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Abstract:  

 

In this paper, the interaction between the wall vibrations of a stretched elastic cylindrical 

membrane and the inner acoustic field is considered under plane wave approximation.  Three 

waves exist at low frequencies for this coupled system. The first of these, called  Korteweg’s 

wave, propagates mainly within the fluid and corresponds to the acoustic plane wave which is  

closely coupled to the wall vibrations. The two other waves mostly propagate within the 

structure and correspond to coupled longitudinal/flexural motions: one corresponds to 

predominant longitudinal motions in the membrane and the other exists only when tension is 

applied to the membrane and is similar to a string bending wave. A model for the dispersion 

curves is presented and is experimentally validated. In particular, the model and experiments 

reveal that three frequency ranges exist for which the propagation of the Korteweg’s wave is 

subsonic, evanescent and supersonic. The experimental validation is achieved using the 

acoustic impedance measurements for a stretched rubber membrane. Assuming that the 

vibratory and acoustic fields are dominated by one wave, the latter are described by using 

only one dispersive wave, in this case, of equivalent wave speed. The input acoustic 

impedance curve can be fitted  using this expression which only requires one equivalent 

wave.  
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1. Introduction 

 

The vibroacoustics of cylindrical ducts have been extensively studied throughout the 

relevant literature since numerous applications in mechanical engineering involve fluid-filled 

pipes with yielding walls. Within the framework of thin shell theories as described in [1], 

wave propagation in fluid-filled cylindrical shells has been investigated in [2], [3], [4] and the 

branches of the dispersion curves depending on the modal circumferential indices have been 

presented. In the light fluid approximation, the dispersion curves of the fluid-filled shell can 

be interpreted as the juxtaposition of the in vacuo shell dispersion branches and the acoustic 

dispersion branches of the rigid walled tube. For heavy fluid, the fluid loading term is of 

importance such that it is not possible to interpret the dispersion diagram in a similar manner 

with this juxtaposition. In this case, the modes of the coupled system  differ greatly  from the 

acoustical modes of the rigid duct and the structural modes of the in vacuo shell.    

A strong interaction between fluid and structure also occurs when  the tube wall is 

very flexible. This is the case for cylindrical rubber membranes submitted to a static tension 

which are studied in this paper: attention is focused on fluid-structure interaction between the 

plane acoustic wave and the membrane breathing motions. A study of  this  configuration is 

carried out using theoretical and experimental approaches and is structured as follows : 

following a short bibliographical review (Section 2.1), a vibroacoustic model of a membrane 

submitted to a static preload is described in Section 2.2. A dispersion equation is derived 

(Section 2.3) and free wave expansion is used to compute the acoustic input impedance of the 

tube (Section 2.4). In Section 3, measurements of the input impedance are presented and an 

equivalent speed for the propagating waves within the system is obtained. Finally, the 

limitations of the model and the main results are summarized in the conclusion. 

 

 

2. Vibroacoustic model of a fluid filled rubber tube 

 

2.1 Korteweg’s model : Bibliographical review  

 

Analytical vibroacoustic models of waveguides with yielding walls are based on 

assumptions related to the following three descriptions; that of  the inner acoustic pressure,  
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the wall motion and  the fluid-structure interaction. The  description of the acoustic pressure 

field can be achieved in the most general manner using multimodal expansion as presented in 

[2]. Descriptions of the wall motion can be achieved using 3D elasticity [5], Donnell’s thin 

shell theory [2], Flugge-Timoshenko’s theory [4], membrane theory [6], or a  local wall 

admittance model [7]. A description of the fluid-structure interaction is generally based on a 

continuity relation of the normal velocity. However, an acoustic treatment on the walls can 

also be  modeled  using appropriate wall impedance.  

When considering the axisymmetric motions for the shell, and plane acoustic motion 

for the inner fluid, it can be shown that the dispersion equation for the fluid-filled shell has 

five pairs of roots ±λ for each frequency, associated with five waves travelling in both   

directions. The corresponding waves of the coupled system are the quasi-plane acoustic wave 

(Korteweg’s wave), the speed of which is disturbed by wall vibration, and four  waves which  

mainly propagate  within the structure : the torsional shell wave is completely uncoupled from 

the fluid motion. A quasi-longitudinal wave propagates mainly within the shell. Two other 

waves are longitudinal/flexural waves which mostly propagate inside the shell and which are 

evanescent below the shell’s ring frequency. A discussion regarding dispersion curves for a 

wide range of parameters is given in detail in [2] for breathing modes (corresponding to the 

circumferential order m=0) and for bending modes (m=1).  

The first of these five  waves, corresponding to the quasi plane acoustic wave can be 

described without using shell theory for the description of the wall : in a simplified way, 

coupling can be described by a wall admittance implying that the reaction of the wall is local. 

In this model, the forces applied to an elementary fluid volume located between two cross 

sections of the duct very close to each other are related to the compressibility effect and  the 

wall effect. This wall effect is known as the distensibility effect (see [8], [9]). The speed of 

the acoustic plane wave depends on both the compressibility and distensibility effects. The 

acoustic plane wave becomes strongly dispersive : subsonic, evanescent and supersonic 

frequency ranges can be distinguished. The frequency range in which the wave is evanescent 

corresponds to a stop band. This model was first presented by [10] during the 19th Century, 

and this wave type is called Korteweg’s wave or Moens-Korteweg’s wave. It corresponds to a 

simplified model giving a satisfactorily low frequency approximation of the first of the 5 

waves listed above. In the literature,  this model has been presented in several reference books 

[9], [7], [8], [11] and, it has been independently re-developed :  Korteweg´s name does not 

systematically appear in the studies cited in the next paragraph although the model is used. In 
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the following section, several applications for which this model has been derived and applied 

are reviewed.  

 

Korteweg’s model has been applied to biomechanics, in particular to provide a 

description for the propagation of waves in  airways and blood vessels. For medical 

applications, a non-invasive technique called AAAR (airway area by acoustic reflection, [12], 

[13]) has been developed to determine the internal bore of the airway. An acoustic pulse is 

generated at the  opening of the patient’s mouth  and the acoustic reflection coming from the 

airway is measured. A model of wave propagation in the vibrating duct is required in order to 

determine the profile of the cross section from the echo measurement using an inverse 

method.  The airway wall vibrations are one of the most important limitations of this 

technique (see [14]). The local reaction assumption, on which Korteweg’s wave model is 

based, is used to describe the wall fluid interaction using a limited number of parameters. A 

similar model for the vocal tract is also required for applications to speech synthesis and 

analysis [13], [15].  

Another application of Korteweg’s wave is related to wave propagation in blood 

vessels. In this case, the distensibility of the tube is of far greater importance than the 

compressibility of the fluid, with the result that the fluid may be regarded as incompressible 

[8]. For the purpose of modeling wave propagation in blood vessels, a more comprehensive 

model takes into account the non-linear behaviour of the vessel wall, its internal damping and 

the influence of the viscosity of the fluid [16].  

Wind instruments are other types of wave guides with yielding walls. The influence of 

the wall vibration on the musical sound emitted by a woodwind instrument, a brass instrument 

or an organ pipe is open to debate. Vibroacoustic models have been developed in order to 

quantify the wall vibration effect [17], [18]. A change of wave speed due to wall vibration can 

be approximated using Korteweg’s model. A small frequency shift in  the acoustic resonance 

frequencies can then be estimated [19]. Numerical computations for parameter values 

corresponding to organ pipes of circular, elliptic and square cross sections show that this 

frequency shift is too small to be perceptible. However, these conclusions  must  be carefully 

considered  since the results are based on the local reaction assumption, which is not always 

satisfied because of the modal behaviour of the pipe.   

Experimental validations of Korteweg’s model, including measurements of the 

variation in the wave speed versus frequency, are in short supply throughout the literature. 

Phase velocity can be determined from the distance between crests where standing waves are 
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observable. For applications to physiology, such measurements are given in [20] for a rubber 

tube and an excised canine trachea and by [21] for a rubber tube.  

The local reaction hypothesis is not always satisfied.  The most simple duct in which 

this is the case  is a rubber membrane [6]. In this case, two waves exist :  a Korteweg’s wave 

which propagates mainly in the fluid and a longitudinal wave which propagates mainly in the 

membrane. Since both waves are present in the fluid and the structure, it can be said that the 

local reaction hypothesis is not valid here.  The validity of the local reaction hypothesis is 

discussed in [22], [23]. Because of the presence of the stop band for Korteweg’s wave, it has 

been highlighted that this property can be used to design an acoustic muffler [20]. In addition, 

the introduction of flexible segments in a piping system is a convenient passive technique 

which can be used to reduce structure-borne sound. Since such flexible segments also affect 

fluid-borne sound, any computation of the insertion loss or the transfer matrix of a pipe 

assembly should take this flexibility into account as in [24]. With the same objective, a model 

of pipe assembly has been developed using Kennard’s thin shell theory of and using 

expansion over ‘in vacuo’ modes [25].  

For practical reasons, the flexible tube has to be reinforced in many applications. The 

wave propagation of a pressurized tube stiffened by crossed wire is examined in [26], [27]. 

The influence of internal pressurization and axial membrane stress is considered. It is shown 

that major changes in the fluid dominated wave speed can be observed when the fluid loading 

term is increased.   

 

2.2. Governing equations 

 

In this section, a cylindrical pipe filled with a compressible fluid is studied. Attention is 

focused on the vibroacoustic coupling between the inner fluid and the pipe. The influence of 

the external fluid is ignored. The pipe is submitted to a static axial tension T. It has a length L, 

a  radius a, a wall thickness h, and is assumed to be thin  (h/a<<1). The co-ordinate system is 

given in Figure 1; x and z are the axial and radial co-ordinates, u and w are the membrane 

displacements in accordance with these directions. Assuming linear elasticity approximations, 

the equations governing axisymmetric vibrations of the membrane can be written as follows 

(see Appendix A for details) : 
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where E, ρ and ν are the Young’s modulus, the density, and the Poisson’s ratio of the rubber 

material respectively. Since the material is supposed to be viscoelastic, the Young’s modulus 

should  be complex valued.  The speed cL of longitudinal waves inside the material is given 

by ( )21Lc E ρ ν= − . The acoustic pressure in the tube denoted by p and 2A ahπ=  is the 

cross-section area of the membrane.  

Assuming linear acoustic approximations and plane wave propagation, the acoustic pressure p 

inside the pipe satisfies the following inhomogeneous wave equation [28] : 

 

 
2 2 2

0
2 2 2 2

21p p w

x c t a t

ρ∂ ∂ ∂− =
∂ ∂ ∂

, (2) 

 

where c is the speed of sound in air, and 0ρ  the density of air. The right hand side of equation 

(2) corresponds to an acoustic source describing the wall vibration effect on the inner pressure 

field.  

Equations (1) and (2) give a set of three linear second order differential coupled 

equations, as a function of the three variables u, w and p depending on space co-ordinate x 

and time t.  

 

 

2.3. Dispersion curves  

 

2.3.1 Dispersion equation  

 

When looking for solutions for  travelling waves with an harmonic excitation of angular 

frequency ω, the variables u(x), w(x) and p(x) are assumed to be  written as xjeuxu λ
0)( = , 

xjewxw λ
0)( = and xjepxp λ

0)( = with λ  being the wavenumber. The  time factor ejωt is 

implicit and u(x), w(x), p(x) represent the complex amplitudes of the quantities.  By 



F.Gautier, J. Gilbert, J.-P. Dalmont, R. Picó Vila, Wave propagation in a fluid-filled cylindrical membrane 

 8

substituting the harmonic variables in equations (1) and (2), we obtain a set of three 

homogeneous equations : 

 

 
















=








































+−−−

+−

+−

0

0

0

111

0

2
0

0

0

0

2

2
2

2

2

22

2022

w

u

p

k
aA

T

E
j

ahc

j
a

k

a
k

L

L

L

λνλν
ρ

λνλ

ωρλ

, (3) 

 

where k=ω/c and kL=ω/cL are the wavenumbers associated with the uncoupled acoustic and 

longitudinal waves respectively. The equations (3) have non-trivial solutions if the 

determinant of the matrix  is equal to zero. This condition leads to the following dispersion 

equation : 
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Dispersion equation (4) is a third-order polynomial equation of in λ2, which may give six 

wavenumber roots 1 2 3, ,λ λ λ± ± ± , corresponding to three axisymmetric waves propagating 

inward and outward along the x axis of the membrane tube. Note that the term 
ρ
ρ

h

a 02
present 

in equation (4) is the fluid loading term. For numerical applications, equation (4) is solved by 

using the values for the parameters given in Table 1.  

Two cases are studied : the conservative case, where any dissipation is ignored and the non-

conservative case, where acoustical and mechanical dissipations are taken into consideration. 

In the first case the two wave speeds c and cL are such that c2 and cL 
2 are real numbers. In the 

second case, the dissipation phenomena imply that the celerities (and the wavenumbers) 

become complex, leading to both propagation and attenuation phenomena. In harmonic 

regime and at low frequency, the acoustical dissipation is mainly due to the thermoviscous 

phenomena localised at the wall boundaries. This dissipation is then modeled using the 

following complex wavenumber [29]: 
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 ( )j
cc

k −+== 1·
0

αωω
, (5) 

 

where af /103 5−⋅≈α  (at 20°C),  1
0 37.343 −= msc , f  being the frequency and a the radius 

of the tube, c being the complex wave speed. In addition, the mechanical dissipation is 

modeled using a complex Young’s modulus, which then also renders the wave speed cL 

complex.  

The dispersion branches associated with the three wavenumbers λ , (roots of (4) ) are 

presented in Section 2.3.4. These branches can be interpreted, first of all, by considering two 

simplified cases : the case where both static preload T and Poisson’s ratio ν are assumed to be 

zero, and the case where only static preload T is set at zero. 

 

  

2.3.2 Korteweg’s hypothesis (νννν=0, T=0) 

 

Considering the case where T=0 and ν=0, the roots of the dispersion equation (4)  are the 

wavenumbers  are given by : 

 

 
Lc

ωλ ±=   and  
Kc

ωλ ±= , (6) 

where  
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Two waves  propagate in the medium: a purely longitudinal wave in the membrane 

(wavenumber kL=ω/cL ) and a Korteweg’s wave (wavenumber Kc/ω ), the wave speed of 

which is denoted cK. Numerical results are given in Figure 2 using the parameters from Table 

1. The real parts of the complex speeds Re(cL), Re(cK), which are always positive (or null) are 

displayed in the positive half-plan. The imaginary parts Im(cL), Im(cK) are always negative (or 

null), and are displayed in the negative half-plan. 

The longitudinal wave involves membrane displacement in the axial direction only u and is 

strictly uncoupled from bending displacement w and acoustic pressure p as should be the case 
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since the Poisson’s ratio is zero. Korteweg’s wave involves coupled oscillations between 

acoustic pressure p and bending membrane displacement w. In this case, no axial 

displacement is involved. This wave is highly dispersive. Three frequency ranges can be 

distinguished from expression (7).  

In the range [0, af ] where )2/( acf La π= is the ring frequency of the membrane, the wave 

speed Kc  is real and the propagating wave is subsonic ( ccK < , c being the speed of sound 

without any couplings). In this range, the wave speed Kc  varies from  

[ ] 2/122
0

0

/21 L

K

chca

c
c

ρρ+
=  

 

for  f =0 Hz , to  0=Kc  for aff = . The low frequency limit cK0 is called Korteweg-Lamb 

wave speed [7] or Moes-Korteweg wave speed [20]. In the range 

[ af , )/(21 22
0 La chcaf ρρ+ ], wave speed Kc  is a pure complex imaginary number ( 02 ≤Kc ) 

and the corresponding wave is evanescent. This range corresponds to a stop band. In the range 

[ )/(21 22
0 La chcaf ρρ+ , +∞[, the wave speed is once again real. The corresponding 

propagating wave is supersonic ( ccK > ) and varies from ∞=Kc  to ccK = . Such a simple 

definition of ranges is possible because the dissipation has been ignored (Figure 2a). If it is 

taken into  consideration, in the subsonic and supersonic ranges the complex wave speed Kc  

has a small imaginary part leading to wave attenuation. In the stop band, the real part of the 

wave speed Kc is not strictly equal to zero and corresponds to a highly damped propagating 

wave (Figure 2b). However, conclusions for the dispersion curves of the dissipative system 

remain qualitatively the same as for those using the conservative system. 

 

2.3.3 Unstretched case (νννν≠≠≠≠0, T=0) 

 

Setting the static preload T to 0  in the dispersion equation (4) leads to   

 

 
21

,
cc

ωλωλ ±=±= ,  (8) 

 

where 
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with 

 
]/)1(/[)]/(2/))(/1[( 2222
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2222222 akahkakkkka LLLL νρρνβ −−+−+−=  ,  

[ ] ]/)1(/[)/(2]/1[4 2224
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Two coupled waves propagate in the medium. At high frequencies it can be verified that the 

celerities c1 and c2 tend respectively towards c and cL, indicating that the corresponding waves 

tend towards the plane wave in fluid and towards the longitudinal wave in the membrane, 

each wave being uncoupled from the other. The wave associated with 1/ cωλ =  is close to 

Korteweg’s wave, being slightly disturbed by the coupling between the longitudinal and 

flexural motion induced by Poisson’s ratio.  The wave associated with 2/ cωλ =  is close to 

the longitudinal wave in the membrane. 

 

2.3.4. General case (νννν≠≠≠≠0, T≠≠≠≠0) 

 

In the general case (ν≠0, T≠0), the three pairs of roots of the dispersion equation  

1c

ωλ ±= , 
2c

ωλ ±= , 
3c

ωλ ±=  

can be numerically obtained and are presented in Figure 4 for the conservative case (a), and 

the dissipative case (b). The first two dispersion branches are close to the two obtained in the 

unstretched case ((T=0 , ν≠0). The third branch appears only when the membrane is subjected 

to tension. This coupled wave can be interpreted as a type of “string wave”.  

 

 

2.4. Acoustic input impedances 

 

The wavenumbers derived in the  previous section are used to calculate the acoustic input 

impedance for the fluid-filled membrane tube. Since the acoustic input impedance can be 

precisely measured, it permits a validation of the model. Computation of this acoustic 

impedance is performed in this section.  
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Six boundary conditions are associated to the problem: the membrane is assumed to be 

clamped at both ends. Subsequently, the mechanical boundary conditions at both x=0 and 

x=L are : u(0) = u(L) = w(0) = w(L) = 0. A known harmonic velocity is imposed at one end 

of the tube. Subsequently, the acoustical boundary conditions at x=0 are v(0)=v0, v being the 

acoustic particle velocity and v0 being the imposed value of the velocity. The tube is assumed 

to be open at its other extremity x=L, which imposes the radiation impedance at this point 

(see below).  

  

The acoustic pressure throughout the length of the tube can be written as the superposition of 

the 3 pairs of ingoing and outgoing waves: 

 

 3 31 1 2 2
1 1 2 2 3 3

j x j xj x j x j x j xp Ae B e A e B e A e B eλ λλ λ λ λ −− −= + + + + + . (10) 

 

The Euler equation gives a relationship between the acoustic pressure and the acoustic 

velocity: 

 

 
x

p
vj

∂
∂−=ωρ0 . (11) 

 

The acoustic velocity can be written using  equations (10) and (11) as follows: 

 

 ( ) ( ) ( )3 31 1 2 2
1 1 1 2 2 2 3 3 3 0

j x j xj x j x j x j xv A e B e A e B e A e B eλ λλ λ λ λλ λ λ ωρ−− − = − − + − + −  . (12) 

 

The input impedance Z is the ratio between the acoustic pressure and the acoustic velocity at 

x=0. Expressions (10) and (12) lead to the following expression 

 

 ( ) ( ) ( )
1 1 2 2 3 3

0
1 1 1 2 2 2 3 3 3

( 0)

( 0)

A B A B A Bp x
Z

v x A B A B A B
ωρ

λ λ λ
+ + + + +== =

= − + − + −
. (13) 

 

The six unknowns are the amplitudes A1, A2, A3, B1, B2 and B3 which are determined from the 

boundary conditions. Five of them have already been described. The last is related to the open 

end extremity: at x=L, the acoustic impedance is set to :  
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Using equations (10) and (12), boundary conditions yield to a set of linear equations: 
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
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

− =
− 

.  

By solving equation (15), the six unknowns A1, A2, A3, B1, B2, B3 can be determined. As such, 

the acoustic input impedance of the membrane waveguide can  be computed using (13). 

Normalised input impedances (dimensionless impedances 
00c

Z
Z

ρ
= ) are plotted in Figure 5 

by using the numerical values given in Table 1 for two tension values. Two simulated cases – 

with and without tension – are presented together, showing the slight influence of the tension  

on the calculated impedance. At high frequencies, the calculated input impedance is similar to 

that of a rigid tube. This indicates that the Korteweg’s wave, the speed of which tends towards 

co at high frequencies (see Figure 2), is predominant. At low frequencies, several resonances 

can be observed. These appear  to correspond to a wave speed less than co. In the medium 

frequency range, around 500 Hz, no  resonance emerges. This can be explained  by the fact 

that only evanescent waves exist in this stop band here (Figure 2). In this range, the 

fluid/membrane coupling is of particular importance. In the high frequency range, acoustic 

resonances tend to become harmonic and the impedance is similar to that  of a rigid tube. 
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2.5. Equivalent wave speeds 

 

Vibratory and acoustic fields of the coupled membrane are described as the superposition of 

three standing waves. The separation of the three waves is not an easy task. Consequently, a 

direct comparison between theoretical dispersion curves and experimental results also 

becomes difficult.  In order to compare theoretical calculations with experimental results, an 

equivalent wave speed ceq is defined. This equivalent wave speed may allow a partial 

comparison, by defining a kind of general speed of sound. It is computed from the input 

impedance as given below. The input impedance of a lossless rigid open tube is given by  

 

 ( )kLcjZo tanρ= . (16) 

 

For a vibrating tube whose input impedance is Z, the equivalent speed ceq is defined by 

making an analogy with the case of the lossless rigid open tube. It corresponds to the value of 

wave speed for which the equation  

 

 












=

eqc

L
cjZ

ωρ tan , (17) 

is satisfied. Definition (17) leads to the explicit expression  

 

 
eq

eq Lk

L
c

)(

ω= , (18) 

with πρ ncj
ZLk eq +





= arctan)( , n being an integer. In fact,  an ambiguity exists since the 

arctan function provides a result between 2/π−  and 2/π  for its real part (Figure 6). To 

obtain the correct velocity for the rigid pipe, the integer n needs to be incremented after each 

phase jump (this is usually called “unwrapping”). In the present case, a difficulty arises due to 

the fact that the wavenumber is not a monotonous function of the frequency because of the 

stop band. Indeed, a frequency range exists for which the waves are evanescent. Therefore,  

the two frequency bands in which the waves are non-evanescent should be considered 

separately. The first band is from zero to the first cut-off frequency (close to af  as shown in 

paragraph 2.3.2). The second band is from the second cut-off frequency (close to 
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)/(21 22
0 La chcaf ρρ+  as seen in paragraph 2.3.2) to infinite. For the first band, the initial 

value of n is zero. For the second band, the initial value n0 at the beginning of the band is 

obtained using the fact that the equivalent speed tends towards the speed of sound when the 

frequency tends towards infinity (Figure 6).  

The equivalent speed ceq is then directly calculated from the correctly unwrapped function  

using equation (16). The results are displayed in Figure 7.  In this figure, the wave speeds 

resulting from the dispersion curves (Figure 2b) are reprinted for reasons of comparison. The 

following conclusions can be drawn. At a high frequency (in the frequency range labelled C 

in Figure 7 and defined by )/(21 22
0 La chcaff ρρ+> ), ceq is accurately superimposed on 

the one speed wave curve which tends towards 1
0 37.343 −= msc . This indicates that for the 

high frequency range, one of the three waves is predominant. In the low frequency range 

(frequency range A, defined by aff < ) ceq is not exactly superimposed on one or  other of 

the speed wave curves. This suggests that the three waves might have a significant role to 

play regarding the impedance. However, ceq is close to the Korteweg’s speed, indicating that 

the Korteweg’s wave is predominant within this frequency range. In the medium range B 

( )/(21 22
0 Laa chcafff ρρ+<< ), no clear conclusion can be drawn : the equivalent speed  

differs greatly from the speeds of the three natural waves in the system. This is not surprising 

in this case as the evanescent behaviour is predominant. We conclude that the speed of the 

Korteweg’s wave within the ranges A and C may be determined approximately by computing 

the equivalent speed.     

 

3. Measurements and discussion 

 

A partial experimental validation is proposed in this section : the equivalent speed is extracted 

from the measured acoustic input impedance of a rubber membrane. The results are  

compared to the theoretical model given in the previous section.   

 

3.1. Experimental set-up  

 

The input impedance is measured using the impedance sensor described in [30]. This sensor 

uses a half-inch electrostatic microphone cartridge as a volume velocity source and an electret 

microphone as a pressure sensor. The use of a microphone cartridge has been chosen as a 
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source because its frequency response is flat and its mechanical impedance is relatively high. 

The limitation of this source is that, for a given input signal amplitude, the volume velocity is 

proportional to the frequency and tends towards zero with frequency. The microphone 

cartridge and the electret microphone are fixed onto a stiff metal plane which constitutes the 

reference plane for the measurements. The measurements are carried out in an anechoic 

chamber with a dual-phase lock-in amplifier including a sine source used for both excitation 

and demodulation. It is calibrated with the procedures for input and the transfer impedance 

measurements as described in [30], [31]. The rubber tube is fixed to the impedance sensor 

using a specially designed set-up which allows for any variation in tube tension (Figure 8). 

For verification purposes, prior to the measurement of the rubber tube, the input impedance of 

a rigid aluminium tube of approximately the same dimensions is measured and compared with 

a theoretical model. When considering the uncertainties in the model (especially in the 

radiation impedance) the measurement is considered to be in accordance with the model, thus 

validating the measurement procedure of the acoustic input impedance.  

 

3.2.  Preliminary observations 

 

In addition to the input impedance measurements, the radial velocity of the membrane is 

scanned using a laser vibrometer which can be moved along its axis.  Measurements are 

carried out on the rubber tube, the characteristics of which are given in Table 1. Typical  

results are given in Figure 9. In such cases, no tension has been applied to the membrane and 

its end is closed. The configuration is thus slightly different to the one previously described; 

however, the wave types existing in the coupled system remain the same. The aim of these 

preliminary vibration measurements is to clearly demonstrate the existence of several waves 

within the coupled system : the Korteweg’s wave and the longitudinal/flexural wave. The 

third wave (termed the ‘string wave’) does not exist since no tension has been applied. 

The vibration level of the membrane is plotted in Figure 9d as a function of the axial 

coordinate x and the frequency. The three ranges A (subsonic range), B (evanescent range) , C 

(supersonic range) described in paragraph 2.3.2 are clearly visible on the map. Three vibration 

profiles (9a-9c) are extracted from Figure 9d and correspond to frequencies selected in the 

ranges A, B, and C. In Figure 9d, the horizontal lines are plotted at the selected frequencies 

(490Hz, 690Hz and 1190Hz). In the frequency range ranges A and C, the vibration profiles 

presented in Figures 9a, 9c (and also visible on map 9d ) show that the field is composed of 

two waves : a short and a long wave length, corresponding to wave speeds  c1 and c2 
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respectively (see relations (8) and (9)), can be identified. In this case, the vibratory field is 

composed of two standing waves whose nodes and crest are visible. The attenuation of the 

wave associated with c1 is visible due to the fact that its contribution is only significant in the 

vicinity of the ends x=0 and x=0.5m. In range B, no standing waves are visible because the 

evanescent contribution is dominant here. From this preliminary investigation it should be 

concluded that the two waves (the Korteweg’s wave and the coupled longitudinal/bending 

wave) can be observed at the experimental stage and lead to a standing wave system. An 

initial comparison between these experimental results and the theory previously described 

should be possible. However, a theory/experiment comparison based on the input acoustic 

impedance has been chosen in preference. 

  

3.3. Measured input impedances for an unstretched membrane 

 

The measured input impedance for the rubber tube without static preload is displayed in 

Figure (10). As already pointed out in Section 2.3.2 which deals with theory, three frequency 

ranges can be observed on the curve. For the higher frequency range (the range labelled C and 

defined by f >1000Hz), regularly spaced impedance peaks can be seen and the input 

impedance tends towards that of a rigid tube. In the lower frequency range, (the range labelled 

A corresponding to f < 600Hz), two resonances can be identified. The frequency shift 

between these two resonances indicates that the corresponding speed wave is lower than co 

the acoustic wave speed in air. In the medium frequency range (range B), between 600 and 

1000 Hz, only one resonance of low Q-factor is present. This confirms the theoretical results 

shown in Figure 5 : that, in this range, the fluid-membrane coupling is important, and the 

evanescent wave phenomenon is predominant.  

In order to compare theoretical and experimental results, the Young’s modulus of the rubber 

(E= E’+jE’’ ) has been measured versus frequency. Results for this auxiliary measurement are 

presented in appendix B. Theoretical input impedance is computed from (13) using the 

measured values of E’ and  E’’  , and taking into consideration  the radiation impedance 

condition (14). A very close agreement between the theoretical and measured input 

impedances is observed.  

 

 

 

3.3. Estimated equivalent wave speed for stretched membranes  
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In this section the influence of the tension of the membrane is examined: the input impedance  

has been measured for three different static preloads :  0 N (which is the case presented in 

Figure 10), 24 N and 40 N. These correspond respectively to an extension of the rubber tube  

of 0 m, 0.03 m (that is 6% of the length) and 0.06 m (11%). The corresponding eqkL)(  is 

calculated (Figure 11a) as explained in Section 2.4. These should be compared with the 

theoretical results displayed in Figure 6. As previously explained, the functions do not 

increase monotically as a function of the frequency (“unwrapped” arctangent). After having 

unwrapped the functions, the (kL)eq variables can be obtained (Figure 11b), and, subsequently,  

the equivalent wave speeds ceq can be obtained using equation (16). These are displayed in 

Figure 12 to facilitate a comparison with the theoretical results displayed in Figure 7. 

  

For the lower and higher frequency range, the effect of the tension is clearly visible in 

eqkL)( . Conversely, the effect disappears when the equivalent wave speed is calculated. This 

indicates that the effect of tension is essentially to increase the length of the tube. On the other 

hand, for the medium frequency range, the effect of tension is not visible in eqkL)( , 

signifying that the tension has no significant influence on the mechanical characteristics of the 

tube. Naturally, in the medium frequency range, an effect on the equivalent wave speed can 

be observed. However, as  the waves in this range are evanescent, the length of the pipe does 

not influence the impedance. In conclusion, it can be said that for the tension under 

consideration, which corresponds to an extension of the length of the tube by as much as 10%, 

tension does not significantly influence the mechanical properties of the tube. A much higher 

tension is necessary in order to observe a significant effect. 

 

4. Conclusion 

 

Wave propagation inside a stretched elastic cylindrical tube is studied under plane wave 

approximation. Two models have been used. The first one is known as the Korteweg’s model 

in which the walls are characterised by their locally reacting impedance. Using this model, 

two propagating waves can be identified : one mainly propagates within the fluid and is called 

the Korteweg’s wave, the second is the longitudinal wave which propagates in the structure. 

The Korteweg’s wave exhibits different behavior according to the frequency. Three frequency 

ranges are emphasized. For the lower frequency range, the wave is subsonic. For the medium 
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range the wave is evanescent and for the higher frequency range the wave is supersonic and 

the wave speed tends towards the speed of sound in air. A second more sophisticated model 

has been derived, which leads to three propagating waves: two of which are very close to 

those previously described. The third one is induced by the tension of the tube and 

corresponds to a string wave. The acoustic input impedance of the tube is computed in order 

to compare the results with those resulting from the Korteweg’s model and also with those 

provided by the experiments. An equivalent wave speed has been defined from the input 

impedance under the assumption that a unique wave is propagating, and using the analogy 

with the rigid tube. For the three waves model, the results are similar to those obtained using 

the Korteweg’s model which demonstrates that this model is a fitting approximation for the 

calculation of the acoustic inner field. Indeed, if three different waves contribute to the field, 

one wave, which can be assimilated to the Korteweg’s wave dominates and, hence, the 

contribution of the other waves might be neglected as in the case of the rubber tube being 

investigated. This result is in accordance with [22], [23]. 

 Theoretical results are compared with the measured input impedances of a stretched 

rubber tube membrane. The displayed measured input impedances exhibit the same three 

frequency ranges as described in the theoretical results. Moreover, the equivalent wave speed 

has been derived from the measured input impedances, showing a good agreement between 

the theoretical and experimental equivalent celerities. This shows that the inner acoustic 

pressure’s field is mainly dominated by the Korteweg’s wave for which propagation is 

subsonic within the low frequency range and supersonic in the high frequency range tending 

towards the speed of sound in air.  
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APPENDIX A : MOTION EQUATIONS OF THE STRETCHED MEMB RANE  

 

The membrane operator can be obtained from the Donnell’s shell operator as given in 

reference text books [1], [33], assuming that the thickness parameter 
2

2

12a

h
is set at zero. This 

operator can be modified in order to take into consideration the static preload effect. In this 

appendix,  we derive the useful relationships leading to the motion equations (1), assuming 

the membrane hypothesis and the axisymmetry of the vibratory field.  

The forces applied to a membrane element of size (dx, adθ) are given Figure A1. The normal 

force in the axial direction and in the circumferential direction are Nx and Nθ ; the transverse 

shear force is Qx. The acoustic pressure acting on the membrane element is labelled p. 

Projections for the motion equations in the axial and radial directions are written as  
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ρ , (A1) 
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The normal stresses in the axial and circumferential directions  
xxσ  and θθσ and the shear 

stress θσ x
 are related to strains 

xxε , 
xxε , 

xxε by  

)(
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ν
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−
= xxxx
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1 2 xx
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ν
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−
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ν
σ xx
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+
=

1
. 

(A3) 

The relationships between stresses and displacements are given by  

x

u
xx ∂

∂=ε , 
a

w=θθε , 0=θε x  . 
(A4) 

In order to take into account the static preload, we assume that static stresses in the membrane 

are 
A

Ts
xx =σ , and 0== s

x
s

θθθ σσ . This hypothesis is valid for points which are sufficiently 

distant from the boundary conditions. From (A3), the static strains are obtained as 

AE

T
xx

s =ε ,
EA

Ts νε θθ
−= , 0=θε x

s  and from relation (A4), the static displacements are found 

in the form of x
AE

T
us =  and 

EA

T
ws ν−= . 
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Since the kinematic membrane hypothesis is assumed, displacements u and w are supposed to 

be independent of the radial co-ordinate and are written as the sum of static terms (us, ws) and 

dynamic terms (u0, w0) :  

0uuu s += , 0www s += . (A5) 

 

Taking the displacements fields (A5) as a starting point, in which the static displacements are 

known, the strains are obtained from (A4), the stresses from (A3), and by integrating the 

stresses over the membrane thickness, the resulting forces are acquired  

 
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x
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A
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x
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NQ xx ∂

∂−=
∂
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0

. (A8) 

 

Inserting (A6), (A7) and (A8) into the motion equations (A1) and (A2) provides the final form 

for the motion equations (1). 
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APPENDIX B : MEASUREMENT OF THE COMPLEX YOUNG’S MOD ULUS 

VERSUS FREQUENCY  

 

  The mechanical properties of rubber depend on temperature and frequency. The 

ageing of the material can also modify the values of its Young’s modulus. Experimental 

determination of the complex Young’s modulus E of the rubber constituting the membrane is 

briefly  described in this appendix. The value of E is used for computing the theoretical input 

impedance.  

A Dynamic Mechanical Analyzer (TA Instruments 2980) has been used. The measurement 

method is based on measurement of the transfer function between extensional strain and stress 

applied to a sample. The complex Young’s modulus '' ' iEEE +=  is deduced from this 

transfer function. Measurements are performed using a stepped sine excitation in a reduced 

frequency range ( 0.1-50Hz ) for 9 temperature controlled  environments between –30°C and 

40°C. The time-temperature superposition method is used to extend the frequency range [32] : 

for polymeric viscoelastic materials, decreasing temperature or increasing frequency. The 

curves E’ and E’’  versus frequency obtained in the reduced frequency range at different 

temperatures are shifted according to frequency in such a way that they are superimposed at a 

given temperature. Results are given in figure B1 at 20°C. A linear fit in the log-log plane is 

plotted, showing that frequency dependence of E’ and E’’  are power laws. Uncertainties are 

estimated to ±15% and the corresponding limit values for E’ and E’’  are presented in  the 

same graph. For the rubber under consideration, the fit of the experimental data leads to the 

empirical expressions  

 

054.0336.610' fE =  (Pa) 

089.0363.510'' fE =  (Pa). 

(B1) 

(B2) 

 

Typical values for f=1000Hz correspond to  E=E0(1+jδ) MPa, with E0=3.16MPa and δ=0.13.  
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Figure 1 : co-ordinates and displacement sign convention for the vibrating cylindrical 
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Figure 4 : Dispersion curves (ν≠0 and T≠0), conservative case (a) and dissipative case (b). 

Real part and imaginary part of the complex wave speeds  in m/s as a function of frequency in 
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function of the axial co-ordinate x (m) and the frequency f (Hz), (a) the vibration profile of 

the membrane for f=490 Hz (subsonic range A). (b) the vibration profile of the membrane for 

f=690 Hz (evanescent range B). (c) the vibration profile of the membrane for f=1190 Hz 

(supersonic range C). 

 

Figure 10 : Magnitude and phase of a measured (a) and theoretical (b) acoustic input 

impedance as a function of frequency in Hz. 

 

Figure 11 : Not unwrapped (a) and unwrapped (b)  variables (kL)eq associated with 3 

measured input impedances. 

 
Figure 12 : Equivalent wave speeds from the measured impedances corresponding to T=0N, 

T=20N, T=50N (thin lines) and celerities computed from equation dispersion dispersion (14), 

using measured values of E given in appendix B (thick lines). 

 

Figure 13 : Forces applied to a membrane element 
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Geometry Characteristics of the material (rubber type) 

Inner radius: a=0.015m 

Thickness: h=0.0018m 

Length: L=0.525m 

Density: ρ = 921 kgm-3 

Young’s modulus: E=E0(1+jδ)  

E0=1.2  10 6  Pa , δ= 0.2 

Poisson’s ratio : ν=0.5 

 

 

Table 1: Characteristics of the studied membrane 
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Figure 1 : co-ordinates and displacement sign convention  

for the vibrating cylindrical membrane . 
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Figure 2 : Dispersion curves for the fluid-filled membrane assuming ν=0 and T=0, other 

parameters being given in table 1. Conservative case (a) corresponding to E=E0 and 

dissipative case (b) corresponding to E=E0(1+jδ). Real part (always positive) and 

imaginary part (always negative) of the complex wave speeds cL and cK  in m/s are plotted 

versus frequency in Hz. 
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Figure 3 : Dispersion curves for the fluid-filled membrane  in the unstretched  

case T=0 , ν≠0, other parameters being given in table 1 . Conservative case (a) 

corresponding to E=E0 and dissipative case (b) corresponding to E=E0(1+jδ). Real part 

(always positive)  and imaginary part (always negative) of the complex wave speeds c1 

and c2 in m/s versus frequency in Hz.  
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(a) Conservative case 

 

(b) Dissipative case 

 

Figure 4 : Dispersion curves Dispersion curves for a stretched fluid-filled membrane  

T=50N, ν=0.5, other parameters being given in table 1 . Conservative case (a) 

corresponding to E=E0 and dissipative case (b) corresponding to E=E0(1+jδ). Real part 

(always positive)  and imaginary part (always negative) of the complex wave speeds c1, c2, 

and c3  in m/s versus frequency in Hz. 
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Figure 5 : Magnitude and phase of the specific acoustic input impedance of the vibrating 

membrane as a function of  frequency. Case of a membrane without tension (thin line) and 

stretched with a tension T=50 N (dotted line) . 
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Figure 6 : Not unwrapped (a) and unwrapped (b) values of variable (kL)eq defined by 

relation (17), versus frequency for the vibrating tube defined by table 1. In figure (b), the 

dotted line indicates variable kL for the theoretical input impedance of the rigid tube. 

(a) 
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Figure 7 : Equivalent wave speed computed from simulated acoustic impedance for the 

stretched membrane described in table 1 (thin line). For reasons of comparison, the real part 

of the wave speeds computed from dispersion equation (4) is plotted with thick dots. 
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Figure 8 : Experimental set-up 
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Figure 9 : (d) Vibration level on a fluid-filled rubber membrane excited by a harmonic source 

at x=0m. The end of the tube (x=0.525m) is closed. The level is depicted as a function of the 

axial co-ordinate x (m) and the frequency f (Hz) using an arbitrary unit. The red lines indicate 

the limits of the subsonic frequency ranges A, evanescent range B, supersonic range C. The 

vibration profile of the membrane )(xw& along the axis is plotted in figure (a) for f=490 Hz 

(range A), in figure (b) for f=690 Hz (range B), in figure (c) for f=1190 Hz (range C). 

(c) 

(b) 

(a) 

(d) 

C 

B 

A 

x(m) 

x(m) 

x(m) 

x(m) 

w&

w&

w&

f(Hz) 

1190Hz 

690Hz 

490Hz 



F.Gautier, J. Gilbert, J.-P. Dalmont, R. Picó Vila, Wave propagation in a fluid-filled cylindrical membrane 

 38

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : Magnitude (a) and phase (b) of the measured (dotted line) and theoretical 

(continuous line) acoustic input impedance as a function of frequency in Hz. 

Characteristics of the membrane are given in table 1. 
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Figure 11 : Not unwrapped (a) and unwrapped (b) values of variable (kL)eq defined by 

relation (17)  versus frequency. This variable is computed from the 3 measured input 

impedances obtained for tension T= 0N, T=20N and T=50N.  

(a) 

(b) 
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Figure 12 : Equivalent wave speeds computed from the measured impedances corresponding 

to tensions T=0N, T=20N, T=50N (thin lines) and computed from dispersion equation (14), 

using measured values of E given in appendix B (thick lines). 
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Figure 13 : Forces applied to a membrane element. 

x 

(Nθ +dNθ )dx 

Nθ dx 

(Nx +dNx )adθ 

(Qx +dQx )adθ 

Qxadθ 

Nx adθ 
x+dx 

θ 
θ + dθ 

 p dxadθ  



F.Gautier, J. Gilbert, J.-P. Dalmont, R. Picó Vila, Wave propagation in a fluid-filled cylindrical membrane 

 42

 

 

 

 

 

 

 

 

 

 

 

Figure 14 : Measurement of the real part E’ and imaginary part E’’  

of the Young’s modulus E versus frequency. 

 

 

 

 

 

 

 

 

 

E’=106.336 f 0.054(Pa) 

E’’=105.363 f 0.089(Pa) 

±15% 

±15% 


