
HAL Id: hal-00474559
https://hal.science/hal-00474559v1

Preprint submitted on 20 Apr 2010 (v1), last revised 11 Jun 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Factor Universality in Symbolic Spaces
Laurent Boyer, Guillaume Theyssier

To cite this version:
Laurent Boyer, Guillaume Theyssier. On Factor Universality in Symbolic Spaces. 2010. �hal-
00474559v1�

https://hal.science/hal-00474559v1
https://hal.archives-ouvertes.fr

On Factor Universality in Symbolic Spaces

Laurent Boyer⋆1 and Guillaume Theyssier⋆⋆,⋆ ⋆ ⋆1

LAMA, (UMR 5127 — CNRS, Université de Savoie), Campus Scientifique,
73376 Le Bourget-du-lac cedex FRANCE

Abstract. The study of factoring relations between subshifts or cellular
automata is central in symbolic dynamics. Besides, a notion of intrinsic
universality for cellular automata based on an operation of rescaling is
receiving more and more attention in the literature. In this paper, we
propose to study the factoring relation up to rescalings, and ask for the
existence of universal objects for that simulation relation.
In classical simulations of a system S by a system T , the simulation takes
place on a specific subset of configurations of T depending on S (this is
the case for intrinsic universality). Our setting, however, asks for every
configurations of T to have a meaningful interpretation in S. Despite
this strong requirement, we show that there exists a cellular automaton
able to simulate any other in a large class containing arbitrarily complex
ones. We also consider the case of subshifts and, using arguments from
recursion theory, we give negative results about the existence of universal
objects in some classes.

1 Introduction and definitions

Tilings and cellular automata are two paradigmatic models often considered
in the fields of complex systems and natural computing. They are comple-
mentary —one is static and non-deterministic and the other is dynamic and
deterministic— but they are both formally simple and both related to symbolic
spaces. Moreover, many links are now established between the two models (see
for instance [10,9]) so it is natural to consider them together.

Both are known to be Turing-powerful since their introduction in the mid-
20th century [23,17]. However, analyzing their ability to process information
only through translations into the Turing world is very restrictive. Such models of
natural computing deserve a natural and intrinsic notion of reduction to compare
their objects one to each other. Following this line of thought, several notions
of simulations were proposed recently which are intrinsic to each model, and
lead to corresponding intrinsic notions of universality [18,22,14,5]: a system is
universal if it is able to simulate any other from the same class.

Intrinsic universality for cellular automata is probably the most studied of
such notions [19,20,15,2,6]. The underlying relation of simulation uses uniform

⋆

laurent.boyer@univ-savoie.fr
⋆⋆

guillaume.theyssier@univ-savoie.fr
⋆ ⋆ ⋆ Partially supported by French ANR ’projet blanc’ EMC (NT09 555297)

encodings working at the level of blocks of cells. More precisely, S simulates T if
S, when restricted to a suitable subset of ’correct’ configurations, is isomorphic
to T via such an encoding. Our approach is different and uses redundancy of
information instead of restriction to a subset of configurations. In our setting,
S simulates T if there is a uniform way of projecting the whole phase space of
S onto the phase space of T (a precise definition is given below). The question
addressed by this paper is the existence of universal objects with respect to that
simulation relation, we call them factor universal objects.

The first contribution of this paper is the formalism based on the well-known
mathematical notion of action: it allows to encompass both subshifts and cel-
lular automata, it gives a new look at the notion of cell grouping which is the
root of the simulation relation used in intrinsic universality, and it establishes
connections with the work of Hochman [8] where the use of sub-actions is crucial.
Our main result is that, although factor-universal objects do not generally exist
(theorem 1), it can still be constructed for some large class like the set of cellular
automata having a persistent state (theorem 2).

Basic definitions. Given a finite set Q and an integer d ≥ 1, the symbolic space

of dimension d over alphabet Q is the set QZ
d

. It can be seen as an infinite set
of cells arranged as a lattice Z

d and each carrying a value from Q. An element

of QZ
d

is called a configuration. QZ
d

is naturally equipped with the compact
Cantor topology [13] which is the product topology of the discrete topology on
Q (it can also be defined via a metric).

Another key notion in the context of symbolic spaces is that of finite patterns
that may occur in infinite configurations. For our purpose, rectangular patterns
will be enough. Given z = (z1, · · · , zd) ∈ Z

d with zi > 0 for all i, the hyperrect-
angle Rz is the set of vectors z

′ = (z′1, · · · , z
′
d) ∈ Z

d such that 0 ≤ z′i < zi for
all i. A Q-pattern of shape Rz is a coloring of Rz by Q, that is an element of

QRz . Given a configuration c ∈ QZ
d

, the pattern of shape Rzs
extracted from c

at position zp ∈ Z
d, denoted by Pzs

zp
(c), is simply the coloring:

z ∈ Rzs
7→ c(zp + z).

The objects we study (subshifts and cellular automata) share the property of
being uniform, i.e. invariant by translations. Formally, given z ∈ Z

d the trans-

lation of vector z, denoted σz , is the function mapping a configuration c ∈ QZ
d

to the configuration σz(c) such that ∀z′ ∈ Z
d, σz(c)(z

′) = c(z′ + z).

A subshift is a subset of QZ
d

which is both translation invariant and closed
for the Cantor topology. Equivalently, a subshift is a set ΣL of configurations
avoiding any occurrence of any finite pattern from a given language of patterns
L:

ΣL =
{

c ∈ QZ
d

: ∀z, z′ ∈ Z
d, Pz

z′ (c) 6∈ L
}

.

A subshift of finite type is a subshift of the form ΣL where L is finite. There
are strong connections between subshifts of finite type in dimension 2 and sets
of tilings generated by a set of wang tiles. In particular, due to Berger’s theorem
[1], it is undecidable, given a finite L, to determine whether ΣL is empty or not.

A cellular automaton is a local and uniform map on a symbolic space. For-
mally, it is given as a 4-tuple by its dimension d, its alphabet Q, its neighborhood
V ⊆ Z

d (finite) and its local transition map f : QV → Q. To that formal object

we associate a global map F acting on QZ
d

as follows:

∀c ∈ Z
d, ∀z ∈ Z

d, F (c)(z) = f
(

z′ ∈ V 7→ c(z + z′)
)

.

The fundamental theorem of Curtis-Lyndon-Hedlund [7] states that global maps
of cellular automata are exactly continuous maps on symbolic spaces which com-
mute with translations.

Actions and rescalings. Let (M,+) be a monoid (a set equipped with an
associative law and a neutral element). An M-action on a space X is a function
Ψ : M × X → X such that Ψ(0, x) = x (for all x ∈ X and 0 being the neutral
element of M) and

∀x ∈ X, ∀m,m′ ∈ M, Ψ(m+m′, x) = Ψ
(

m,Ψ(m′, x)
)

.

We will use the formalism of action to study both subshifts and cellular au-
tomata:

– if Σ ⊆ QZ
d

is a subshift, we canonically associate to it the Z
d-action ΨΣ on

Σ defined by ΨΣ(z, x) = σz(x);

– if F is a cellular automaton on the space QZ
d

, we canonically associate to it

the N× Z
d-action ΨF on QZ

d

defined by ΨF

(

(t, z), x
)

= σz ◦ F t(x).

IfM′ is a sub-monoid ofM, Ψ induces aM′-action by restriction to the domain
M

′×X . M and M
′ can be isomorphic or not and both cases might be interesting.

For instance, studying a cellular automaton F as a classical dynamical system
consists in forgetting the spacial component of ΨF and focusing on the pure
temporal action of F . This point of view was often adopted in the literature (e.g.,
topological dynamics of cellular automata [13]) but, interestingly enough, recent
work of Sablik [21] tends to re-incorporate the spacial component of actions to
better study the dynamics of cellular automata.

In this paper, we will only consider the case where M and M
′ are isomorphic.

More precisely, in our context, M will be of the form Z
d or N × Z

d and we
will consider sub-monoids of the form M

′ = t0N× z1Z× · · · × zdZ, with t0 > 0
and zi > 0 for all i. In this case, passing from the M-action to the M

′-action
can be seen as a neutral change of point of view on the system that we call
rescaling in the sequel. The intuition is that we change the discrete units of
time and space, passing from 1 to t0 in time and 1 to zi in direction i. Given
a subshift or a cellular automaton, a scaled action is simply the restriction of
their canonical action to some sub-monoid of the form M

′. It is worth noticing
that a scaled action associated to a subshift (resp. a cellular automaton) on
the alphabet Q is always isomorphic to the canonical action of a subshift (resp.
a cellular automaton) on an alphabet of the form Qk. More concretely, this

isomorphism comes from the natural one-to-one map from QZ
d

to
(

QRzs

)Z
d

,

where zs = (z1, . . . , zd), which maps a configuration c to: z 7→ Pzs

z×zs
(c), where

the operation × on Z
d denotes coordinate-wise multiplication. Our notion of

rescaling for cellular automata is similar to the one in [18,22] which is the basic
ingredient to define intrinsic universality.

Factors. One of the central notion in symbolic dynamics is that of factor.
Intuitively, a factor is a uniform continuous projection. This notion has also
been used with success in the study of expansive cellular automata [16] and more
generally as a classification tools for cellular automata [12,3]. As we study both
multi-dimensional subshifts and cellular automata, we give a unified definition
using the formalism of actions.

Definition 1 Let M and M
′ be isomorphic monoids via i : M → M

′. We say a
M

′-action φ′ on X ′ is a factor of a M-action φ on X if there is a continuous onto
map π : X → X ′ such that: ∀x ∈ X, ∀m ∈ M, π

(

φ(m,x)
)

= φ′
(

i(m), π(x)
)

.

Two key points are that: (1) any orbit in (φ,X) projects onto some orbit of
(φ′, X ′) via π, and (2) any orbit of φ′ can be realized as such a projection.
In a word, the simulation of (φ′, X ′) by (φ,X) is everywhere meaningful and
complete.

2 Factor Universality

At this point, we could compare subshifts or cellular automata through the fac-
toring relation between their canonical actions, saying that system S factors
onto system T if the canonical action of S factors onto that of T . However, this
gives an excessive importance to the alphabet and forbid the existence of uni-
versal objects due to entropy considerations (factoring cannot increase entropy).
In [8], this limitation is bypassed via dimension changes: a d-dimensional system
is compared to k-dimensional systems (k < d) via its k-dimensional sub-actions.
Our point of view is different. We always work at constant dimension, but we use
another kind of sub-actions: scaled actions defined above. For a fixed dimension
monoids of scaled actions are all isomorphic and we will consider only canonical
component-wise isomorphisms between them. We can now formulate the central
definition of the paper.

Definition 2 Let S and T be two d-dimensional subshifts (resp. CA). We say
that T is simulated by S, denoted T 4 S, if some scaled action of S factors onto
some scaled action of T .

As usual when working on symbolic spaces, continuity and uniformity implies
locality (Curtis-Lyndon-Hedlund theorem [7]). In our context of rescalings, the
locality is no longer expressed at the level of cells, but at the level of groups of

cells. More precisely, we say that a map φ : QZ
d

1 → QZ
d

2 is local if there exist:
r ∈ N (locality radius), two shapes Rz1 and Rz2 (source and destination scales),

and a local function f : Q
R(2r+1)z1
1 → Q

Rz2
2 such that

∀c ∈ QZ
d

1 , ∀z ∈ Z
d, Pz2

z×z2
(φ(c)) = f

(

P
(2r+1)z1

z×z1−rz2
(c)

)

.

To fix ideas, if d = z1 = z2 = 1 and Q1 = Q2, f is just the local map of a
cellular automaton of radius r and φ is its corresponding global map.

Proposition 1 Fix a dimension d. Let Σ1 and Σ2 be two d-dimensional sub-
shifts and let F1 and F2 be two d-dimensional CA of alphabet Q1 and Q2 respec-
tively. Then we have:

– Σ2 4 Σ1 if and only if there is a local map φ such that φ(Σ1) = Σ2;

– F2 4 F1 if and only if there is an onto local map φ from QZ
d

1 to QZ
d

2 and
integers t1, t2 ∈ N such that φ ◦ F t1

1 = F t2
2 ◦ φ.

Besides the work of Hochman [8], notions of simulations similar to 4 have
already been considered for tilings [14] or for cellular automata [22,4]. Each time,
one of the main concern is the existence of universal objects: this is precisely the
central point of the present paper.

Definition 3 Let C be a class of subshifts (resp. cellular automata). A subshift
(resp. cellular automaton) U is C-universal if U ∈ C and X 4 U for any X ∈ C.

Whatever the fixed dimension, there is no universal subshift for cardinality
reasons: there are uncountably many subshifts but for a given subshift U there
are at most countably many different subshifts 4-simulated by U (by proposi-
tion 1). The following theorem uses recursion theoretic arguments to yield other
negative results concerning universality (similar arguments where used in [18,8]
in different settings).

Theorem 1 Fix a dimension d ≥ 2. Then there is no universal subshift of finite
type of dimension d and there is no universal surjective CA of dimension d.

3 A Large Class with a Universal Object

In this section, we restrict to dimension 1 to make a clear exposition of the main
result (theorem 2). There is no doubt that with some additional technical effort
our construction can be extended to higher dimensions.

Definition 4 A CA A is said to be persistent if there is a state q0 ∈ QA such
that for any configuration c ∈ QA

Z if c(i) = q0 then A(c) (i) = q0.
We denote by P the set of all persistent CA.

Note that for any CA, you may add an extra persistent state and obtain a
CA in P containing the dynamics of the first one.

Theorem 2 There exists a P-universal cellular automaton.

Since any CA of P is easily 4-simulated by a CA of P with radius 1, it is
enough to construct a CA able to 4-simulate any persistent CA with radius 1.
In the following, we describe a P-universal CA. More precisely, for any A ∈ P

with radius 1, we exhibit an onto local map φA from QU
Z to QA

Z and an integer
τA such that UτA ◦ φA = φA ◦ A. To do so, for each A, we introduce an integer
lA and a dichotomy on words of QU

lA .

– on the one side we have what we call A-correct macrocells (or A-macrocells).
They encode informations about a current state x ∈ QA, about the local rule
of A, and a machinery used to compute the new state according to this rule.
In almost any case, they will be interpreted through φA as x.

– on the other side we have all the other patterns, we call them A-incorrect
and they will be interpreted as the persistent state of A.

The local rule of U will make every A-macrocell determine if it is surrounded
by other A-macrocells. If this is the case, then interaction is possible, following
the rule of A. Else, the A-macrocell evolves considering incorrect neighbors as
persistent state macrocells. The difficulty is that although correctness is related
to the particular CA being simulated, every configuration must evolve correctly
for every possible CA.

To make the construction of U readable, we describe its state set as a superpo-
sition of several layers: the main layerM which contains most of the information
about the simulation, signals layers are used to manage the evolution of the main
layer, and clock layers guaranty synchronizations. The proof of universality uses
the combination of two key properties: on one hand, correct patterns remain cor-
rect and evolves according to the rule being simulated, even if not surrounded by
correct patterns (lemma 4); on the other hand, incorrect patterns are interpreted
as the persistent state and never become correct (lemma 5).

Correct patterns description In the following we consider a simulated CA A
with radius 1 and state set QA of size n. We use a canonical binary enumeration
of the state set, in which the first word (0⌈log(n)⌉) represents a persistent state
of A, denoted pA. Our macrocells will have length lA and follow the pattern

Ci |Transition table| |State| |memory|

– # are delimiters they never appear or disappear during the computation
– Ci is the control state used to control the successive steps of computation.
– |Transition table| is the binary description of the transition table of A.
– |State| contains two information: the binary value of the current state of

the macrocell and the binary value of the maximal state of QA. Those in-
formations are superposed. And if the current state value is bigger than the
maximal state value, the current state is the maximal state.

– |memory| is a binary area which will be used to keep the values of the neigh-
bors’ current states before computing the new current state of the macrocell.

|Transition table|, |State| and |memory| are encoded with disjoint binary
alphabets. A cell whose state belong to one of those alphabet will never change
alphabet. Moreover, the states of the transition table’s cells and the value of the
maximal state value are never modified.

The current state description needs ⌈log(n)⌉ bits. In the transition table, im-
ages are ordered canonically, so the length of the description is simply n3⌈log(n)⌉.
The memory should be at least 2⌈log(n)⌉ long in order to contain the two neigh-
bors current state values. But in order to simplify some proofs, we ask the

function A → lA to be one-to-one, and we increase the size of the memory to
half the total size of the macrocell.

Most of the computation will happen on those very constrained patterns. In
the next definition, we add an extra constraint on the control state to obtain
A-correct macrocells. Moreover, the sub-alphabets of this layer are stable, and
the transition table or maximal state values never change. However the current
state value may be modified by erratic signals, this is why the computation
begins with a signal (namely s1 in the next section) erasing all other signals.
Modifications on the main layer may occur before s1 reaches the end of the
macrocell, that is to say before lA steps. The following definition take this into
account to determine a notion of reliable state value.

Definition 5 A word u ∈ QU
lA of length lA is said to be a A-correct macrocell,

denoted by u ∈ CA, if its main layer follows the structure defined above (correct
sub-alphabets for each cell, and correct transition table of A), and if its control
state is in C0.

For each such A-correct macrocell u, we define its associated state value
v(u) ∈ QA, which is the state described by its current state value after the lA
steps.

Note that since the size of the memory is bigger than the distance from
the control state to the end of the current state, s1 will destroy any signal
coming from the outside of u before it modifies the current state value: the value
v(u) only depends on u. By extension we may sometime call A-macrocells words
following the general pattern, even with non-C0 control state, in particular when
they are images of a A-correct macrocell.

The local rule Starting on an initial correct A-macrocell, the local rule will
first determine which neighbors it may interact with (Checking of the neighbor’s
length and synchronization, and Transition table and state encoding check), and
then compute its new current state according to the rule of A and eventually
the value of those neighbors (New current state computation).

In order to guaranty the synchronization of each A-macrocell, we specify the
duration of each step, and even of some sub-steps. It is done by a clock, which
use specific layers of states, and the existence of which is proved by the following
lemma:

Lemma 1 For any k, h ∈ N \ {1}, there exists a CA, and two states qs, and qf
such that the leftmost cell of an area delimited by two # separated by l− 2 cells
turns to state qf at some time t > k.l2 + h.l iff this cell was in state qs exactly
k.l2 + h.l steps before. Moreover, this property is guarantied independently of
what is outside the two #.

At the beginning of each step, the control state will change, initiate the
corresponding clock, and initiate some signals which will manage the evolution.
Those signals are distinct states propagating on upper layers of the configuration,
and interacting with the main layer and eventually other signals.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

C0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1 C1

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s6

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s5

s5

s5

s5

s5

s5

s5

s5

s5

s5

s5

s5

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
4

s
′
r

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

C0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C0

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C1

C2 C2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s2

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s
′′
1

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3

s3sr

sr

sr

sr

sr

sr

sr

sr

sr

sr

sr

#

#

Fig. 1. Left and right neighbor tests (mix of main and signal layers for easier
reading)

We say that a signal belongs to a macrocell if it was generated in this macro-
cell’s area, between the two #. And, thanks to our evolution rule, a signal always
knows if it is in its cell or in the area to the right or left of its cell. It is also
useful sometimes to make signals carry one extra bit of information. As always,
it is simple to do it, using distinct states, since the number of bits is bounded.

Checking of the neighbor’s length and synchronization. C0 → C1 (that
is to say that when the control cell’s state is C0 it becomes C1):

Recall that are interested to the behavior in the case of an A-correct macro-
cell. When C0 becomes C1, it initializes two bits with value 0, in the main layer
of the control cell, and it launches signals. Since the construction is classical, we
illustrate the desired behavior by figure 1. Those two pictures illustrate the sig-
nal machinery in the case of respectively left and right neighbors of same length
and with state C0 appearing simultaneously (what we call synchronized). Every
transition whose image is one of the signal involved in this checking appears
on those pictures. We also recall that the first signals s1 and s4 are erasing all
signals belonging to our macrocell.

Note that if the neighbors have same length and are synchronized, this whole
step takes 4 times the length of the macrocell, lA. After 4.lA steps, the control
state C1 becomes C2, and if it did not receive a positive result from one side, it
concludes that the involved neighbor is incorrect. This is managed using a clock

signal (with h = 2 and k = 0 in lemma 1) initialized by C0 on a specific layer.
When qf is raised on this layer, C1 becomes C2. The important point is that we
ensure the following property.

Lemma 2 The control state of a A-correct macrocell becomes C2 exactly 4.lA
steps after C0 appeared. At this step each bit of the control state has turned to 1
iff the corresponding neighboring macrocell has same length and had its C0 state
generated at the same step than the considered macrocell.

The proof of this lemma is direct for the length but asks to enter into some more
(simple but fastidious) details for the synchronization part.

Transition table and state encoding check. C2 → C3 :
In this step, for each neighboring pattern with same length and synchroniza-

tion, the macrocell checks whether the transition table and the maximal state
are identical to its own (same length end content) or not. From now on, we
mainly give the ideas and avoid the technical details of the signals.

When C2 appears it launches the following test for each neighbor whose
corresponding bit was 1, and initializes two fresh bits to 0. First, a signal is
generated and puts a mark (that is to say a non-moving signal) on the first cell
of the transition table of its macrocell, and another mark on the first cell of the
transition table of the neighbor it checks. Then signals are exchanged between
those two marks that will each time carry the binary state of the cell pointed by
one mark to the next unchecked cell of the other macrocell and push the mark
by two cells. If both marks reach the end of the transition tables simultaneously,
a correctness signal is sent to the control state.

After the transition table has been checked, the same mechanism is used
to check that the current state encoding areas have same length and maximal
state. At the end of those tests, the results are sent to the control cell which
again keeps the information on two bits of the main layer. For each cell of the
transition table or the current state, checking takes 2.lA steps. So checking a
whole neighbor takes less than 2.l2A. Again, a clock is used to make this test last
exactly 2.l2A steps. Then the control cell is turned to C4.

Lemma 3 The control state of our macrocell becomes C4 exactly 2.l2A steps
after C0 appeared. At this step each bit of the control state has turned to 1 iff
the corresponding neighboring pattern has same length, synchronization, and if
the length and content of the transition tables and maximal states are equal. In
this case we say that this pattern is compatible with our A-macrocell.

The proof of this lemma is straightforward. Keep in mind that some signals
erased all erratic signals that could interact with our cell at a previous step.

New current state computation. C4 → C5 :
After all the tests have been done, the new state has to be computed. We

need to explicit how we consider the neighboring pattern. In the following, what
we call detected state of one such pattern by our macrocell will be: either the

persistent state if the neighbor is non-compatible with our A-macrocell, or the
maximal state if this is a compatible macrocell but with a current state greater
than the maximal state, or the actual state in the remaining case.

At first, the detected states of the left and right neighbors are written to the
memory. It is written in the binary memory alphabet. Each detected state is
written on ⌈log(n)⌉ cells. If one neighbor is compatible, we copy the minimum of
its current and maximal state layers to the memory (which is done on the go),
using marks and signals similarly to the previous step. If it is not compatible,
we write 0⌈log(n)⌉, the length being the same as the current state area. We add
a clock to specify that copies last exactly 2.l2A steps, the neighbor being correct
or not.

After 2.l2A additional steps, the search for the image transition in the tran-
sition table starts. It consists in reading the binary word formed by the three
image states (the current state of the cell followed by the two detected states
copied in the memory), and turning it into a unary position in the transition
table. We need again to consider the minimum of the current and maximal state
layers instead of considering directly the current state. It is then possible to place
a mark at this position, and finally copy this pointed state in the current state
area. We make the reading of the position last 4.l2A steps. And copying the new
state lasts 2.l2A. After the whole computation step, which lasts 7.l2A, the control
state turns to C5.

Finally one step of simulation is completed after exactly τA = 9.l2A + 4.lA
steps. After this time the control state turns to C5.

To become C0 again, and launch a new step of computation, we add another
condition. We ask a clock launched exactly τA steps before to raise a flag. And
obviously this clock may only be launched by C0. It is realized using again signals
of the lemma 1 computing on one more layer.

The state set of the universal CA is given by QU =M × S ×C ∪ {Cf} with

– M the main layer :M = {C0, C5}∪{Ci}i∈{1,..,4}×{0, 1}2∪{0i, 1i}i∈{tt,cs,m}

– S the signals layers :
S = ×i∈I{si} × ×j∈J ({sj} × {0, 1})

– C the clocks layers (defined following lemma 1), one for each duration needed.
C = ({0, 1} × {si}i∈Ic)

4

– Cf is a single persistent state ensuring that U ∈ P

Yet, the transition rule of U is partially specified, we call correct transitions
those defined up to now, in the case of correct macrocells. But the other transi-
tions may not be chosen arbitrarily. We specify the following behaviors:

– Cf is never modified by any transition
– the main layer is never modified by a non-correct transition they act as the

identity on the main layer.
– concerning the signal layer, apart from the collisions corresponding to the

behavior described in the previous steps, all signals may cross each other
(each kind of signal is evolving on its own layer). However, except for tran-
sitions involved in the behavior described above, any signal that crosses a #
is destroyed.

Interpretation We now describe the continuous onto map φA : QU
Z → QA

Z

associated to A. This map is induced by a local map ψA from patterns of shape
lA to individual states of A. More precisely, using notation from proposition 1,
we have r = 0, z1 = lA, z2 = 1, t2 = 1 and t1 = τA.

If pA is the persistent state of A, the local map ψA is defined as follows:

1. ∀u 6∈ CA, ψA(u) = pA
2. ∀u ∈ CA, ψA(u) = v(u), with v(u) the value from definition 5

Proof of theorem 2 The proof of the theorem relies on the two following
lemmas. The first is a consequence of the construction and the intermediate
lemmas.

Lemma 4 ∀c ∈ QU
Z, ∀t0 ∈ N, if U t0(c)[0,lA−1] ∈ CA , then v = U t0+τA(c)[0,lA−1] ∈ CA,

and ψA(v) = δA(ψA(c[−lA,−1]), ψA(c[0,lA−1]), ψA(c[lA,2.lA−1])) .

Lemma 5 If ∃ t ≥ τA, c ∈ QU
Z and x ∈ Z such that u = U t(c)[x,x+lA−1] ∈ CA

then v = U t−τA(c)[x,x+lA−1] ∈ CA.

We can finally prove our main claim: ∀A ∈ P, A 4 U . We use the character-
ization of proposition 1. Let A ∈ P with radius 1. The associated length lA and
function φA are defined as explained before. First, φA is local (by definition)
and onto because correct macrocells are enough to encode any state of A and
thus concatenations of correct macrocells allows to encode any configuration of
A. Second, we have φA ◦ UτA = A ◦ φA. To see this we discuss on the pattern
of shape RlA at position 0 and the rest follows by translation. If this pattern is
not in CA its image after τA steps remains out of CA (lemma 5). If conversely
this central word belongs to CA, lemma 4 gives the desired property.

4 Perspectives

A natural extension of our work could be to generalize the construction to cellular
automata having an equicontinuous point. The idea would be to use blocking
words as a replacement for the persistent state. But it seems much harder, if not
impossible.

Besides, the main open question leaved by this paper is the existence of
universal CA. We conjecture that they don’t exist and more precisely that no
CA can simulate all products of shifts. A possible way to obtain this negative
result would be to study limit sets: by a compacity argument, one can show
that a universal CA must have a universal limit set. The main obstacle is that
subshifts that are limit sets of CA are not well characterized.

Finally, we also leave open the existence of universal SFT and universal
surjective CA in dimension 1.

References

1. R. Berger. The undecidability of the domino problem. Mem. Amer. Math Soc.,
66, 1966.

2. Laurent Boyer and Guillaume Theyssier. On local symmetries and universality in
cellular automata. In STACS, pages 195–206, 2009.

3. Julien Cervelle, Enrico Formenti, and Pierre Guillon. Ultimate traces of cellular
automata. In STACS, pages 155–166, 2010.

4. Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier.
Bulking ii: Classifications of cellular automata. CoRR, abs/1001.5471, 2010.

5. David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, and Damien
Woods. Intrinsic universality in self-assembly. In STACS, pages 275–286, 2010.

6. Jérôme Olivier Durand-Lose. Intrinsic universality of a 1-dimensional reversible
cellular automaton. In STACS, pages 439–450, 1997.

7. G. A. Hedlund. Endomorphisms and Automorphisms of the Shift Dynamical Sys-
tems. Mathematical Systems Theory, 3(4):320–375, 1969.

8. Michael Hochman. A note on universality in multidimensional symbolic dynamics.
Discrete Contin. Dyn. Syst. Ser. S, 2(2):301–314, 2009.

9. Michael Hochman. On the dynamics and recursive properties of multidimensional
symbolic systems. Inventiones Mathematicae, 176(1):131–167, 2009.

10. J. Kari. The Nilpotency Problem of One-dimensional Cellular Automata. SIAM

Journal on Computing, 21:571–586, 1992.
11. J. Kari. Reversibility and Surjectivity Problems of Cellular Automata. Journal of

Computer and System Sciences, 48(1):149–182, 1994.
12. P. Kůrka. Languages, equicontinuity and attractors in cellular automata. Ergodic

Theory and Dynamical Systems, 17:417–433, 1997.
13. P. Kůrka. Topological and symbolic dynamics. Socit Mathmatique de France, 2003.
14. Grégory Lafitte and Michael Weiss. An almost totally universal tile set. In TAMC,

pages 271–280, 2009.
15. Andrés Moreira. Universality and decidability of number-conserving cellular au-

tomata. Theor. Comput. Sci., 292(3):711–721, 2003.
16. M. Nasu. The dynamics of expansive invertible onesided cellular automata. Trans.

Amer. Math. Soc., 354:4067–4084, 2002.
17. J. Von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, Urbana, Illinois, 1966.
18. N. Ollinger. Automates Cellulaires : structures. PhD thesis, École Normale

Supérieure de Lyon, décembre 2002.
19. N. Ollinger. The quest for small universal cellular automata. In ICALP, pages

318–330. Lecture Notes in Computer Science, 2002.
20. N. Ollinger. The intrinsic universality problem of one-dimensional cellular au-

tomata. In STACS, pages 632–641. Lecture Notes in Computer Science, 2003.
21. Mathieu Sablik. Directional dynamics for cellular automata: A sensitivity to initial

condition approach. Theor. Comput. Sci., 400(1-3):1–18, 2008.
22. G. Theyssier. Automates Cellulaires : un modèle de complexités. PhD thesis, École

Normale Supérieure de Lyon, décembre 2005.
23. H. Wang. Proving theorems by pattern recognition ii. Bell System Tech. Journal,

40(2), 1961.

A Proofs from section 2

Proof (Proposition 1). First, an onto local map from Σ1 to Σ2 with shapes Rz1

and Rz2 induces a factoring relation from the M-scaled action of Σ1 onto the
M

′-scaled action of Σ2 with

M = (z1)1Z× · · · (z1)dZ

and
M

′ = (z2)1Z× · · · (z2)dZ.

Conversely, suppose that the relation Σ1 4 Σ2 is realized by a factor map π
from the M-scaled action of Σ1 onto the M

′-scaled action of Σ2 with

M = (z1)1Z× · · · (z1)dZ

and
M

′ = (z2)1Z× · · · (z2)dZ.

Consider now each pattern p ∈ Q
Rz2
2 . Since the cylinder Cp defined by

Cp = {c ∈ QZ
d

2 : Pz2
0 (c) = p}

is both open and closed, so is π−1(Cp). By compacity, and since cylinders form

a basis of the topology, we get that π−1(Cp) is a finite union of cylinders of QZ
d

1 .
We can suppose without loss of generality that they are all of shape R(2r+1)z1

for some large enough r (finite unions of cylinders of small shape can always be
defined as finite unions of cylinders of larger shapes). Doing this with the same

value of r for all p, we get a (possibly partial) function f from Q
R(2r+1)z1
1 to

Q
Rz2
2 . By eventually completing f and by definition of the factoring π between

M and M
′-scaled actions, f induces a local map from QZ

d

1 to QZ

2 associated with
shapes Rz1 and Rz2 . It is onto because π is onto.

For cellular automata, the reasoning is similar and adding the temporal com-
ponent in actions translates exactly into the desired property of weak commu-
tation between the global maps of cellular automata and the onto map between
configuration spaces. ⊓⊔

Proof (Theorem 1). For the case of surjective CA, it is enough to notice that
surjectivity is preserved by the relation 4. Indeed, if F 4 G we have

φ ◦Gt1 = F t2 ◦ φ

for some onto map φ. Therefore F must be surjective if G is surjective.
Then the proof follows from Kari’s theorem [11] establishing that surjective

CA are not recursively enumerable. Indeed, given a surjective universal CA U ,
we could enumerate thanks to the local presentation of factors (proposition 1)
all CA F such that F 4 U : they are all surjective (surjectivity is preserved by

factor) and all surjective CA are among them (universality).

We consider now the case of subshifts of finite type. Without loss of generality,
any subshift of finite type can be presented as a subshift ΣL where L is a finite
set of patterns having all the same shape Rz for some z. By Berger’s theorem
[1] the set of such L verifying that ΣL is not empty can not be recursively
enumerated. We show below that the existence of a universal subshift of finite
type implies the existence of an algorithm of enumeration of all L of the form
above such that ΣL is empty.

So suppose that there exists some universal subshift of finite type ΣLU
where

LU is a set of QU -patterns of shape RzU
. Obviously, ΣLU

must be non-empty.
For any L and any pattern p of larger shape, we say that p is L-valid if it
contains no occurrence of any pattern from L (occurrence requires that one
shape is completely included into the other).

Let L be a set of Q-patterns of shape Rz and ψ be a local map from QZ
d

U

to QZ
d

associated to shapes Rz1 and Rz2 . Consider the minimal shape Rz+

containing both Rz and R2z2 . Since ψ is local, one can check in finite time the
following property called validity property: any pattern p of shape Rz+

which
has a LU -valid preimage via ψ is L-valid (the size of preimages of finite patterns
depends on the radius r associated to ψ but details don’t matter here). By the
definition of local maps and the hypothesis on shapes, this property implies
that ψ(ΣLU

) ⊆ ΣL and therefore ΣL 6= ∅ (the choice of shape R2z2 ensures
that validity is checked inside blocks of shape Rz2 but also across the boundary
between two such adjacent blocks).

It follows that we can recursively enumerate couples (L,ψ) having the prop-
erty above. More precisely, maps ψ are enumerated via their local presentation
(shapes, radius and local function). This way, we can enumerate a list of finite
languages L such that ΣL is not empty. To conclude the proof it is sufficient to
show that all L such that ΣL 6= ∅ are present in the list. Suppose by contradic-
tion that some L over alphabet Q with ΣL 6= ∅ is such that no local map from

QZ
d

U to QZ
d

verifies the validity property above. By universality of ΣLU
, there

exists a local map ψ sending ΣLU
to ΣL. Let r, Rz1 and Rz2 , and local function

f , be the parameters associated to ψ. For any k ≥ 0 we can define the same
map ψ with another presentation by increasing artificially the radius r to kr
and changing the local function f accordingly (shapes are kept unchanged). We
call it the kth presentation of ψ. Since, by hypothesis on L, no such presentation
has the validity property, we deduce that there must exist some finite pattern p
which is not L-valid and such that, for any k, p has a LU -valid preimage under
the kth presentation of ψ. Therefore, by a simple compacity argument, there
exists c ∈ ΣLU

such that ψ(c) has an occurrence of p. Hence, ψ(c) 6∈ ΣL which
is a contradiction. ⊓⊔

B Proofs from section 3

Proof of lemma 1: We first build a CA that satisfies our lemma for k = 2, h = 0.
Its state set will be made of one binary layer, and a signal layer. The behavior is
simple: when qs appears it generates a signal that will keep oscillating between
the #. When the signal is generated for the first time, it initialize the area,
turning the first binary cell to 1 and the other one to 0s. Then, the signal keep
moving from right to left and back between the #. Each time it goes to the right,
it turns one more binary cell to 1. And when the rightmost cell’s binary layer is
finally turned to 1 a new special signal is sent to the left which will generate the
qf .

If two or more signals crosses, one of them may survive. If one of them is
initializing it will survive.

So, in 2.l steps of computation, the total number of 1s may be non increasing
only in the following cases:

– if there is no signal at all
– if all cell’s binary layer is already 1 and in this case a qf was generated
– if an initialization signal has been sent.

In particular, if a qf appears at some step, then in the previous 4.l steps, a
1 was generated. And in each previous 2.l step, at least a 1 was generated.

Thus, in the previous 2.l2 steps, at least one initialization signal was launched
and a qs has appeared. But by construction, after a qs state appears, the first
qf state appears only exactly 2.l2 steps later.

It concludes the proof of the clock lemma in case k = 2, h = 0. For other
values of k, simply slow down the signal going right to left. For other values of
h, after the end of the quadratic part, launch a signal that will go right with
speed 1 and come back left with speed 1/(h− 1) before raising qf . ⊓⊔

Proof of lemma 5:
By definition of a correct pattern, u is given by:

C0 |Transition table| |State| |memory|

First of all, the # are never created or destroyed. The transition table and
maximal state information are never modified, so they are the same in u and
in v. And the sub-alphabet corresponding to control state, current state and
memory alphabets are stable. The structure of v is the same as this of u. To
prove our lemma it remains to prove that the second letter in v is C0, and that
the current state value is smaller than the maximal value.

But, to make C0 appear, at step t, a signal qf was raised by the global clock,
which implied, using the clock lemma, that the second letter of v is C0.

Thus all tests are launched. ⊓⊔

