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Persistence of generalized roll-waves under viscous

perturbation

Valérie Le Blanc∗

April 20, 2010

Abstract

The purpose of this article is to study the persistence of solution of a
hyperbolic system under small viscous perturbation. Here, the solution of the
hyperbolic system is supposed to be periodic: it is a periodic perturbation
of a roll-wave. So, it has an infinity of shocks. The proof of the persistence
is based on an expansion of the viscous solution and estimates on Green’s
functions.

Keyword: vanishing viscosity, roll-waves, Green’s function.

1 Introduction

In this paper, we consider a one-dimensional system

uεt + f(uε)x = g(uε) + εuεxx (1)

with a smooth flux f : Rn → R
n and a smooth function g : Rn → R

n. We assume
that the corresponding system without viscosity

ut + f(u)x = g(u) (2)

is strictly hyperbolic.
We consider a piecewise smooth function u which is a distributional solution

of (2) on the domain R × [0;T ∗]. We assume that u is periodic in the x variable,
with a period L and that u has m noninteracting Lax shocks per period.
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Introduction

We show that u is a strong limit of solutions uε of (1) as ε → 0. This work is of
course motivated by the conjecture that the admissible solutions of (2) are strong
limits of solutions of (1) with the same initial data.

In the case of scalar conservation laws, the proof of this conjecture uses the
maximum principle [10], and in the case of special 2×2 systems, R. J. DiPerna proved
it by a compensated compactness argument [1]. For the general case of shocks,
there is a first paper of J. Goodman and Z. P. Xin which proves this conjecture
for small amplitude Lax shocks [3]. This conjecture is also proved for a single non-
characteristic Lax shock or overcompressive shock by F. Rousset [9]. Here, we only
consider Lax shocks but we have an infinity of shocks.

An other motivation of this work states in the study of roll-waves, in fluid me-
chanics or in general hyperbolic systems with source terms. Indeed, P. Noble proved
the existence of roll-waves for this kind of system under assumptions on the source
term [7]. Specifically, in the case of inviscid Saint Venant equations







ht + (hu)x = 0,

(hu)t + (g cos θ
h2

2
+ hu2)x = gh sin θ − cfu

2,

one can prove that there exist roll-waves which are persistent under small perturba-
tion [8]. So, there exist solutions of inviscid Saint Venant equations, near roll-waves.
Here, the idea is to prove that there exists a family of solutions of the viscous Saint
Venant system







ht + (hu)x = 0,

(hu)t + (g cos θ
h2

2
+ hu2)x = gh sin θ − cfu

2 + ε(hux)x,
(3)

which tends to a solution of inviscid system as ε goes to 0. We prove this result in
the case of full viscosity.

We can now give the full set of assumptions and formulate our main result. First,
we suppose that

(H1) system (2) is strictly hyperbolic.

That means that there exist smooth matrices P (u), D(u) such that

df(u) = P (u)D(u)P (u)−1

where D(u) = diag(λ1(u), . . . , λn(u)) is a diagonal matrix and λi 6= λj for all i 6= j.

(H2) u is a distributional solution of (2) on [0;T ∗]. Moreover, we suppose that u is
piecewise smooth, periodic, and has m noninteracting and non-characteristic
Lax shocks per period.
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Figure 1: Allure of solution u over one period when u is scalar and m = 4. The
periodic roll-wave is drawn in dotted line. The solution which checks our assumptions
is represented by continuous line. One also placed the shocks for the two solutions.

That means that u is smooth except at the points (x, t) of smooth curves x =
Xj(t) + iL, j = 1, . . . , m, i ∈ Z and that for all j, k, t, |Xj(t) −Xk(t)| > 2r > 0 (see
Figure 1).

Moreover, following limits are finite:

∂kxu
j±(t) := ∂kxu(Xj(t)± 0, t) = lim

x→Xj(t)±
∂kxu(x, t).

Since the shocks are non-characteristic k-Lax shocks, we have:

λ1(u
j−) ≤ · · · ≤ λk−1(u

j−) < X ′
j(t) < λk(u

j−) ≤ · · · ≤ λn(u
j−),

λ1(u
j+) ≤ · · · ≤ λk(u

j+) < X ′
j(t) < λk+1(u

j+) ≤ · · · ≤ λn(u
j+).

This assumption ensures the existence of at least one sonic point between two shocks.
We refer to [8] for the existence of such a solution in the case of Saint Venant

equations. This result can be extended to general hyperbolic systems.
These assumptions imply that there exists a viscous profile for each shock. More

precisely, for all j, there exists V j such that

V j
ξξ − (f(V j)−X ′

jV
j)ξ = 0 (4)

and
V j(±∞, t) = uj±(t).

We will give more details on the properties of V j in Section 2.2.1. Now, we only need
to expose some assumption of linear stability. Consider for τ ≤ T ∗, the operator

Lj
τw = wzz − (df(V j(z, τ))−X ′

j(τ))wz.

3



Introduction

We assume that the viscous shock profiles are linearly stable. This assumption is
equivalent to an Evans function criterion [11].

(H3) ∀τ ∈ [0;T ∗], j = 1, . . . , m,Lj
τ is such that Dj

τ (λ) 6= 0 ∀λ,ℜλ ≥ 0, λ 6= 0, and
Dj

τ
′
(0) 6= 0, where Dj

τ is the Evans function of Lj
τ .

We can now state our main theorem:

Theorem 1. Under assumptions (H1)–(H2)–(H3), for all ε > 0, there exists a
unique solution uε of (1) on [0;T ∗] such that

uε(t = 0, x) = u(t = 0, x). (5)

Moreover, we have the convergences

‖uε − u‖L∞([0;T ∗],L1(0;L)) → 0, as ε→ 0.

And for any η ∈ (0, 1),

sup
0≤t≤T ∗,|x−Xj(t)|≥εη

|uε(x, t)− u(x, t)| → 0, as ε→ 0.

The proof of this theorem is done in three steps: construction of an approximate
solution (which gives us an expansion of uε in ε), estimates on the semigroup gen-
erated by linearized operator around this approximate solution and a Banach fixed
point argument to deal with the full problem.

The paper is organized as follows. In Section 2, we build an approximate solution
uεapp of the full problem (1) close to u, solution of (2) up to order 2 with respect to
ε. This is done separating slow parts where uεapp is close to u and shock parts where
uεapp|Xj±εγ is close to Vj. More precisely, one expands uε in the slow part as

uε(x, t) = u(x, t) + εu1(x, t) + ε2u2(x, t) + o(ε2)

where u is the solution of (2) and ui are solutions of the linearized equation of (2)
around u, which is well-posed thanks to assumption (H3). In shock parts, the
expansion at shock j is

uε(x, t) = V j(ξj(x, t, ε), t) + εV j
1 (ξ

j(x, t, ε), t) + ε2V j
2 (ξ

j(x, t, ε), t) + o(ε2)

where the stretched variable is ξj(x, t, ε) =
x−Xj(t)

ε
+ δj(t), V j is solution of viscous

equation (4) and V j
i , i = 1, 2, are solutions of the linearized equation of (4) around

V j . Moreover, the functions ui, V
j
i are related by matching conditions which ensure
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regularity on the approximate solution uεapp, built by convex combination of the
expansions:

uεapp =
m
∑

j=1

µ

(

x−Xj(t)

εγ

)

Ijε(x, t) +

(

1−
m
∑

j=1

µ

(

x−Xj(t)

εγ

)

)

Oε(x, t).

where

µ(x) =

{

0 if |x| > 2,
1 if |x| < 1,

Ijε(x, t) = V j(ξj(x, t, ε), t) + εV j
1 (ξ

j(x, t, ε), t) + ε2V j
2 (ξ

j(x, t, ε), t),

Oε(x, t) = u(x, t) + εu1(x, t) + ε2u2(x, t).

With this construction, we prove the theorem:

Theorem 2. There exists an approximate solution uεapp of (1) defined on [0;T ∗]. If

ϕ is a smooth change of variable which fixes the shocks (∀t, i, j, ϕ((j−1) L
m
+ iL, t) =

Xj(t) + iL), and ũεapp(z, t) = uεapp(ϕ(z, t), t), then ũ
ε
app verifies the equation

(ũεapp)t + f(ũεapp)x − ε(ũεapp)xx − g(ũεapp) = q̃ε(x, t)

with the following estimates on q̃ε

‖q̃ε‖L∞ , ‖q̃εt‖L∞ , ‖q̃εtt‖L∞ ≤ Cε2γ, (6)

‖q̃ε‖L1(0;L), ‖q̃εt ‖L1(0;L), ‖q̃εtt‖L1(0;L) ≤ Cε3γ, (7)

‖q̃εz‖L∞ , ‖q̃εzt‖L∞ ≤ Cεγ, ‖q̃εz‖L1(0;L), ‖q̃εzt‖L1(0;L) ≤ Cε2γ, (8)

‖q̃εzz‖L∞ ≤ C, ‖q̃εzz‖L1(0;L) ≤ Cεγ. (9)

Here, uεapp is constructed as a perturbation of u going to order 2, which allows
us to have estimates on q̃εzz in L1 in εγ. This property will be useful to prove the
convergence of uεapp − uε to 0.

In Section 3, we linearize (1) in the neighbourhood of the approximate solution
uεapp and we compute estimates on the Green’s function. To do so, we use the method
of iterative construction of the Green’s function, which was first used by E. Grenier
and F. Rousset in [4]. So, we consider approximations of the Green’s functions in
neighbourhood of the shocks (given by K. Zumbrun and P. Howard in [11]) and
we build our own approximation far away from the shock, using the characteristic
curves.

The last section is dedicated to the proof of theorem

Theorem 3. Under assumptions (H1)–(H2)–(H3), for all ε, there exists uε solu-
tion of (1)-(5) on (0;T ∗). And this uε verifies the convergences:

‖uε − uεapp‖L∞((0;T ∗)×R) → 0,

5



Construction of the approximate solution

‖uε − uεapp‖L∞((0;T ∗),L1(R)) → 0

when ε goes to zero.

This is done using standard arguments for parabolic problems. Indeed, we com-
bine estimates on q̃ε, and estimate on the Green’s function to obtain estimates on
uε−uεapp, and its derivatives, depending on ε and uniform in time for ε small enough.
Then, using the convergence of uεapp to u, we immediately deduce Theorem 1.

2 Construction of the approximate solution

The purpose of this section is to prove Theorem 2 on the existence of the approximate
solution uεapp of (1). In a first step, we compute formally this approximate solution
using outer and inner expansions of order 2. Indeed, in slow part, where ∇u is
bounded, the solution uε of (1) may be approximated by truncation of the formal
series

uε(x, t) ∼ Oε(x, t) = u(x, t) + εu1(x, t) + ε2u2(x, t)

where u is the solution of (2) we want to approach. Similarly, near the shocks j, we
search for uεapp with the inner expansion

Ijε(x, t) = V j(ξj(x, t, ε), t) + εV j
1 (ξ

j(x, t, ε), t) + ε2V j
2 (ξ

j(x, t, ε), t)

where ξj(x, t, ε) =
x−Xj(t)

ε
+ δj0(t) + εδj1(t) is the stretched variable and V j is the

viscous shock profile, solution of (4). We match this expansion by continuity of uεapp
and its spatial derivatives.

In this section, we formally substitute these expansions in (1) to find equations
satisfied by ui and V j

i , i = 1, 2, j = 1, . . . , m, and matching conditions. Then, we
prove the existence of the ui and V

j
i on (0;T ∗). Furthermore, we give rigorous esti-

mates on the error terms. We can remark here that we search for an approximation
of order 2, this will be useful to obtain good estimates on the second derivatives of
the error term.

2.1 Formal calculation and derivation of the equations

Substituting Oε into (1) and identifying the power of ε in the expressions, we get
for x 6= Xj(t):

O(ε0) : ut + (f(u))x − g(u) = 0,

O(ε1) : u1,t + (df(u) · u1)x − dg(u) · u1 = uxx,

O(ε2) : u2,t + (df(u) · u2)x − dg(u) · u2 = u1xx −
1

2
(d2f(u) · (u1, u1))x

+
1

2
d2g(u) · (u1, u1).
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Existence of solutions of the outer and inner problems

A similar calculation for Ijε yields the set of equations:

O(ε−1) : V j
ξξ − (f(V j)−X ′

jV
j)ξ = 0,

O(ε0) : V j
1ξξ − ((df(V j)−X ′

j) · V j
1 )ξ = V j

t + V j
ξ δ

j
0t − g(V j),

O(ε1) : V j
2ξξ − ((df(V j)−X ′

j)·V j
2 )ξ = V j

1t + V j
1ξδ

j
0t + V j

ξ δ
j
1t +

1

2
(d2f(V j)·(V j

1 , V
j
1 ))ξ

− dg(V j) · V j
1 .

We remark that the equations for ui are hyperbolic equations: the first one
is (2), so nonlinear, and the others are the linearization of (2) around u. Similarly,
the equations for the shock profiles are ordinary equations: nonlinear for V j, we
recognize (4), and its linearization around V j for V j

1 and V j
2 . To maximize the

order of the approximation, we couple these equations with boundary conditions,
connecting ui and V

j
i . First, we note

∂kxu
j±
i (t) := ∂kxui(Xj(t)± 0, t) = lim

x→Xj(t)±
∂kxui(x, t), i = 1, 2.

Then, we rewrite Oε and Iε with the variable ξ, in a vicinity of shock j, and we ask
the two functions to coincide as ε goes to 0. Therefore, we make Taylor expansion
of order 2 with respect to ε. For example, for ξ > 0, large enough,

Oε(Xj(t) + ε(ξ − δj0(t)− εδj1(t)), t) = uj+(t) + ε
(

uj+1 (t) + uj+x (ξ − δj0)
)

+
ε2

2

(

uj+2 (t) + 2uj+1x (t)(ξ − δj0)− 2uj+x δj1 + uj+xx(t)(ξ − δj0)
2
)

+ o(ε2)

and

Iε(Xj(t) + ε(ξ − δj0(t)− εδj1(t)), t) = V j(ξ, t) + εV j
1 (ξ, t) + ε2V j

2 (ξ, t) + o(ε2)

Identifying the terms of same order on ε, we get as ξ → ±∞:

V j(±∞, t) = uj±(t), (10)

V j
1 (ξ, t) = uj±1 (t) + uj±x (t)(ξ − δj0(t)) + o(1), (11)

V j
2 (ξ, t) = uj±2 (t) + uj±1x (t)(ξ − δj0(t)) +

1

2
uj±xx(t)(ξ − δj0(t))

2 − uj±x (t)δj1(t) + o(1).

(12)

For more details on the computation of these conditions, we refer to [2].

2.2 Existence of solutions of the outer and inner problems

In this section, we show that the solutions ui and V
j
i of the previous equations exist

under assumption (H3) on the spectral stability of the viscous shock profile. We
first remark that the leading-order outer function u is exactly the solution of (2)
which we want to approximate. Therefore, we first prove the existence of the V j,
and then we prove the existence of u1 and all the V j

1 . Simultaneously, we prove the
existence of the δj0. Similarly, we prove the existence of u2, V

j
2 and δj1.
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Construction of the approximate solution

2.2.1 Construction at order 0

In this section, we deal with the existence of u, V j which satisfy equations (2)-(4)
and matching condition (10). The existence of u is exactly assumption (H2). Since
u is a distributional solution, u verifies Rankine-Hugoniot conditions at each shock
j:

f(uj+)− f(uj−) = X ′
j(t)(u

j+ − uj−).

This property ensures the existence of the viscous shock profile V j which verifies

V j
ξξ − (f(V j)−X ′

j(t)V
j)ξ = 0 (13)

and the asymptotic conditions:

V j(±∞, t) = uj±(t).

For the existence for all t of such a profile and its properties, we refer to N. Kopell
and L. N. Howard [6]. In this section, we just recall the convergence rate of the
profile and its derivatives as ξ → ±∞. Since uj+ and uj− are hyperbolic rest points
for the ordinary differential equation (13), we have for some ω > 0 and for any
α ∈ N,

|∂αt V j(ξ, t)− ∂αt u
j±(t)| ≤ e−ω|ξ|, ∀ξ ∈ R, (14)

|∂αξ V j(ξ, t)| ≤ e−ω|ξ|, ∀ξ ∈ R. (15)

2.2.2 Construction at order 1: existence of V j
1 and u1

In this section, we prove the existence of u1, V
j
1 , δ

j
0 on (0;T ∗) such that

u1,t + (df(u) · u1)x − dg(u) · u1 = uxx, (16)

V j
1ξξ − ((df(V j)−X ′

j) · V j
1 )ξ = V j

t + V j
ξ δ

j
0t − g(V j), (17)

V j
1 (ξ, t) = uj±1 (t) + uj±x (t)(ξ − δj0(t)) + o(1), ξ → ±∞. (18)

We first remark that these equations are linear. As in [9], it is convenient to deal
with bounded solutions. Therefore, we write

U j
1 = V j

1 −Dj
1

where Dj
1 is a smooth function such that:

Dj
1 =

{

ξuj−x (t) if ξ < −1,
ξuj+x (t) if ξ > 1.

Consequently, U j
1 solves:

U j
1ξξ − ((df(V j)−X ′

j) · U j
1 )ξ = δj0tV

j
ξ + hj(ξ, t), (19)

U j
1 (±∞, t) = uj±1 (t)− δj0(t)u

j±
x (t) (20)
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Existence of solutions of the outer and inner problems

with
hj(ξ, t) = −Dj

1ξξ + V j
t + ((df(V j)−X ′

j)D
j
1)ξ − g(V j).

From estimates (14), (15), we deduce that h satisfies:

hj(ξ, t) =
d

dt
uj±(t) + (df(uj±)−X ′

j)u
j±
x (t)− g(uj±) +O(e−α|ξ|), α > 0.

And, since u is a smooth solution of (2), we have h ∈ L1(R) and: hj(ξ, t) = O(e−α|ξ|).
Integrating (19) with respect to ξ yields

U j
1ξ − (df(V j)−X ′

j)U
j
1 = δj0tV

j +

∫ ξ

0

hj(η, t) dη + Cj(t) (21)

where Cj(t) is a constant, only depending on t.
Let us solve the problem (16)-(21) with matching condition (20). Following [9],

we construct the solution of this system in two steps. First, for all j, we fix t and
δj0, we find U j

1 solution of (21) with finite limits at ±∞. Since these limits are
explicit and only depends on t, δj0, and Cj , we use the matching condition (20) to
rewrite (16) as a hyperbolic boundary value problem where u1 and δj0 are the only
unknowns. After solving this system, we use the previous construction to obtain U j

1

solution of (21) with matching conditions (20).
So, we fix t and δj0 for all j. With exactly the same arguments as in [9], we prove

the existence of U j
1 for all j. Hence, using assumption (H3) on the viscous shock

profile and theory of Fredholm operators, we show that U j
1 exists and the limits

satisfy:
lim

ξ→±∞
U j
1 (ξ, t) = −(df(uj±)−X ′

j)
−1(δj0tu

j± +Hj± + Cj)

where Hj± =
∫ ±∞

0
h(η, t) dη.

We now use matching conditions (20) to eliminate Cj in these relations. Indeed,
we have

(df(uj+)−X ′
j)(u

j+
1 − δj0u

j+
x ) = −(δj0tu

j+ +Hj+ + Cj),

(df(uj−)−X ′
j)(u

j−
1 − δj0u

j−
x ) = −(δj0tu

j− +Hj− + Cj),

and their difference is

Aj+uj+1 − Aj−uj−1 + δj0t(u
j+ − uj−) = δj0(A

j+uj+x − Aj−uj−x )− (Hj+ −Hj−) (22)

where Aj± = df(uj±)−X ′
j(t).

Now, we have to solve (16), (22). In order to find a solution of this system, we
rewrite it by fixing the shocks. Since the shocks do not interact, we can define a
change of variable Z (see Figure 2) which is bijective, continuous in (x, t), piecewise
linear in x and piecewise smooth:

Z(t, x) =
x−Xj(t)

Xj+1(t)−Xj(t)

L

m
+ (j − 1)

L

m
if x ∈ [Xj(t);Xj+1(t)], i = 1, . . . , m.

9



Construction of the approximate solution

X1 X2 X3 X4 X1 + L

L

m

2L

m

3L

m

L

Figure 2: Example of the change of variable Z in the case m = 4, for some t.

We also define v1 by
u1(x, t) = v1(Z(t, x), t).

It follows from these definitions that v1 solves

v1t + (Zx df(u) + Zt)(Z
−1(t, z), t)v1z + h̄(z, t)v1 − h̃(z, t) = 0 (23)

where z 7→ x = Z−1(t, z) is the inverse of x 7→ z = Z(t, x), and, h̄ and h̃ only depend
on Z, u, ux, and uxx.

We now use the fact that df(u) is diagonalizable, df(u) = P (u)−1D(u)P (u) so

(Zx df(u) + Zt)(Z
−1(t, z), t) = P̃ (z, t)−1D̃(z, t)P̃ (z, t).

Since zeroth order terms do not play any role in the wellposedness issue, we consider
the simplified system

w1t + D̃(z, t)w1x = k̃(z, t), (24)

Aj+(P j+)−1wj+
1 − Aj−(P j−)−1wj−

1 + δj0t(u
j+ − uj−) = lj(t) (25)

with k̃ and lj known functions. Therefore, we have to solve this system on [0;L]
under periodic boundary conditions. Since 0 and L correspond to the same shock,
the periodic boundary conditions are in fact the shock conditions (25) for j = 1.

Equation (24) is a linear transport equation on w1i, i = 1, . . . , n. Since, gener-
ically, the existence of u smooth on [0;T ∗] ensures that the characteristics do not
intersect on [0;T ∗], they can be used to build w1,i smooth between shocks, using the
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Existence of solutions of the outer and inner problems

initial condition. So, it suffices to verify that the conditions (25) at the shocks are
well-posed. We must therefore count the incoming and outgoing information at the
shock. As we can see in Figure 3, for i < k, the incoming characteristics come from
the right, so we obtain the value of wj+

1i . For i > k, the incoming characteristics
come from the left, so we get wj−

1i . And for i = k, the sign of the eigenvalue change
between two shocks: negative on the right of a shock and positive on the left, so,
using again characteristic construction, w1k is defined on the whole interval delim-
ited by the shocks: we obtain wj+

1k and wj−
1k .By this method we have built w1i on the

right or left side of each shock. We now use the boundary conditions (25) to obtain
all the components of wj

1, and δ
j
0t.

x

t

0 L/2 L

i > k

i = k

i < k

i = k

s1 s2

Figure 3: Characteristic curves between two shocks, example with m = 2. We also
plot s1 and s2 which are sonic points for k-th eigenvalue, that means λk(sj) = 0.

Indeed, if we note by ri the i-th eigenvector of df(u), and w1 = P̃
∑

i airi, then
aj+i is known for i ≤ k and aj−i for i ≥ k by our construction and we rewrite (25) as

n
∑

i=1

Aj+aj+i rj+i −
n
∑

i=1

Aj−aj−i rj−i + δj0t(u
j+ − uj−) = lj(t)

or equivalently

n
∑

i=1

(λj+i −X ′
j)a

j+
i rj+i −

n
∑

i=1

(λj−i −X ′
j)a

j−
i rj−i + δj0t(u

j+ − uj−) = lj(t).

11



Construction of the approximate solution

This yields the linear system on the unknowns aj+i for i > k, aj−i for i < k, and δj0t

∑

i>k

(λj+i −X ′
j)a

j+
i rj+i −

∑

i<k

(λj−i −X ′
j)a

j−
i rj−i + δj0t(u

j+ − uj−)

= lj(t)−
∑

i≤k

(λj+i −X ′
j)a

j+
i rj+i +

∑

i≥k

(λj−i −X ′
j)a

j−
i rj−i .

These equations have unique solutions if and only if the system obtained is invertible
for all t, that is the Majda-Liu condition:

∀j = 1, . . . , m, det(rj−1 , . . . , rj−k−1, u
j+ − uj−, rj+k+1, . . . , r

j+
n ) 6= 0.

Using [12], our assumption (H3) implies Majda-Liu condition. To finish the con-
struction of the approximate solution, we use again the characteristics. By this way,
we have built a solution on the whole space R. To ensure the regularity of the so-
lution far away from the shocks, we only need suitable compatibility conditions on
the initial data.

Finally, we have proved the existence of u1 and δj0t for all j and for 0 ≤ t ≤ T ∗.
The previous construction give us V j

1 for all j. We can then apply the same method
to obtain the existence of V j

2 , δ
j
1t and u2, since the linear system has the same terms

of maximal order.

Remark 1. Since the construction of viscous shock profile only depends on the
shock, we can use the previous construction even if u is not periodic. However, we
will see in the following that the periodicity of u allows us first to obtain bounds on
u1 and secondly to build the Green’s function in Section 3.

2.3 Construction of the approximate solution

We complete the construction of an approximate solution of equation (1). First, we
define a smooth function µ such that:

µ(x) =

{

0 if |x| > 2,
1 if |x| < 1.

Then, the approximate solution uεapp is defined as

uεapp =

m
∑

j=1

µ

(

x−Xj(t)

εγ

)

Ijε(x, t) +

(

1−
m
∑

j=1

µ

(

x−Xj(t)

εγ

)

)

Oε(x, t)

and uεapp verifies

(uεapp)t + f(uεapp)x − ε(uεapp)xx − g(uεapp) = qε

12



Estimates on the error term

where qε(x, t) =
∑3

i=1 q
ε
i (x, t) is an error term given by

qε1(x, t) =(1− µj)
[(

f(Oε)− f(u)− ε df(u) · u1 − ε2 df(u)·u2 −
ε2

2
d2f(u)·(u1, u1)

)

x

−
(

g(Oε)− g(u)− ε dg(u) · u1 − ε2 dg(u) · u2 −
ε2

2
d2g(u) · (u1, u1)

)

− ε3u2xx
]

,

qε2(x, t) =µ
j[(f(Ijε)−f(V j)−ε df(V j) · V j

1 − ε2 df(V j)·V j
2 −

ε2

2
d2f(V j)·(V j

1 , V
j
1 ))x

− (g(Ijε)− g(V j)− ε dg(V j) · V j
1 )

+ ε2(δ1tV
j
1ξ + V j

2t + δ′V j
2ξ)],

qε3(x, t) =µ
j
t(I

jε − Oε)− εµj
xx(I

jε −Oε)− 2εµj
x(I

jε − Oε)x + µj
x(f(I

jε)− f(Oε))

+ f(µjIjε + (1− µj)Oε)x − (µjf(Ijε) + (1− µj)f(Oε))x

− g(µjIjε + (1− µj)Oε)− (µjg(Ijε) + (1− µj)g(Oε)),

and µj = µ
(

x−Xj(t)

εγ

)

.

We now want to prove that uεapp is a good approximation of uε, that means
uε − uεapp → 0 when ε→ 0. Therefore, we define wε = uε − uεapp which solves:

wt + (df(uεapp) ·w)x − εwxx − dg(uεapp) ·w = −qε +Q1(u
ε
app, w)−Q2(u

ε
app, w)x (26)

with
Q1(u

ε
app, w) = g(w + uεapp)− g(uεapp)− dg(uεapp) · w

and
Q2(u

ε
app, w) = f(w + uεapp)− f(uεapp)− df(uεapp) · w

which are at least quadratic terms in w.

2.4 Estimates on the error term

To end with the proof of Theorem 2, it remains to compute the estimates on the
error term qε. As in [3], we can estimate the support of functions qεi :

supp(qε1) ⊂ {(x, t) : |x−Xj(t)| ≥ εγ},
supp(qε2) ⊂ {(x, t) : |x−Xj(t)| ≤ 2εγ},

supp(qε3) ⊂ {(x, t) : εγ ≤ |x−Xj(t)| ≤ 2εγ}.
To obtain estimates on qεi and their derivatives, we first need to fix the shocks by

a smooth change of variable. This manipulation cannot be avoided for the estimates
on qεit, q

ε
itt. So, we define

ϕ(z, t) = z +

m
∑

j=1

αj(z, t)

(

Xj(t)− (j − 1)
L

m
− εδj(t)

)

(27)

13



Construction of the approximate solution

where αj(·, t) are smooth functions, such that
∑

j αj ≡ 1, ϕ is increasing, ϕz > 0

and αj(·, t) ≡ 1 on a neighbourhood [(j−1) L
m
−r; (j−1) L

m
+r] of (j−1) L

m
. We recall

that in assumption (H2) we have supposed that |Xj+1 − Xj | > 2r, which ensures
the existence of such a ϕ.

With the notations

w̃(z, t) = w(ϕ(z, t), t), ũεapp(z, t) = uεapp(ϕ(z, t), t), q̃
ε(z, t) = qε(ϕ(z, t), t),

equation (26) becomes:

w̃t +
1

ϕz
(df(ũεapp) · w̃)z −

(

ϕt

ϕz
+
εϕzz

ϕ3
z

)

w̃z − ε

(

1

ϕ2
z

w̃z

)

z

− dg(ũεapp) · w̃

= −q̃ε +Q1(ũ
ε
app, w̃)−

1

ϕz

Q2(ũ
ε
app, w̃)z. (28)

We now prove estimates (6)-(7)-(8)-(9). Using the fact that f and g are smooth
and ui is piecewise smooth, with discontinuities only at x = Xj(t), we have the
following estimates for q̃ε1:

‖q̃ε1‖L∞ ≤ Cε3

where C is a constant which does not depend on ε. Integrating this inequality, we
get:

‖q̃ε1‖L1(0;L) ≤ Cε3.

Moreover, if ε is small enough (such that 2εγ < r),

q̃ε1t(z, t) = (1− µ̃j)[. . . ]t + ε1−γδjtµ
′

(

ϕ(z, t)−Xj(t)

εγ

)

[. . . ]

where the [. . . ] is dominated by ε3. Therefore we have

‖q̃ε1t‖L∞ ≤ Cε3, ‖q̃ε1t‖L1(0;L) ≤ Cε3.

Similarly, we prove the same estimates for q̃ε1tt. Nevertheless we cannot have such
estimates for q̃ε1z. Indeed, we have

q̃ε1z(z, t) = (1− µ̃j)[. . . ]z − ε−γµ′

(

ϕ(z, t)−Xj(t)

εγ

)

[. . . ]

so we just have
‖q̃ε1z‖L∞ ≤ Cε3−γ, ‖q̃ε1z‖L1(0;L) ≤ Cε3.

Similarly, we prove

‖q̃ε1zt‖L∞ ≤ Cε3−γ, ‖q̃ε1zt‖L1(0;L) ≤ Cε3,

14



Estimates on the error term

‖q̃ε1zz‖L∞ ≤ Cε3−2γ , ‖q̃ε1zz‖L1(0;L) ≤ Cε3−γ.

Then, we compute estimates for q̃ε2:

‖q̃ε2‖L∞ , ‖q̃ε2t‖L∞ , ‖q̃ε2tt‖L∞ ≤ Cε2,

‖q̃ε2‖L1(0;L), ‖q̃ε2t‖L1(0;L), ‖q̃ε2tt‖L1(0;L) ≤ Cε2+γ,

‖q̃ε2z‖L∞, ‖q̃ε2zt‖L∞ ≤ Cε2−γ, ‖q̃ε2z‖L1(0;L), ‖q̃ε2zt‖L1(0;L) ≤ Cε2.

‖q̃ε2zz‖L∞ ≤ Cε2−2γ , ‖q̃ε2zz‖L1(0;L) ≤ Cε2−2γ.

Eventually, we use matching conditions (10)-(11)-(12) to prove the estimates on
q̃ε3. Indeed, the properties of viscous shock profiles provide that terms o(1) can be
replaced by e−α|ξ| in the matching conditions with α a positive number. So, we have
for z − (j − 1) L

m
< r:

Ijε(ϕ(z, t), t)= V j
(

z−(j−1) L
m

ε
, t
)

+ εV j
1

(

z−(j−1) L
m

ε
, t
)

+ ε2V j
2

(

z−(j−1) L
m

ε
, t
)

= uj±(t) + ε
[

uj±1 (t) + uj±x (t)
(

z−(j−1) L
m
−εδj0

ε

)]

+ ε2
[

uj±2 (t)

+uj±1x (t)
(

z−(j−1) L
m
−εδj0

ε

)

+ 1
2
uj±xx(t)

(

z−(j−1) L
m
−εδj0

ε

)2

− uj±x (t)δj1(t)

]

+O
(

e−α
|z−(j−1) L

m |

ε

)

and, using Taylor expansion for ui(Xj + (z + (j − 1) L
m
− εδj0)),

Oε(ϕ(z, t), t) = u(z +Xj − (j − 1) L
m
− εδj, t)

+εu1(z +Xj − (j − 1) L
m
− εδj, t)

+ε2u2(z +Xj − (j − 1) L
m
− εδj, t)

= +uj±(t) + uj±x (t)(z − (j − 1) L
m
+ εδj0 + ε2δj1)

+1
2
uj±xx(t)(z − (j − 1) L

m
− εδj0)

2 + εuj±1
+εuj±1x (z − (j − 1) L

m
− εδj0) + ε2uj±2

+O(ε3 + (z − (j − 1) L
m
− εδj0)

3).

Since

supp(q̃ε3) ⊂
{

(z, t) : εγ ≤
∣

∣

∣

∣

z − (j − 1)
L

m
− εδj

∣

∣

∣

∣

≤ 2εγ
}

,

we have

O
(

ε3 +

(

z − (j − 1)
L

m
− εδj0

)3
)

= O(ε3γ)

and we obtain the estimates:

‖q̃ε3‖L∞ , ‖q̃ε3t‖L∞ , ‖q̃ε3tt‖L∞ ≤ Cε2γ ,
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Estimates on the Green’s function

‖q̃ε3‖L1(0;L), ‖q̃ε3t‖L1(0;L), ‖q̃ε3tt‖L1(0;L) ≤ Cε3γ ,

‖q̃ε3z‖L∞ , ‖q̃ε3zt‖L∞ ≤ Cεγ, ‖q̃ε3z‖L1(0;L), ‖q̃ε3zt‖L1(0;L) ≤ Cε2γ ,

‖q̃ε3zz‖L∞ ≤ C, ‖q̃ε3zz‖L1(0;L) ≤ Cεγ.

This ends the proof of Theorem 2.

3 Estimates on the Green’s function

We now consider the linear operator

Lεw̃ = w̃t +
1

ϕz

(

df(ũεapp)− ϕt + ε
ϕzz

ϕ2
z

)

· w̃z − ε
1

ϕ2
z

w̃zz

+

((

1

ϕz

(

df(ũεapp)− ϕt + ε
ϕzz

ϕ2
z

))

z

− dg(ũεapp)

)

· w̃.

The aim of this section is to prove the following theorem:

Theorem 4. There exists a Green’s function Gε(t, τ, z, y) of the linear operator Lε

defined for 0 ≤ τ, t ≤ T ∗, z, y ∈ R such that Gε(t, τ, z, y) = 0 if τ > t and

sup
y,τ≤T ∗

∫ T ∗

0

∫

R

|Gε(t, τ, z, y)| dz dt+
√
ε sup
y,τ≤T ∗

∫ T ∗

0

∫

R

|∂zGε(t, τ, z, y)| dz dt ≤ C (29)

where C is positive and does not depend on ε.

To find estimates on this Green’s function, we use approximations of the Green’s
function both near the shock and far away from the shocks.

First, we recall the method of iterative construction of the Green’s function of
E. Grenier and F. Rousset [4]. Then, to approximate the Green’s function near the
shocks, we recall the result of K. Zumbrun and P. Howard [11] about Green’s function
for pure viscous profile problem. Far away from the shocks, we use characteristic
curves to build some approximate Green’s functions. Finally, we combine all these
Green’s functions to obtain an approximate Green’s function of Lε and we find
bounds on the error terms.

3.1 Method

Here, we recall the method used by E. Grenier and F. Rousset in [4]. We want to
construct an approximate Green’s function Gε

app of Lε in the form

Gε
app(t, τ, z, y) =

N
∑

k=1

Sk(t, τ, z, y)Πk(τ, y),
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Near the shocks

where Sk are Green’s kernels which satisfy (29) and Πk ∈ C∞([0, T ∗]×R,L(Rn)) are
such that

‖Πk(t, x)v‖ ≤ C‖v‖, ∀x ≥ 0, t ∈ [0;T ∗], v ∈ R
n

and
N
∑

k=1

Πk = Id .

We next define the error Rk(·, τ, ·, y) = LεSk(τ, y) for k = 1, . . . , N , and the
matrix of errors: M(T1, T2) = (σkl(T1, T2))1≤k,l≤N with

σkl(T1, T2) = sup
T1≤τ≤T2,y∈suppΠl

∫ T2

T1

∫

R

|Πk(t, z)Rl(t, τ, z, y)| dz dt.

Thanks to Theorem 2.2 of [4], we just have to prove that there exists ε2 > 0 such
that 0 < T2 − T1 < ε2 implies

lim
p→∞

Mp(T1, T2) = 0.

Remark 2. Since we consider the error in a matrix, we need to consider a finite
number of Green’s kernel Sk. We will see in the following that the number of these
kernels is proportional to the number of shocks per period. So, this method does
not allow us to treat the case of a non-periodic perturbation.

3.2 Near the shocks

Near the shock j, we can approximate

1

ϕz

(

df(ũεapp)− ϕt + ε
ϕzz

ϕ2
z

)

by

df

(

V j

(

z − (j − 1) L
m

ε
, τ

))

−X ′
j

and we forget zeroth order term. Therefore, we search the Green’s functions for the
linear operators

Lεj
τ w = ∂tw +

(

df

(

V j

(

z − (j − 1) L
m

ε
, τ

))

−X ′
j(τ)

)

wz − εwzz

which depend on j and τ < T ∗. As in [9], we remark that these Green’s functions
GSj

τ (t, z, y) verify

GSj
τ (t, z, y) =

1

ε
GHZj

τ

(

t

ε
,
z − (j − 1) L

m

ε
,
y − (j − 1) L

m

ε

)
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Estimates on the Green’s function

where GHZj
τ is the Green’s function related to the operator

Lj
τw = ∂tw + (df(V j(z, τ))−X ′

j(τ))wz − wzz.

In [11], K. Zumbrun and P. Howard obtained estimates on the Green’s functions
which will be useful to obtain estimates for our operators. Let us denote by ãj±i (τ),
and rj±i (τ) the eigenvalues and the associated eigenvectors of df(uj±(τ))−X ′

j(τ).

Proposition 1. Under hypothesis (H3), we have

GSj
τ

(

t, z + (j − 1)
L

m
, y + (j − 1)

L

m

)

=
∑

i,ãj+i (τ)>0

O





exp
(

− (z−ãj+
i

(τ)t)2

Mεt

)

√
εt



rj+i (τ)χz≥0

+
∑

i,ãj−i (τ)<0

O





exp
(

− (z−ãj−i (τ)t)2

Mεt

)

√
εt



rj−i (τ)χz≤0

+O





exp
(

− (z−y)2

Mεt

)

√
εt

e−σ t
ε





(30)

∂zG
Sj
τ

(

t, z + (j − 1)
L

m
, y + (j − 1)

L

m

)

=
∑

i,ãj+
i

(τ)>0

O





exp
(

− (z−ãj+i (τ)t)2

Mεt

)

εt



rj+i (τ)χz≥0

+
∑

i,ãj−i (τ)<0

O





exp
(

− (z−ãj−i (τ)t)2

Mεt

)

εt



rj−i (τ)χz≤0

+O





exp
(

− (z−y)2

Mεt

)

εt
e−σ t

ε



 ,

(31)

where M and σ are positive constants, and χ designs characteristic function. More-
over, O’s are at least linear forms, locally bounded in y and uniformly bounded in
(t, z).

3.3 Far away from the shocks

As in the previous section, we do not search Green’s function for Lε but for the
approximate operator L̃ε defined by

L̃εw = wt +
1

ϕz

(

df(u(ϕ(z, t), t))− ϕt + ε
ϕzz

ϕ2
z

)

· wz −
ε

ϕ2
z

wzz.
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Far away from the shocks

We remark that, as in the previous section, we forget the terms in w.
Recall that df(u(x, t)) is diagonalizable for all x, t, so we can write

df(u(ϕ(z, t), t)) = P (u(ϕ(z, t), t))D(u(ϕ(z, t), t))P (u(ϕ(z, t), t))−1

with D(u(ϕ(z, t), t)) = diag(λi(u(ϕ(z, t), t))).
To obtain approximation of the Green’s function between two shocks, we define

j approximate problems on R, with continuous solutions. First, we set

λji (ϕ(z, t), t) =







λi(u(X
+
j (t), t)) if z ∈

]

−∞; (j − 1) L
m
+ εδj

]

,
λi(u(ϕ(z, t), t)) if z ∈

]

(j − 1) L
m
+ εδj; j L

m
+ εδj+1

[

,
λi(u(X

−
j+1(t), t)) if z ∈

[

j L
m
+ εδj+1; +∞

[

.

Then, we want to find approximate Green’s functions for the scalar operators

Lj
iw = wt +

1

ϕz

(

λji − ϕt + ε
ϕzz

ϕ2
z

)

wz −
ε

ϕ2
z

wzz.

To do so, we define characteristic curves χj
i (t, τ, y) by

{

∂tχ
j
i (t, τ, y) = λji (χ

j
i (t, τ, y), t), t ≥ τ,

χj
i (τ, τ, y) = y,

and the approximate Green’s functions

Gj
i (t, τ, z, y) =

ϕz(y, τ)
√

4πε(t− τ)
exp

(

−(ϕ(z, t)− χj
i (t, τ, ϕ(y, τ)))

2

4ε(t− τ)

)

.

We easily compute the error committed here

Lj
iG

j
i = (λji (ϕ(z, t), t)− λji (χ

j
i (t, τ, ϕ(y, τ)), t))G

j
iz(t, τ, z, y).

Before we build the whole Green’s function, we introduce some notations. First,
we write

Gj = diag(Gj
i ).

In the sequel, we need to distinguish at each shock the outgoing waves to the in-
coming waves. We define

D−in = diag(0, . . . , 0, 1, . . . , 1), with k − 1 unit coefficients,
D−out = diag(1, . . . , 1, 0, . . . , 0), with k − 1 null coefficients,
D+in = diag(1, . . . , 1, 0, . . . , 0), with k unit coefficients,
D+out = diag(0, . . . , 0, 1, . . . , 1), with k null coefficients,

so that D±in +D±out = Id.
Finally, we define the projections

P±in(t, z) = P (t, z)D±inP (t, z)−1,

P±out(t, z) = P (t, z)D±outP (t, z)−1.
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Estimates on the Green’s function

3.4 Approximate Green’s function

Since the shocks are non-characteristic Lax shocks, we have the following inequality
on a neighbourhood of each shock j = 1, . . . , m:

|λi(ũ(z, t))−Xj(t)| > C > 0 if (j − 1)
L

m
− 4η < z < (j − 1)

L

m
+ 4η, i = 1, . . . , n.

We can assume that η is such that 4η < r so that αj ≡ 1 in (27) on the previous
neighbourhood.

Furthermore, we need some cut-off smooth functions

K+(z) =

{

0 if z ≤ 1,
1 if z ≥ 2

and K−(z) =

{

1 if z ≤ −2,
0 if z ≥ −1.

We also assume the cut-off function µ already used to read as µ = (1−K+)(1−K−).
We can now build an approximate Green’s function in the form

Gε
app(t, τ, z, y) =

m
∑

j=1

7
∑

k=0

Sj
k(t, τ, z, y)Π

j
k(τ, y)

where the Green’s kernels are periodic with period (0, 0, L, L):

Sj
k(t, τ, z, y) =

∑

l∈Z

S̃j
k(t, τ, z + lL, y + lL)

with

S̃j
0(t, τ, z, y) = µ

(

z − (j − 1) L
m

2η

)

µ

(

z − (j − 1) L
m

M3ε

)

GSj
τ (t− τ, z, y),

S̃j
1,2(t, τ, z, y) = µ

(

. . .

2η

)

K+

(

z − (j − 1) L
m

M1ε

)

P (t, z)D+outGj(t, τ, z, y)P (τ, y)−1,

S̃j
3(t, τ, z, y) = µ

(

. . .

2η

)

K+

(

z − (j − 1) L
m

M1ε

)

P (t, z)D+inGj(t, τ, z, y)P (τ, y)−1,

S̃j
4(t, τ, z, y) =

(

K+

(

4(z − (j − 1) L
m
)

η

)

+K−

(

4(z − j L
m
)

η

)

− 1

)

P (t, z)GjP (τ, y)−1,

S̃j
5(t, τ, z, y) = µ

(

z − j L
m

2η

)

K−

(

z − j L
m

M1ε

)

P (t, z)D−inGj(t, τ, z, y)P (τ, y)−1,

S̃j
6,7(t, τ, z, y) = µ

(

. . .

2η

)

K−

(

z − j L
m

M1ε

)

P (t, z)D−outGj(t, τ, z, y)P (τ, y)−1,
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and the projectors are also periodic:

Πj
k(τ, y) =

∑

l∈Z

Π̃j
k(τ, y + lL)

with

Π̃j
0(τ, y) = µ

(

y − (j − 1) L
m

η

)

µ

(

y − (j − 1) L
m

M2ε

)

,

Π̃j
1(τ, y) = µ

(

. . .

η

)

K+

(

y − (j − 1) L
m

M2ε

)(

1−K+

(

2(y − (j − 1) L
m
)

M3ε

))

P+out(τ, y),

Π̃j
2(τ, y) = µ

(

. . .

η

)

K+

(

2(y − (j − 1) L
m
)

M3ε

)

P+out(τ, y),

Π̃j
3(τ, y) = µ

(

. . .

η

)

K+

(

y − (j − 1) L
m

M2ε

)

P+in(τ, y),

Π̃j
4(τ, y) = K+

(

y − (j − 1) L
m

η

)

+K−

(

y − j L
m

η

)

− 1,

Π̃j
5(τ, y) = µ

(

y − j L
m

η

)

K−

(

y − j L
m

M2ε

)

P−in(τ, y),

Π̃j
6(τ, y) = µ

(

. . .

η

)

K−

(

2(y − j L
m
)

M3ε

)

P−out(τ, y),

Π̃j
7(τ, y) = µ

(

. . .

η

)

K−

(

y − j L
m

M2ε

)(

1−K−

(

2(y − j L
m
)

M3ε

))

P−out(τ, y)).

It appears that all the Green’s kernels can be written in the following form:

Sj
k(t, τ, z, y) = T (z)S(t, τ, z, y) (32)

where T is a truncation function.
We will choose the three constants M1,M2,M3 at the end of the estimates on

the error matrix so that they verify

4M1 ≤ M2 ≤
1

4
M3.

These inequalities are necessary to have

∑

j,k

Πj
k ≡ 1
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Estimates on the Green’s function

and
Gapp(τ, τ, z, y) = δy(z) Id .

Under these notations, S̃j
0 describes the viscous dynamic at the shock j, S̃j

1 the
creation of outgoing waves in a vicinity at the right of the shock j, S̃j

2 the creation
and propagation of outgoing waves away from the shock j, at its right, S̃j

3 the
creation and propagation of incoming waves at the right of the shock j. S̃j

4 describes
the propagation of the waves between the shocks j and j + 1 Moreover, the kernels
S̃j
7, S̃

j
6, S̃

j
5 are the symmetric of respectively S̃j

1, S̃
j
2, S̃

j
3 for the left of the shock j +1.

We summarize this splitting in Figure 4.

x(j − 1) L
m

j L
m

viscous S̃
j
0 S̃

j+1
0 viscous

S̃
j
1 −→ S̃

j
2 −→

←− S̃
j
3

propagation between two shocks

S̃
j
4

S̃
j
5 −→

←− S̃
j
6 ←− S̃

j
7

Figure 4: Summarize of the splitting by Green’s kernels.

3.5 Bounds on the error matrix

As said in Subsection 3.1, to prove Theorem 4, it remains to prove that Mp con-
verges to 0 when p goes to ∞. Since the coefficients of M are non-negative, it
suffices to prove that M is bounded above by an other matrix which has the “good”
convergence.

To bound the error terms, we use the same method than F. Rousset in [9]. We
split all the error terms into two parts: the truncation of the error on the kernel and
the commutator:

Rj
k = Ej

k1 + Ej
k2

where, with the notation of (32),

Ej
k1(t, τ, z, y) = T (z)LεS(t, τ, z, y) and Ej

2k(t, τ, z, y) = [Lε, T (z)]S(t, τ, z, y).

Lemma 1. We have the estimates

at shock j: R̃j
0

‖1|y−(j−1)L/m|≤2M2εE
j
01(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤ C1(T + ε),

‖1|y−(j−1)L/m|≤2M2ε1±z≥0P±
outE

j
02(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤ C2,

‖1|y−(j−1)L/m|≤2M2ε1±z≥0P±
inE

j
02(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤ C3 + C2T ;

22



Bounds on the error matrix

for the outgoing waves: R̃j
1, R̃

j
2, R̃

j
6, R̃

j
7 . Let M ≥M2. we have:

‖1y−(j−1)L/m≥MεE
j
11(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≥MεE

j
21(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤C4(T + ε2γ−1) + C5,
‖1y−(j−1)L/m≤−MεE

j
61(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≤−MεE

j
71(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤C4(T + ε2γ−1) + C5,
‖1y−(j−1)L/m≥MεE

j
12(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≥MεE

j
22(t, τ, z, y)‖L∞

τ,y,L
1
t,z
≤C5+C1(T+ε),

‖1y−(j−1)L/m≤−MεE
j
62(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≤−MεE

j
72(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤C5 + C1(T + ε);

for the incoming waves: R̃j
3, R̃

j
5

‖1y−(j−1)L/m≥MεE
j
31(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≤−MεE

j
51(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤ C6(T + ε2γ−1) + C7,
‖1y−(j−1)L/m≥MεE

j
32(t, τ, z, y)‖L∞

τ,y,L
1
t,z
, ‖1y≤−MεE

j
52(t, τ, z, y)‖L∞

τ,y,L
1
t,z

≤ C8 + C1(T + ε);

between two shocks: R̃j
4

‖Rj
4‖L∞

τ,y,L
1
t,z
,≤ C8(T + ε),

where C1 is locally bounded in M2,M3,C2 is locally bounded in M2 uniformly in M3,
C3 depends only on M2 and M3 and goes to 0 as M3 → +∞, C4 is independent of
M1,M2 and M3, C5 depends only on M and goes to 0 as M → +∞, C6 is locally
bounded in M1, C7 goes to 0 as M1 → +∞, and C8 is bounded uniformly in M1.

Proof. We do not give here the complete proof of the lemma. Mainly, it deals with
terms that are not treated in [9]: zeroth order terms and terms related to ϕ or η.

First, we consider the error at the shock j. On the support of Ej
01, we have that

ϕz(·, t) ≡ 1 and ϕt(·, t) ≡ X ′
j(t)− εδjt (t) so we obtain

Ej
01 = µ

(

z − (j − 1) L
m

2η

)

µ

(

z − (j − 1) L
m

M3ε

)[

h GSj
τ (t− τ, z, y)

+

(

df(ũεapp)− df

(

V j

(

z − (j − 1)/m

ε
, τ

))

+X ′
j(τ)−X ′

j(t) + εδjt

)

GSj
τz

]

where h is a bounded function of t, z. Hence, using the fact that df and Xj are
smooth and the expression of uεapp, we have

|Ej
01| ≤ Cµ

(

z − (j − 1) L
m

2η

)

µ

(

z − (j − 1) L
m

M3ε

)

[

(|t− τ |+ ε)|GSj
τz |+ |GSj

τ |
]

where C is locally bounded in M3. The calculations of [9] give directly a bound for
the first term, in GSj

τz . So, it only remains to bound the integral:
∫ T

τ

∫ (j−1)L/m+2M3ε

(j−1)L/m−2M3ε

|GSj
τ (t− τ, z, y)| dz dt,
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Estimates on the Green’s function

and, thanks to Proposition 1, to estimate:
∫ T

τ

∫ M3ε

−M3ε

1
√

ε(t− τ)
exp

(

−(z − a(t− τ))2

Mε(t− τ)

)

dz dt.

Using the classical change of variable z′ = z−a(t−τ)√
Mε(t−τ)

, we obtain the bound

∫ T

τ

∫ (j−1)L/m+2M3ε

(j−1)L/m−2M3ε

|GSj
τ (t− τ, z, y)| dz dt ≤ CT

so this concludes the estimate for Ej
01. For Ej

02, the linear term in GSj
τ disappears

in the commutator. Hence, there is no change with the proof of F. Rousset.
For the estimates on R̃j

i , i = 1, 2, 3, 5, 6, and 7, we first remark that ϕz ≡ 1 on the
support of the errors, so Ej

i1 is bounded as in [9], except for the zeroth order term
which is treated as in the case of Ej

01. So, we only consider the estimate on Ej
i2. We

first remark that the support of this error is not of size ε. Indeed, the truncation

µ
(

z−(j−1) L
m

2η

)

adds some error terms with support of size 4η. Though, we have to

bound:
∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

(df(ũεapp)−X ′
j + εδjt )

1

2η
µ′K+PD+outGjP−1

−ε
[

1

4η2
µ′′K+PD+outGjP−1 +

1

2η
µ′K+(PD+outGj)zP

−1

]

dz dt.

The two terms in Gj are bounded by CT , and the term in (PD+outGj)z is bounded
by C(ε+ T ). Indeed, for 1 ≤ i ≤ n,

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|Gj
i |

=

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|ϕz(y, τ)|
√

4πε(t− τ)
exp

(

−(ϕ(z, t)− χj
i (t, τ, ϕ(y, τ)))

2

4ε(t− τ)

)

dz dt.

Hence, using the change of variable z′ =
ϕ(z,t)−χj

i (t,τ,ϕ(y,τ))√
4ε(t−τ)

, we obtain

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|Gj
i | ≤ C

∫ T

τ

∫

R

e−z′2 dz′ dt ≤ CT.

Similarly, we have

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|Gj
iz|

=

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|ϕz(y, τ)|
√

4πε(t− τ)
exp

(

−(ϕ− χj
i )

2

4ε(t− τ)

)(

−ϕz
ϕ− χj

i

2ε(t− τ)

)

dz dt.
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And with the same change of variable, we obtain:

ε

∫ T

τ

∫ (j−1) L
m
+4η

(j−1) L
m
+M1ε

|Gj
iz| ≤ C

√
ε

∫ T

τ

1√
t− τ

∫

R

|z′|e−z′2 dz′ dt ≤ C(T + ε),

which gives the estimate for Ej
i2.

Since there is not new difficulty in the proof of the estimates on Rj
4, we do not

develop it here.

We now use Lemma 1 to bound the matrix M. Since the Green’s kernel depends
on the shock, we note

σij
kl(T1, T2) = sup

T1≤τ≤T2,y∈suppΠj
l

∫ T2

T1

∫

R

|Πi
k(t, z)R

j
l (t, τ, z, y)| dz dt.

Since two shocks do not interact, the error coefficients σij
kl vanish for i 6= j and kl 6= 0

and for |i− j| > 1. So the error matrix M is bounded:

M ≤





















M1 M2 M3

M3 M1 M2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . M2

M2 M3 M1





















where M2 is null except on the first column, and M3 is null except on the first line.
Moreover, using Lemma 1, and it was done in [9], we can choose α < 1/2 andM1,M2

such that when M3 → +∞, ε, T → 0, the matrices tend to

M1 →

























· α · C · · · ·
· α · α · · · ·
C α · α · · · ·
· α · α · · · ·
· α · C · C · α
· · · · · α · α
· · · · · α · α
· · · · · α · α

























, M2 →

























· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
C · · · · · · ·
· · · · · · · ·

























,
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M3 →

























· · · · · C · α
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

























.

So thatM → M̃ where the eigenvalues of M̃ are 0 and 2α. We can now conclude
that we have Mp → 0 when p→ ∞. This ends the proof of Theorem 4.

4 Convergence

The purpose of this section is to prove Theorem 3 and to conclude the proof of
Theorem 1. For this sake, it remains to show that solution of

Lεw̃ = −q̃ε +Q1(ũ
ε
app, w̃)−

1

ϕz

Q2(ũ
ε
app, w̃)z, (33)

w̃(z, 0) = 0 (34)

vanishes as ε → 0. In the previous section, we obtain estimate (29) on the Green’s
function of operator Lε. We recall that Q1 and Q2 are at least quadratic in w̃ and
q̃ε verifies inequalities (6), (7), (8), and (9).

As in [3], [4] and [9], we use standard arguments for parabolic equations. First,
we remark that local existence of a smooth solution w̃ for (33)-(34) is classical. Then
we define

T ε = sup{T1 ∈ [0;T ∗], ∃w̃ solution on R× [0;T1), E(T1) ≤ 1},

where

E(T1) =

∫ T1

0

∫ L

0

( |w̃|
ε3γ−α

+
|w̃z|

ε3γ−α−1/2
+

|w̃t|
ε3γ−2α−1/2

+
|w̃zz|

ε3γ−2α−1
+

|w̃tz|
ε3γ−2α−1

+
|w̃tzz|

ε3γ−3α−3/2
+

|w̃zzz|
ε3γ−2α−2

)

dz dt

with α > 0 and γ ∈ (2/3, 1), chosen later.

Before estimating the L1−norms, we define the notation:

‖w̃‖1 = ‖w̃‖L1((0;T ε)×[0,L)), ‖w̃‖∞ = ‖w̃‖L∞((0;T ε)×[0,L))
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First, we use Fourier coefficients cn to estimate ‖w̃‖L∞ . Indeed,

w̃(z, t) =

∫ t

0

w̃t(z, s) ds =

∫ t

0

∑

n∈Z

cn(w̃t(s))e
ınz ds

=

∫ t

0

c0(w̃t(s)) ds+

∫ t

0

∑

n∈Z\{0}

cn(w̃tzz(s))

n2
eınz ds

‖w̃‖∞ ≤ C(‖w̃t‖1 + ‖w̃zzt‖1) ≤ Cε3γ−3α−3/2

when ε ≤ 1. Hence, ‖w̃‖∞ tends to 0 as ε goes to 0 if γ and α are such that
γ − α > 1/2.

We deduce that to prove that the time existence is T ∗ and that we have the
convergence, it remains to prove that T ε = T ∗ for ε small enough. In the sequel, we
suppose that T ε < T ∗ so E(T ε) = 1.

Then, we can use the estimate on ‖w̃‖∞ to bound w̃ and its derivatives. First,
using (33)-(34), we have

w̃(t, z) =

∫ t

0

∫

R

Gε(t, τ, z, y)

(

−q̃ε +Q1(ũ
ε
app, w̃)−

1

ϕz
Q2(ũ

ε
app, w̃)z

)

(τ, y) dy dτ.

Also, we have for periodic function ψ the estimate
∫

R

(
∫ L

0

Gε(t, τ, z, y)dz

)

ψ(y) dy = O
(
∫ L

0

(
∫ L

0

Gε(t, τ, z, y)dz

)

ψ(y) dy

)

.

Therefore, we deduce

‖w̃‖1 ≤ Cε3γ + C‖w̃‖∞‖w̃‖1 + C‖w̃‖∞(‖w̃‖1 + ‖w̃z‖1)

so
‖w̃‖1
ε3γ−α

≤ C(εα + ε3γ−3α−3/2(1 + ε−1/2)).

This can be made smaller than 1 as ε→ 0 if α and γ are such that 3γ− 3α− 2 > 0.
We now take the z derivative w̃ and obtain an expression of w̃z:

w̃z(t, z) =

∫ t

0

∫

R

Gε
z(t, τ, z, y)

(

−q̃ε +Q1(ũ
ε
app, w̃)−

1

ϕz
Q2(ũ

ε
app, w̃)z

)

(τ, y) dy dτ

and the estimate:

‖w̃z‖1
ε3γ−α−1/2

≤ C(εα + ε3γ−3α−3/2(1 + ε−1/2)).

Differentiating equation (33) with respect to t or z, we obtain equations verified
by wt and wz:

Lεw̃t =
(

−q̃ε +Q1(ũ
ε
app, w̃)−Q2(ũ

ε
app, w̃)z

)

t
+ l1(w̃, w̃z, εw̃zz),
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Lεw̃z =
(

−q̃ε +Q1(ũ
ε
app, w̃)−Q2(ũ

ε
app, w̃)z

)

z
+ l2(w̃, w̃z, εw̃zz)

where l1 and l2 are continuous linear forms, uniformly bounded with respect to ε.
Thus, using again the Green’s function, we get the inequalities:

‖w̃t‖1
ε3γ−2α−1/2

≤ C(ε2α+1/2 + ε3γ−3α−3/2(εα+1/2 + 1 + εα + ε−1/2) + εα+1/2 + εα + ε1/2),

‖w̃tz‖1
ε3γ−2α−1

≤ C(ε2α+1/2 + ε3γ−3α−3/2(εα+1/2 + ε−1/2) + εα + ε1/2),

‖w̃zz‖1
ε3γ−2α−1

≤ C(ε2α+1/2−γ + ε3γ−3α−3/2(εα+1/2 + ε−1/2) + εα + ε1/2).

In the last inequality, the right-hand side can be made smaller than 1 as ε→ 0 if α
and γ are such that 2α+ 1/2− γ > 0.

Differentiating again equation (33) with respect to t, z or z, z, we obtain the
equalities:

Lεw̃tz =
(

−q̃ε +Q1(ũ
ε
app, w̃)−Q2(ũ

ε
app, w̃)z

)

tz
+ l3(w̃, w̃z, w̃t, w̃zz, w̃zt, εw̃zzz, εw̃zzt),

Lεw̃tz =
(

−q̃ε +Q1(ũ
ε
app, w̃)−Q2(ũ

ε
app, w̃)z

)

zz
+ l4(w̃, w̃z, w̃zz, εw̃zzz)

where l3 and l4 are continuous linear forms, uniformly bounded with respect to ε.
As seen before, we deduce the inequalities:

‖w̃tzz‖1
ε3γ−3α−3/2

≤ C(ε3α+1−γ + ε3γ−3α−3/2(ε2α+1 + ε−1/2) + ε2α+1 + εα + ε1/2),

‖w̃zzz‖1
ε3γ−2α−2

≤ C(ε2α+3/2−2γ + ε3γ−3α−3/2(εα+3/2 + ε−1/2) + εα+3/2 + ε1/2).

The both bounds can be made smaller than 1 as ε → 0 if α and γ are such that
3α+ 1− γ > 0 and 2α + 3/2− 2γ > 0.

We can now verify that there exist γ and α checking all the previous conditions:
they define a non-empty trapeze in the plane α, γ. Hence, we have proved that for
ε small enough, we have E(T ε) ≤ εβ with β > 0. Consequently, we can not have
T ε < T ∗ for such an ε. Moreover, using the change of variable ϕ, we return to
w = uε − uεapp. Thus, we have

‖w‖∞ ≤ Cε3γ−3α−3/2,

and
‖uε − uεapp‖∞ ≤ Cε3γ−3α−3/2.

Inequality E(T ∗) ≤ 1 also gives

‖w‖L∞(L1) ≤ ‖wt‖1 ≤ C‖w̃t‖1 ≤ Cε3γ−α1/2

28



so

‖uε − uεapp‖L∞(L1) ≤ Cε3γ−2α−1/2.

This concludes the proof of Theorem 3.

It only remains to prove Theorem 1. Since ‖uεapp − u‖L∞(L1) → 0, we have the
convergence in L∞((0;T ∗), L1(0;L)). Moreover, the fast convergences of the viscous
shock profiles V j give the last point of the theorem.

5 Conclusion and perspectives

In this article, we have proved the persistence of solutions of the inviscid equation (2)
close to roll-waves by adding full viscosity. One of the main assumptions that we
have taken is the periodicity of the solution of (2). This one is not necessary in
the construction of the approximate solution uεapp, but it gives that u1 and u2 stay
bounded (because periodic). An idea to weaken this assumption would be that
solution u of (2) approximates the roll-wave as |x| goes to infinity (in particular, the
shock curves would be closer as |x| goes to infinity). Moreover, the periodicity of u
allows us to use the method of [4] to construct the Green’s function of Lε. Indeed,
in this step, the number of Green’s functions that we consider is proportional to
the number of shocks. In the periodic case, taking into account the repetitions, it
returns to a finite number of periodic Green’s kernels. Thus, we can write a matrix
of errors, and deduce Theorem 4 on the existence of the Green’s function relative to
Lε and estimates on this Green’s function. Another way to hope to obtain a finite
number of Green’s functions could be to assume that u coincides with the roll-wave
outside a bounded domain.

Furthermore, Theorem 1 proved here is valid in the case of an artificial viscosity.
Therefore, one should also study the persistence in the case of real viscosity as
presented to the system of Saint Venant (3).

Finally, one can also be interested in what happens in the multidimensional case.
For this, we could build on work already done in the case of a single multidimensional
shock, based on the study of Evans’ functions at each shock [5].
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