reaction of the wall is local.
In this model, the forces applied to an elementhg volume located between two cross
sections of the duct very close to each other élegad to the compressibility effect and the
wall effect. This wall effect is known as the distaility effect (see [8], [9]). The speed of
the acoustic plane wave depends on both the cosipildg and distensibility effects. The
acoustic plane wave becomes strongly dispersivabsaic, evanescent and supersonic
frequency ranges can be distinguished. The frequeargge in which the wave is evanescent
corresponds to a stop band. This model was firsseprted by [10] during the 1 €entury,
and this wave type is called Korteweg’'s wave or Ma&orteweg’'s wave. It corresponds to a
simplified model giving a satisfactorily low frequey approximation of the first of the 5
waves listed above. In the literature, this mdded been presented in several reference books
[9], [7], [8], [11] and, it has been independenttydeveloped : Korteweg's name does not

systematically appear in the studies cited in tne paragraph although the model is used. In
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the following section, several applications for efhihis model has been derived and applied

are reviewed.

Korteweg’s model has been applied to biomechanitsparticular to provide a
description for the propagation of waves in airsvagnd blood vessels. For medical
applications, a non-invasive technique called AA@Rway area by acoustic reflection, [12],
[13]) has been developed to determine the intdvoad of the airway. An acoustic pulse is
generated at the opening of the patient’'s moutd the acoustic reflection coming from the
airway is measured. A model of wave propagatiothéwvibrating duct is required in order to
determine the profile of the cross section from #who measurement using an inverse
method. The airway wall vibrations are one of thest important limitations of this
technique (see [14]). The local reaction assumptenwhich Korteweg’'s wave model is
based, is used to describe the wall fluid inteaactising a limited number of parameters. A
similar model for the vocal tract is also required applications to speech synthesis and
analysis [13], [15].

Another application of Korteweg’'s wave is related wave propagation in blood
vessels. In this case, the distensibility of thbetus of far greater importance than the
compressibility of the fluid, with the result thiéie fluid may be regarded as incompressible
[8]. For the purpose of modeling wave propagatioiblood vessels, a more comprehensive
model takes into account the non-linear behaviduihe vessel wall, its internal damping and
the influence of the viscosity of the fluid [16].

Wind instruments are other types of wave guideh wielding walls. The influence of
the wall vibration on the musical sound emittecabyoodwind instrument, a brass instrument
or an organ pipe is open to debate. Vibroacoustidets have been developed in order to
quantify the wall vibration effect [17], [18]. A aehge of wave speed due to wall vibration can
be approximated using Korteweg’s model. A smaljfirency shift in the acoustic resonance
frequencies can then be estimated [19]. Numericahputations for parameter values
corresponding to organ pipes of circular, ellipicd square cross sections show that this
frequency shift is too small to be perceptible. ldger, these conclusions must be carefully
considered since the results are based on thermation assumption, which is not always
satisfied because of the modal behaviour of the.pip

Experimental validations of Korteweg’s model, imdihg measurements of the
variation in the wave speed versus frequency, mrehort supply throughout the literature.

Phase velocity can be determined from the distaeteeen crests where standing waves are
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observable. For applications to physiology, suclasneements are given in [20] for a rubber
tube and an excised canine trachea and by [2H fabber tube.

The local reaction hypothesis is not always satisfi The most simple duct in which
this is the case is a rubber membrane [6]. Indhge, two waves exist : a Korteweg’s wave
which propagates mainly in the fluid and a longihad wave which propagates mainly in the
membrane. Since both waves are present in the dluitdthe structure, it can be said that the
local reaction hypothesis is not valid here. Tladidity of the local reaction hypothesis is
discussed in [22], [23]. Because of the presendbeftop band for Korteweg’s wave, it has
been highlighted that this property can be usatketagn an acoustic muffler [20]. In addition,
the introduction of flexible segments in a pipingstem is a convenient passive technique
which can be used to reduce structure-borne sdsinde such flexible segments also affect
fluid-borne sound, any computation of the insertloas or the transfer matrix of a pipe
assembly should take this flexibility into accoastin [24]. With the same objective, a model
of pipe assembly has been developed using Kenndhi's shell theory of and using
expansion over ‘in vacuo’ modes [25].

For practical reasons, the flexible tube has toeiforced in many applications. The
wave propagation of a pressurized tube stiffenearbgsed wire is examined in [26], [27].
The influence of internal pressurization and ari@mbrane stress is considered. It is shown
that major changes in the fluid dominated wave dpe® be observed when the fluid loading

term is increased.

2.2. Governing equations

In this section, a cylindrical pipe filled with ampressible fluid is studied. Attention is
focused on the vibroacoustic coupling between tiner fluid and the pipe. The influence of
the external fluid is ignored. The pipe is subnditte a static axial tension T. It has a lenigth

a radiusa, a wall thicknes#, and is assumed to be thih/g<<1). The co-ordinate system is
given in Figure 1x andz are the axial and radial co-ordinatesandw are the membrane

displacements in accordance with these directidasuming linear elasticity approximations,
the equations governing axisymmetric vibrationghaf membrane can be written as follows

(see Appendix A for details) :
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whereE, p and v are the Young’s modulus, the density, and thedeais ratio of the rubber
material respectively. Since the material is supdd® be viscoelastic, the Young’s modulus

should be complex valued. The spegaf longitudinal waves inside the material is given

by c, :JE/,o(l—vz) . The acoustic pressure in the tube denote@d bgd A= 2srah is the

cross-section area of the membrane.
Assuming linear acoustic approximations and plaaeerpropagation, the acoustic presgure
inside the pipe satisfies the following inhomogamewave equation [28] :

0°p _10°p_2p, 9°w

, 2
ox? ¢ ot? a ot @

wherec is the speed of sound in air, apgl the density of air. The right hand side of equatio

(2) corresponds to an acoustic source describiagvdll vibration effect on the inner pressure
field.

Equations (1) and (2) give a set of three lineatosd order differential coupled
equations, as a function of the three variables andp depending on space co-ordinate

and timet.

2.3. Dispersion curves

2.3.1 Dispersion equation

When looking for solutions for travelling wavestlwian harmonic excitation of angular

frequencyw, the variablesi(x), w(x) and p(x) are assumed to be written agx) = u,e’™,
w(x) =w,e"™and p(x) = p,e”with A being the wavenumber. The time fac®t is

implicit and u(x), w(x), p(xX)represent the complex amplitudes of the quantitieBy
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substituting the harmonic variables in equationy ghd (2), we obtain a set of three

homogeneous equations :

“R+KkE 0 2P0 o7
a Py 0
I %j" u, [=]0], )
_2 W, 0
1 KM —1VIA2—i+kL2 0
£c.°h a E A &

wherek=aJc andk = a/c_ are the wavenumbers associated with the uncougledsac and
longitudinal waves respectively. The equations (&ve non-trivial solutions if the
determinant of the matrix is equal to zero. Thosdition leads to the following dispersion

equation :

e A A O

Dispersion equatiorf4) is a third-order polynomial equation of if, which may give six

wavenumber rootstA,+A,,+A,, corresponding to three axisymmetric waves projiega

. . 2
inward and outward along theaxis of the membrane tube. Note that the teic:mg2 present
0

in equation (4) is the fluid loading term. For nuioal applications, equation (4) is solved by
using the values for the parameters given in Table

Two cases are studied : the conservative case evdrsr dissipation is ignored and the non-
conservative case, where acoustical and mechatigsipations are taken into consideration.
In the first case the two wave speedmdc, are such that® andc, ?are real numbers. In the
second case, the dissipation phenomena imply tietcelerities (and the wavenumbers)
become complex, leading to both propagation anednaé#tion phenomena. In harmonic
regime and at low frequency, the acoustical disgipas mainly due to the thermoviscous
phenomena localised at the wall boundaries. Thesigktion is then modeled using the

following complex wavenumber [29]:
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+a{l-j), (5)

wherea = 3EL0_5\/T/a (at 20°C), ¢, =34337ms™, f being the frequency aradthe radius
of the tube,c being the complex wave speed. In addition, the haeical dissipation is
modeled using a complex Young’'s modulus, which théso renders the wave speed
complex.

The dispersion branches associated with the thraeemumbersA, (roots of (4) ) are
presented in Section 2.3.4. These branches camdrprieted, first of all, by considering two
simplified cases : the case where both static ptElcand Poisson’s ratio are assumed to be

zero, and the case where only static prelb&dset at zero.

2.3.2 Korteweg’s hypothesigv=0, T=0)

Considering the case whefee0 and =0, the roots of the dispersion equation (4) are the

wavenumbers are given by :

A=+% and A=+ L (6)
CL CK
where
2 C2 -1/2
c, =Cl+ za,oo > . (7)
hoc, (1_a2k|_ )

Two waves propagate in the medium: a purely lodyital wave in the membrane

(wavenumberk = aJc. ) and a Korteweg’s wave (wavenumhbgrc, ), the wave speed of

which is denotedx. Numerical results are given in Figure 2 usingpheameters from Table
1. The real parts of the complex speBeg¢), Re(&), which are always positive (or null) are
displayed in the positive half-plan. The imaginpeytsim(c_), Im(c) are always negative (or
null), and are displayed in the negative half-plan.

The longitudinal wave involves membrane displacannerthe axial direction only and is
strictly uncoupled from bending displacemanand acoustic pressupeas should be the case
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since the Poisson’s ratio is zero. Korteweg's wawmlves coupled oscillations between
acoustic pressurgp and bending membrane displacement In this case, no axial
displacement is involved. This wave is highly dispee. Three frequency ranges can be

distinguished from expression (7).

In the range [O,f,] wherefy =c_/(278)is the ring frequency of the membrane, the wave
speedc, is real and the propagating wave is subsonjc<c, c being the speed of sound
without any couplings). In this range, the waveesbe, varies from

c
C =
“ [1+ 2ap,C? /h,ocLZJl/2

for f=0Hz,to ¢, =0 for f =f,. The low frequency limitko is called Korteweg-Lamb

wave speed [7] or Moes-Korteweg wave speed [20]. Iline range

[f,,f \/1+ 2ap,c? I(hpc,?) ], wave speed, is a pure complex imaginary number{ < ) 0

a

and the corresponding wave is evanescent. Thieramgesponds to a stop band. In the range

[fa\/1+2a,ooc2 /(h,ocLZ), +oo[, the wave speed is once again real. The correspgn

propagating wave is supersonic, (> c) and varies fromc, =« to ¢, =c. Such a simple
definition of ranges is possible because the dagip has been ignored (Figure 2a). If it is
taken into consideration, in the subsonic and isgpéc ranges the complex wave spegd
has a small imaginary part leading to wave atteanatn the stop band, the real part of the
wave speed, is not strictly equal to zero and corresponds toghly damped propagating

wave (Figure 2b). However, conclusions for the éispn curves of the dissipative system
remain qualitatively the same as for those usiegctinservative system.

2.3.3 Unstretched casevg¢0, T=0)

Setting the static preloadto O in the dispersion equation (4) leads to

A==

O e

7
|A =+— )

S (8)
where

10
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(cﬁj =(-B++/A)/2 and (Cﬂj =(-B-n)/2, (©)

1 2

with

B=[1/a? -k *) (k> +k. *)-vZk?/a® +2p,k, ° I(ahp)] [k, > - A-v?)/&a?] ,
(10)
A= B -4[1<L2|<2[|<L2 -1/a’]1-2p.k * /(ah,o)J/[kLz -@1-v?)/a?].

Two coupled waves propagate in the medium. At highqdencies it can be verified that the
celeritiesc; andc, tend respectively towardsamdc, indicating that the corresponding waves
tend towards the plane wave in fluid and towards ltngitudinal wave in the membrane,
each wave being uncoupled from the other. The wasedated withA = w/c, is close to
Korteweg’s wave, being slightly disturbed by theugling between the longitudinal and
flexural motion induced by Poisson’s ratio. The wassociated withl = w/c, is close to

the longitudinal wave in the membrane.
2.3.4. General casevg0, T£0)

In the general cas®@£0, T20), the three pairs of roots of the dispersion &#qna

A=t 1=£% p=2%

Cl CZ C3
can be numerically obtained and are presentedguar&i4 for the conservative case (a), and
the dissipative case (b). The first two dispersicanbhes are close to the two obtained in the
unstretched case ((T=0%0). The third branch appears only when the memhsasebjected

to tension. This coupled wave can be interpretealtsgipe of “string wave”.

2.4. Acoustic input impedances

The wavenumbers derived in the previous sectionuaegl to calculate the acoustic input
impedance for the fluid-filled membrane tube. Sinlce acoustic input impedance can be
precisely measured, it permits a validation of thedel. Computation of this acoustic
impedance is performed in this section.

11
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Six boundary conditions are associated to the problthe membrane is assumed to be
clamped at both ends. Subsequently, the mechanaaidary conditions at botk=0 and
x=L are :u(0) = u(L) = w(0) = w(L) = 0.A known harmonic velocity is imposed at one end
of the tube. Subsequently, the acoustical boundangitions atx=0 arev(0)=Vv, v being the
acoustic particle velocity ang being the imposed value of the velocity. The tisbassumed

to be open at its other extremitygL, which imposes the radiation impedance at thisitpoi

(see below).

The acoustic pressure throughout the length ofutthe tan be written as the superposition of

the 3 pairs of ingoing and outgoing waves:
p=A¥+ Be™ + AE*+ BE*+ A&+ BEF (10)

The Euler equation gives a relationship between twmustic pressure and the acoustic

velocity:

, op
V=—. 11
16P0 o (11)

The acoustic velocity can be written using equatid®) and (11) as follows:
v=-[A(AeY - Be) e, ( AT - BE) A N - BE|lp. (12

The input impedanceg is the ratio between the acoustic pressure andadbestic velocity at

x=0. Expressions (10) and (12) lead to the followingregpion

L - P(x=0) _ A*B+A+B+A+E
V(x=0) A4(A-B)+A,(A-B)+A(A-B)

(13)

The six unknowns are the amplitud®s Ay, As, B, B, andB; which are determined from the
boundary conditions. Five of them have already lomcribed. The last is related to the open

end extremity: ak=L, the acoustic impedance is set to :

12
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Z(L) = p,c|025(ca/c) - 07janic). (14)

Using equations (10) and (12), boundary conditypakl to a set of linear equations:

L) f(-A) f(A) f=A) f{A) f{-A)T[A] [v]
f,(A) f,(-A) f.(4,) f(-4) f(A) f{-A)||B, |O
f3(/11) fs(_/]l) fa(/]z) fs(_/]z) fa(/]g fi_/]g Aj_| 0O
L(4) L(-A) (1) 1(4) 1) 1[-4)]B, o] o)
fs(/]l) fs(_/]l) fs(/]z) fs(_/]z) fs(Ag ff(_/]; Ag |0
_fﬁ(/‘l) f6(_/11) fe(/iz) fe(_/]z) fs(/]ﬁ) f€(—/1;__B§ 1 0]

f(A)==4/(ewp,)
f,(4)=e
L(A)= s
jvh k?-A?
o ')_2,00602 k-7
VAL KZ=A% L
6( .) 20,0 K= A7

By solving equation (15), the six unknowfsg A, As, By, By, Bs can be determined. As such,
the acoustic input impedance of the membrane wagegcan be computed using (13).
Z

Normalised input impedances (dimensionless impesaAc= ) are plotted in Figure 5

0Co
by using the numerical values given in Table 1 ¥ow tension values. Two simulated cases —
with and without tension — are presented togett@ywing the slight influence of the tension
on the calculated impedance. At high frequenchescalculated input impedance is similar to
that of a rigid tube. This indicates that the KorkgNg wave, the speed of which tends towards
Co at high frequencies (see Figure 2), is predominantow frequencies, several resonances
can be observed. These appear to correspond tve speed less than. In the medium
frequency range, around 500 Hz, no resonance e@sefdpis can be explained by the fact
that only evanescent waves exist in this stop baed (Figure 2). In this range, the
fluid/membrane coupling is of particular importante the high frequency range, acoustic

resonances tend to become harmonic and the impedastnilar to that of a rigid tube.

13
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2.5. Equivalent wave speeds

Vibratory and acoustic fields of the coupled membrare described as the superposition of
three standing waves. The separation of the threesuva not an easy task. Consequently, a
direct comparison between theoretical dispersiorvesu and experimental results also
becomes difficult. In order to compare theoreticalculations with experimental results, an
equivalent wave speedy is defined. This equivalent wave speed may allowadtial
comparison, by defining a kind of general speedaind. It is computed from the input
impedance as given below. The input impedance adsldss rigid open tube is given by

Z, = joctan(kL). (16)
For a vibrating tube whose input impedanceZjsthe equivalent speedy is defined by

making an analogy with the case of the losslesd dgen tube. It corresponds to the value of

wave speed for which the equation
Z= j,octar{&} a7
Ceq
is satisfied. Definition (17) leads to the expliekpression

o = L
(K L)eq

(18)

with (k L), = arctalﬁ%pc)+ n77, n being an integer. In fact, an ambiguity existesithe

arctan function provides a result betweerm  A&d n /2 for its real part (Figure 6). To

obtain the correct velocity for the rigid pipe, tikegern needs to be incremented after each
phase jump (this is usually called “unwrappingt).the present case, a difficulty arises due to
the fact that the wavenumber is not a monotonounstion of the frequency because of the
stop band. Indeed, a frequency range exists foctwthie waves are evanescent. Therefore,
the two frequency bands in which the waves are examescent should be considered

separately. The first band is from zero to the fgtoff frequency (close td, as shown in

paragraph 2.3.2). The second band is from the sewunebff frequency (close to

14
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fa\/1+ 2a0,c° /(h,ocLz) as seen in paragraph 2.3.2) to infinite. For tre band, the initial

value ofn is zero. For the second band, the initial vatyet the beginning of the band is
obtained using the fact that the equivalent speads towards the speed of sound when the
frequency tends towards infinity (Figure 6).

The equivalent speed, is then directly calculated from the correctly wapped function
using equation (16). The results are displayed guieé 7. In this figure, the wave speeds
resulting from the dispersion curves (Figure 2@ rprinted for reasons of comparison. The
following conclusions can be drawn. At a high freqay (in the frequency range labelled C

in Figure 7 and defined by > fa\/1+ 2a0,C? /(hchz) ) Ceq IS accurately superimposed on

the one speed wave curve which tends towards 34337ms™*. This indicates that for the
high frequency range, one of the three waves idgménant. In the low frequency range
(frequency range A, defined by < f,) ceq is not exactly superimposed on one or other of
the speed wave curves. This suggests that the waees might have a significant role to

play regarding the impedance. Howewwg,is close to the Korteweg's speed, indicating that

the Korteweg’'s wave is predominant within this fregcy range. In the medium range B

(f,<f< fa\/1+ 2a0,C? /(hchz) ), no clear conclusion can be drawn : the equitadered

differs greatly from the speeds of the three nhtweves in the system. This is not surprising
in this case as the evanescent behaviour is pre@dmmniWe conclude that the speed of the
Korteweg’'s wave within the ranges A and C may bemeined approximately by computing
the equivalent speed.

3. Measurements and discussion

A partial experimental validation is proposed irsthection : the equivalent speed is extracted
from the measured acoustic input impedance of @eubmembrane. The results are

compared to the theoretical model given in the ijotes/section.

3.1. Experimental set-up

The input impedance is measured using the impedsartsor described in [30]. This sensor

uses a half-inch electrostatic microphone cartrigg@ volume velocity source and an electret

microphone as a pressure sensor. The use of a mamwepcartridge has been chosen as a
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source because its frequency response is flattamdachanical impedance is relatively high.
The limitation of this source is that, for a givemput signal amplitude, the volume velocity is
proportional to the frequency and tends toward® aeith frequency. The microphone
cartridge and the electret microphone are fixea @nstiff metal plane which constitutes the
reference plane for the measurements. The measuieraen carried out in an anechoic
chamber with a dual-phase lock-in amplifier inchglia sine source used for both excitation
and demodulation. It is calibrated with the progedufor input and the transfer impedance
measurements as described in [30], [31]. The rublies is fixed to the impedance sensor
using a specially designed set-up which allowsafioy variation in tube tension (Figure 8).
For verification purposes, prior to the measurenaéiiie rubber tube, the input impedance of
a rigid aluminium tube of approximately the sanmaeisions is measured and compared with
a theoretical model. When considering the unceresnin the model (especially in the
radiation impedance) the measurement is considerbd in accordance with the model, thus
validating the measurement procedure of the acoungiut impedance.

3.2. Preliminary observations

In addition to the input impedance measurements,réldial velocity of the membrane is
scanned using a laser vibrometer which can be mal@ag its axis. Measurements are
carried out on the rubber tube, the characterigifcarhich are given in Table 1. Typical
results are given in Figure 9. In such cases, nsida has been applied to the membrane and
its end is closed. The configuration is thus sligldifferent to the one previously described;
however, the wave types existing in the coupledesysemain the same. The aim of these
preliminary vibration measurements is to clearlyndastrate the existence of several waves
within the coupled system : the Korteweg's wave #mel longitudinal/flexural wave. The
third wave (termed the ‘string wave’) does not £giace no tension has been applied.

The vibration level of the membrane is plotted igUfe 9d as a function of the axial
coordinate x and the frequency. The three rangesiBspnic range), B (evanescent range) , C
(supersonic range) described in paragraph 2.3.2leaely visible on the map. Three vibration
profiles (9a-9c) are extracted from Figure 9d andespond to frequencies selected in the
ranges A, B, and C. In Figure 9d, the horizonta¢di are plotted at the selected frequencies
(490Hz, 690Hz and 1190Hz). In the frequency raraggges A and C, the vibration profiles
presented in Figures 9a, 9c (and also visible op @&th) show that the field is composed of

two waves : a short and a long wave length, cooreding to wave speedsc; and ¢,
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respectively (see relations (8) and (9)), can lemtified. In this case, the vibratory field is
composed of two standing waves whose nodes ant amewisible. The attenuation of the
wave associated witty is visible due to the fact that its contributioroisly significant in the
vicinity of the endsx=0 andx=0.5m In range B, no standing waves are visible bec#iuse
evanescent contribution is dominant here. From pinediminary investigation it should be
concluded that the two waves (the Korteweg's waneé the coupled longitudinal/bending
wave) can be observed at the experimental stagdeaddto a standing wave system. An
initial comparison between these experimental tesaihd the theory previously described
should be possible. However, a theory/experimemparison based on the input acoustic
impedance has been chosen in preference.

3.3. Measured input impedances for an unstretched embrane

The measured input impedance for the rubber tubkowitstatic preload is displayed in
Figure (10). As already pointed out in Section28hich deals with theory, three frequency
ranges can be observed on the curve. For the higgwerency range (the range labelled C and
defined by f >1000Hz), regularly spaced impedaneakp can be seen and the input
impedance tends towards that of a rigid tube. énldkver frequency range, (the range labelled
A corresponding to f < 600Hz), two resonances canidentified. The frequency shift
between these two resonances indicates that thesponding speed wave is lower than
the acoustic wave speed in air. In the medium feaqu range (range B), between 600 and
1000 Hz, only one resonance of low Q-factor is @nésThis confirms the theoretical results
shown in Figure 5 : that, in this range, the flaidmbrane coupling is important, and the
evanescent wave phenomenon is predominant.

In order to compare theoretical and experimentllts, the Young’s modulus of the rubber
(E= E'+JE” ) has been measured versus frequency. Resultsisaauxiliary measurement are
presented in appendix B. Theoretical input impedaisceomputed from (13) using the
measured values d&’ and E” , and taking into consideration the radiation éu@nce
condition (14). A very close agreement between theoretical and measured input

impedances is observed.

3.3. Estimated equivalent wave speed for stretchedembranes
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In this section the influence of the tension of thembrane is examined: the input impedance
has been measured for three different static pdsloaO N (which is the case presented in

Figure 10), 24 N and 40 N. These correspond resdgtio an extension of the rubber tube
of 0 m, 0.03 m (that is 6% of the length) and On0§11%). The correspondinfkL)eq is

calculated (Figure 11a) as explained in Section ZRese should be compared with the
theoretical results displayed in Figure 6. As poegly explained, the functions do not
increase monotically as a function of the freque(fapwrapped” arctangent). After having
unwrapped the functions, tiflel).q variables can be obtained (Figure 11b), and, sulesely,
the equivalent wave speeds, can be obtained using equation (16). These ardagiesp in
Figure 12 to facilitate a comparison with the tletimal results displayed in Figure 7.

For the lower and higher frequency range, the eftécthe tension is clearly visible in

(kL)eq- Conversely, the effect disappears when the etprivavave speed is calculated. This

indicates that the effect of tension is essentiallincrease the length of the tube. On the other

hand, for the medium frequency range, the effecttemfsion is not visible in(kL)eq,

signifying that the tension has no significantuefhce on the mechanical characteristics of the
tube. Naturally, in the medium frequency rangeg#act on the equivalent wave speed can
be observed. However, as the waves in this rargewanescent, the length of the pipe does
not influence the impedance. In conclusion, it dan said that for the tension under
consideration, which corresponds to an extensighefength of the tube by as much as 10%,
tension does not significantly influence the medtarproperties of the tube. A much higher

tension is necessary in order to observe a sigmifieffect.
4. Conclusion

Wave propagation inside a stretched elastic cylmatitube is studied under plane wave
approximation. Two models have been used. The firsti® known as the Korteweg’'s model
in which the walls are characterised by their Iycatacting impedance. Using this model,
two propagating waves can be identified : one nygginbpagates within the fluid and is called
the Korteweg’'s wave, the second is the longitudmale which propagates in the structure.
The Korteweg’s wave exhibits different behavior adang to the frequency. Three frequency

ranges are emphasized. For the lower frequencyerdhg wave is subsonic. For the medium
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range the wave is evanescent and for the highguércy range the wave is supersonic and
the wave speed tends towards the speed of souad iA second more sophisticated model
has been derived, which leads to three propagatsnes: two of which are very close to
those previously described. The third one is indubgdthe tension of the tube and
corresponds to a string wave. The acoustic inpuedapce of the tube is computed in order
to compare the results with those resulting from iorteweg’s model and also with those
provided by the experiments. An equivalent waveedpbas been defined from the input
impedance under the assumption that a unique vsapeopagating, and using the analogy
with the rigid tube. For the three waves model,rémuilts are similar to those obtained using
the Korteweg's model which demonstrates that thagl@his a fitting approximation for the
calculation of the acoustic inner field. Indeedthifee different waves contribute to the field,
one wave, which can be assimilated to the Kortesvagave dominates and, hence, the
contribution of the other waves might be negleasdn the case of the rubber tube being
investigated. This result is in accordance with [223].

Theoretical results are compared with the measummat impedances of a stretched
rubber tube membrane. The displayed measured immodances exhibit the same three
frequency ranges as described in the theoretisaltsee Moreover, the equivalent wave speed
has been derived from the measured input impedasbesiing a good agreement between
the theoretical and experimental equivalent cédsitThis shows that the inner acoustic
pressure’s field is mainly dominated by the Kortgisewave for which propagation is
subsonic within the low frequency range and supecsio the high frequency range tending
towards the speed of sound in air.

Acknowledgements

The authors wish to thank B. Jullin for his partatipn in this work .

19



F.Gautier, J. Gilbert, J.-P. Dalmont, R. Pic6 Vildave propagation in a fluid-filled cylindrical mémane

APPENDIX A : MOTION EQUATIONS OF THE STRETCHED MEMB RANE

The membrane operator can be obtained from the Dianrshell operator as given in

reference text books [1], [33], assuming that thiekness parametelifg% is set at zero. This
operator can be modified in order to take into aberstion the static preload effect. In this
appendix, we derive the useful relationships legdo the motion equations (1), assuming
the membrane hypothesis and the axisymmetry ofitivatory field.

The forces applied to a membrane element of sixeafld) are given Figure Al. The normal
force in the axial direction and in the circumfearahdirection areNy andNg; the transverse
shear force iQy. The acoustic pressure acting on the membrane eteimdabelled p.

Projections for the motion equations in the axral eadial directions are written as

0°u  oN
_—= X, Al
ph0t2 0X (A1)
2
O Wo_No Q. (A2)

ot? a ox

The normal stresses in the axial and circumferewufi@ctions o, and g,and the shear

stresy , are related to strains,, ¢, , ¢, by

o, :i(a +VEy) g, =i(£ +VE,,) s g =££ . (A3)
XX 1_|/2 XX 66 66 l—V2 98 XX x8 1+ v x8
The relationships between stresses and displaceraengiven by
_du W (Ad)

gxx_&’ Ego = gxezo'

In order to take into account the static preload,assume that static stresses in the membrane

are o,’ =—, and o’ =0,,° =0. This hypothesis is valid for points which arefwigntly

> |-

distant from the boundary conditions. From (A3)g tistatic strains are obtained as

E =—— ,E%0 = , €% =0 and from relation (A4), the static displacementsfaund

AE EA

in the form ofu® =Lx and w® :ﬂ.
AE EA
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Since the kinematic membrane hypothesis is assudigaacements u and w are supposed to
be independent of the radial co-ordinate and argenras the sum of static termg, (W) and
dynamic termstC, w) :

u=us+u°, w=w*+w’. (A5)

Taking the displacements fields (A5) as a stariaot, in which the static displacements are
known, the strains are obtained from (A4), thesstes from (A3), and by integrating the

stresses over the membrane thickness, the restotiogs are acquired

_hi2 _Th Eh |[ou® w°
N= [ utz= 00 (HZ){E*”:}' (A6)
_(hi2 _ Eh [w® ou°
N, = Osdz= (1_1/2){?“/ b~ } (A7)
ow _ Thow®
=N - _W A8
R i) A 0x (A8)

Inserting (A6), (A7) and (A8) into the motion eqieais (Al) and (A2) provides the final form

for the motion equations (1).
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APPENDIX B : MEASUREMENT OF THE COMPLEX YOUNG'S MOD ULUS
VERSUS FREQUENCY

The mechanical properties of rubber depend ompéeature and frequency. The
ageing of the material can also modify the valuésto Young's modulus. Experimental
determination of the complex Young’'s modulus Eha tubber constituting the membrane is
briefly described in this appendix. The value afkised for computing the theoretical input
impedance.

A Dynamic Mechanical Analyzer (TA Instruments 298@s been used. The measurement
method is based on measurement of the transfetiburizetween extensional strain and stress
applied to a sample. The complex Young’'s modukis E'+iE is"deduced from this
transfer function. Measurements are performed ugistepped sine excitation in a reduced
frequency range ( 0.1-50Hz ) for 9 temperature ralied environments between —30°C and
40°C. The time-temperature superposition methagsésl to extend the frequency range [32] :
for polymeric viscoelastic materials, decreasingnerature or increasing frequency. The
curveskE’ andE” versus frequency obtained in the reduced frequeange at different
temperatures are shifted according to frequensyah a way that they are superimposed at a
given temperature. Results are given in figure B208C. A linear fit in the log-log plane is
plotted, showing that frequency dependenc&odndE” are power laws. Uncertainties are
estimated tat15% and the corresponding limit values t6randE” are presented in the
same graph. For the rubber under considerationfittioé the experimental data leads to the
empirical expressions

E'=10°% { %% (Pa) (B1)

E n_ 105.363 f 0.089 (Pa) (BZ)

Typical values fof=1000Hzcorrespond tcE=Ey(1+] ) MPa, withEy=3.16MPa and=0.13.
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Geometry Characteristics of the material (rubber type)

Inner radiusa=0.015m | Density: p = 921 kgnit
Thicknessh=0.0018m |Young’s modulusE=Eq(1+j J)
Length:L=0.525m Eo=1.2 10° Pa, & 0.2

Poisson’s ratio 1=0.5

Table 1: Characteristics of the studied membrane
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Figure 1 : co-ordinates and displacement sign coios

for the vibrating cylindrical membrane .
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Figure 2 : Dispersion curves for the fluid-filledembrane assuming=0 and T=0, other
parameters being given in table 1. Conservativeeda3 corresponding to Exfand
dissipative case (b) corresponding to E€E+j J). Real part (always positive) and
imaginary part (always negative) of the complex &vapeeds, @and ¢ in m/s are plotted

versus frequency in Hz.
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Figure 3 : Dispersion curves for the fluid-filledembrane in the unstretched

case T=0 =0, other parameters being given in table 1 . Covstive case (a)

corresponding to E=kand dissipative case (b) corresponding to EAE| J). Real part

(always positive) and imaginary part (always negat of the complex wave speegs ¢

and ¢ in m/s versus frequency in Hz.

31



Real(Ci), Imag(Ci) [m/s]

1000

800

600

400 -

200

-200

-400 -

: Re(a)

-600

-800 -

-1000
0

F.Gautier, J. Gilbert, J.-P. Dalmont, R. Pic6 Vildave propagation in a fluid-filled cylindrical mémane

(a) Conservative case

1000

(b) Dissipative case

B 800 -

i 600

| 400

Re(e)
Im(cy)

— Im(cy)

Im(cs)

04

-200

Real(Ci), Imag(Ci) [m/s]

200 g__\\ i

-400 -

-600 -

-800 -

S

Re(c)
Im(cy)

Re(a)
Im(cy,)

Im(cs)

h

-1000

I ! I
1000 1200 1400

Frequency [Hz]

200 400 600 800

‘ ‘
1600 1800 2000 0

I I I I I
1000 1200 1400 1600 1800 2000

Frequency [Hz]

I I I I
200 400 600 800

Figure 4 : Dispersion curves Dispersion curvesdatretched fluid-filled membrane

T=50N, v=0.5, other parameters being given in table 1 . &amative case (a)

corresponding to E=kand dissipative case (b) corresponding to EAE| J). Real part

(always positive) and imaginary part (always negat of the complex wave speed<g

and g in m/s versus frequency in Hz.
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Figure 5 : Magnitude and phase of the specific aticunput impedance of the vibrating
membrane as a function of frequency. Case of albmaera without tension (thin line) and
stretched with a tension T=50 N (dotted line) .
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Figure 6 : Not unwrapped (a) and unwrapped (b) eslof variable (kLe), defined by
relation (17), versus frequency for the vibratingé defined by table 1. In figure (b), the
dotted line indicates variable KL for the theoratimput impedance of the rigid tube.
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Figure 7 : Equivalent wave speed computed from Isitad acoustic impedance for the
stretched membrane described in table 1 (thin likey reasons of comparison, the real part

of the wave speeds computed from dispersion equgt)as plotted with thick dots.
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Figure 8 : Experimental set-up
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Figure 9 : (d) Vibration level on a fluid-filled blber membrane excited by a harmonic source
atx=0m. The end of the tubex£0.525n) is closed. The level is depicted as a functiothef
axial co-ordinatex (m)and the frequendy(Hz) using an arbitrary unit. The red lines indicate
the limits of the subsonic frequency ranges A, egaent range B, supersonic range C. The

vibration profile of the membran&(x along the axis is plotted in figure (a) for f=49@ H

(range A), in figure (b) for f=690 Hz (range B),figure (c) for f=1190 Hz (range C).
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Figure 10 : Magnitude (a) and phase (b) of the nueed (dotted line) and theoretical
(continuous line) acoustic input impedance as &fion of frequency in Hz.

Characteristics of the membrane are given in tdble
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Figure 11 : Not unwrapped (a) and unwrapped (b)ueal of variable (kl), defined by
relation (17) versus frequency. This variableosnputed from the 3 measured input
impedances obtained for tension T= ON, T=20N an&d.
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Figure 12 : Equivalent wave speeds computed fraambasured impedances corresponding
to tensions T=0N, T=20N, T=50N (thin lines) and guted from dispersion equation (14),
using measured values of E given in appendix BKtimes).
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Figure 13 : Forces applied to a membrane element.
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Figure 14 : Measurement of the real part E’ and gimary part E”

of the Young’s modulus E versus frequency.
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