François Dominique Bakry 
  
François Bolley 
  
Ivan Gentil 
  
Patrick Maheux 
  
la diffusion de documents scientifiques de niveau

Keywords: Nash inequality, Super-Poincaré inequality, Heat kernel, Ultracontractivity. MSC 2000: 35P05, 47D07, 35P15, 60J60

recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The classical Nash inequality in R n may be stated as

f 1+n/2 2 ≤ C n f 1 ∇f n/2 2 (1)
for all smooth functions f (with compact support for instance) where the norms are computed with respect to the Lebesgue measure. This inequality has been introduced by J. Nash in 1958 (see [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF]) to obtain regularity properties on the solutions to parabolic partial differential equations. The optimal constant C n has been computed more recently in [START_REF] Carlen | Sharp constant in Nash's inequality[END_REF].

In the more general setting of a symmetric Markov semigroup (P t ) t≥0 one has to replace ∇f 2 2 by the Dirichlet form E(f, f ) associated with its generator. Inequality (1) implies smoothing properties of the Markov semigroup in the following way : given a function f , then ϕ(t) = P t f 2 2 has derivative ϕ ′ (t) = -2 E(P t f, P t f ), so, by the Nash inequality (1),

ϕ(t) 1+n/2 ≤ C 2 n P t f 2 1 (-ϕ ′ (t)/2) n/2 ≤ C 2 n f 2 1 (-ϕ ′ (t)/2) n/2 .
Integrating leads to the first bound P t f 2 ≤ C ′ t -n/4 f 1 for t > 0 and then to P t f ∞ ≤ C ′ t -n/4 f 2 by duality and symmetry of the semigroup. This finally implies the classical uniform bound

P t f ∞ ≤ C ′ 2 t -n/2 f 1 (2) 
for t > 0 by semigroup properties. In turn this implies uniform bounds on the kernel density of the semigroup such as

|p t (x, y)| ≤ C ′ 2 t -n/2 (3) 
for all x, y and t > 0.

Depending on whether the reference measure is finite or not, Nash inequalities take the general form

f 1+n/2 2 ≤ f 1 [a E(f, f ) + b f 2 2 ] n/4 , (4) 
where n no longer needs to be an integer. They are one of the many forms of the celebrated Sobolev inequality

f 2n/(n-2) ≤ a E(f, f ) + b f 2 2 ( 5 
)
for n > 2, see [START_REF] Bakry | Sobolev inequalities in disguise[END_REF][START_REF] Saloff-Coste | Sobolev inequalities in familiar and unfamiliar settings[END_REF]. Up to constants, these inequalities are all equivalent to the ultracontractive bound

P t f ∞ ≤ Ct -n/2 f 1 , 0 < t ≤ 1 (6) 
on the Markov semigroup associated to the Dirichlet form E, hence to uniform bounds on the kernel density of the semigroup P t with respect to the reference measure, see [START_REF] Bendikov | Ultracontractivity and embedding into L ∞[END_REF][START_REF] Carlen | Upper bounds for symmetric Markov transition functions[END_REF][START_REF] Coulhon | Ultracontractivity and Nash type inequalities[END_REF][START_REF] Davies | Heat kernels and spectral theory[END_REF][START_REF] Th | Analysis and geometry on groups[END_REF] among many works on this topic. The Nash inequalities (4) do not give the optimal constant C in [START_REF] Bakry | Sobolev inequalities in disguise[END_REF]. The optimal contractive bounds P t f q ≤ C p,q,n (t) f p for the classical heat equation in R n can be obtained by the Euclidean logarithmic Sobolev inequality (see [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF]), but the Nash inequality is the easiest and the most intuitive way to get ultracontractive bounds such as [START_REF] Bakry | Sobolev inequalities in disguise[END_REF].

Inequalities [START_REF] Bakry | Dimension dependent hypercontractivity of gaussian kernels[END_REF] have been studied by F.-Y. Wang in [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF] as part of a more general family of inequalities, called Super-Poincaré inequalities, of the form

f 2 2 ≤ a E(f, f ) + b(a) f 2 1 (7)
for a > a 0 , where b is a nonnegative function. Optimising in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] over the parameter a leads to

f 2 2 f 2 1 ≤ ψ E(f, f ) f 2 1
where ψ(x) = inf for all t > 0, where U(t) = ∞ t 1/φ(x)dx is well defined under adequate assumptions on φ (see [START_REF] Coulhon | Ultracontractivity and Nash type inequalities[END_REF]).

The generalized Nash inequalities [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF] are also a powerful tool to obtain spectral properties of the generator defining the Dirichlet form (see [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF]); in particular they imply that its essential spectrum is empty. When the reference measure has finite mass, they also provide additional properties of the measure in the fields of concentration, asymptotic behavior and isoperimetry, as in [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF]. They belong to the large family of functional inequalities such as the Logarithmic Sobolev and the Poincaré inequalities, and have been studied in many recent works such as [START_REF] Maheux | Nash-type inequalities and decay of semigroups of operators[END_REF][START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF]. This work is devoted to a more general situation in which the semigroup is not ultracontractive, so that one cannot expect uniform bounds on its kernel density, as in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF]. For instance the Ornstein-Uhlenbeck on R n , which is probably the most studied semigroup on R n , beyond the classical heat semigroup, is not ultracontractive; in fact, according to a famous result by E. Nelson, it is only hypercontractive (see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] for example). Observe, according to the celebrated theorem of L. Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], that the corresponding hypercontractive bounds are equivalent to a logarithmic Sobolev inequality for the Gaussian measure (which is weaker than the Sobolev inequality ( 5)). Of course the Ornstein-Uhlenbeck kernel is explicit, so it is useless to get any estimate on it, but, for many other examples, pointwise estimates on the kernels are an interesting and not so easy issue. There is a very large literature on this problem, see [START_REF] Davies | Heat kernels and spectral theory[END_REF] and the references therein.

Non-uniform estimates on the density of the heat kernel may provide useful information on the semigroup. For example, let us consider a symmetric semigroup (P t ) t≥0 which may be represented by a density p t (x, y) with respect to an invariant measure µ, that is, such that

P t f (x) = E f (y)p t (x, y)dµ(y)
for all x and t > 0. Then the operator P t is in the trace class and therefore has a discrete spectrum as soon as p t (x, x) ∈ L 1 (µ) ; moreover estimates on the spectrum can be obtained as detailed below.

In the general situation when the kernel density should not be uniformly bounded, the classical Nash inequality (1) is not adapted, and the main idea of this work is to use the generalized Nash inequality (8), modified with a weight depending on the expected estimate. Depending on the generator of the heat kernel and the reference measure considered in the L p norms, we shall look for a positive function V and an increasing and convex function φ such that

φ f 2 2 f V 2 1 ≤ E(f, f ) f V 2 1 ( 10 
)
for all f . Such an inequality will be called a weighted Nash inequality. We shall look for weight functions V satisfying the subharmonic condition LV ≤ c V where L is the infinitesimal generator of the semigroup ; this assumption is very close (but easier to satisfy) to the condition on Lyapunov functions recently used by the first author, F. Barthe, P. Cattiaux and A. Guillin in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF][START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF] to prove functional inequalities such as the Poincaré and super-Poincaré inequalities. Here is a key difference between our approach and theirs : the Lyapunov functions used in the present work explicitly appear in the functional inequalities themselves, whereas in the works mentioned above they are only a tool to get the sought functional inequalities but they do not explicitly appear in the final estimates : they are used like a catalyst to derive them. We will prove that the weighted Nash inequality [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] and the subharmonic condition on the weight function V imply the non-uniform estimate

p t (x, y) ≤ K(t, φ, c)V (x)V (y)
of the heat kernel, for a positive function K.

Framework and outline of the work

This work is devoted to properties of symmetric Markov semigroups (P t ) t≥0 . On a given measure space (E, E, µ), a symmetric Markov semigroup is a family of positivity preserving operators acting on bounded measurable functions, which preserve constant functions, and are moreover symmetric in L 2 (µ). In the main application of section 4, the measure µ will be a probability measure, but it could also be a measure with infinite mass. The operators P t are contractions in L 1 (µ) and L ∞ (µ), so are contractions in any L p (µ) with 1 ≤ p ≤ ∞. The semi-group property consists in the identity P t • P s = P t+s for any s and t in R + , together with a continuity assumption at t = 0, for example here that for any f ∈ L 2 (µ), P t f converges to f in L 2 (µ) when t converges to 0. We shall assume that, for all t, P t has a kernel, which is the case when E is a Polish space.

Symmetric Markov semigroups naturally appear as the laws of Markov processes (X t ) t≥0 on E which are reversible in time: for example in the case when µ is a probability measure, this means that for any T > 0, the law of the process (X t , 0 ≤ t ≤ T ) when the law of X 0 is µ is the same as the law of the process (X T -t , 0 ≤ t ≤ T ).

They also naturally appear when solving a heat equation

∂ t u = Lu, u(x, 0) = f (x)
on E × [0, ∞); here L is a (unbounded) self-adjoint operator satisfying the maximum principle and L1 = 0, for example a second order differential sub-elliptic operator with no 0-order term on an open set on R n or a manifold; in this case, and under mild hypotheses, the solution may be represented as

u(x, t) = P t f (x).
By the Hille-Yosida theory, the operator P t has a derivative L at t = 0 which is defined in a domain dense in L 2 (µ). Moreover P t = exp(tL) and L is self-adjoint since P t is symmetric, see [START_REF] Yosida | Functional analysis[END_REF] for instance. Also P t is a contraction in L 2 (µ), so that the spectrum of L lies in (-∞, 0]. Under our assumptions, for all t > 0 the operator P t will be represented by a kernel density p t (x, y) with respect to the reference measure µ, in the sense that there exists a nonnegative symmetric function p t on E × E such that

P t f (x) = E f (y) p t (x, y) dµ(y)
for µ almost every x in E. Then the semigroup property P t • P s = P t+s may be translated into the celebrated Chapman-Kolmogorov equation E p t (x, y)p s (y, z)dµ(y) = p t+s (x, z)

for µ ⊗ µ almost every (x, z) in E × E.
Moreover, as soon as the kernel density p t (x, y) is in L 2 (µ ⊗ µ), the operator P t is Hilbert-Schmidt on L 2 (µ) (see [START_REF] Kolmogorov | Eléments de la théorie des fonctions et de l'analyse fonctionnelle[END_REF] Since P t = exp(tL) this just shows that L itself has a discrete spectrum (-λ n ) n∈N with λ n ≥ 0 and λ 0 = 0, such that µ n (t) = e -λnt . We see in the estimate [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] how a control on p t (x, x) or p t (x, y) may lead to a control on the spectrum (µ n (t)) n∈N of P t , hence on the spectrum (λ n ) n∈N of L.

In general, as explained above, it is not easy to get the existence of the density p t (x, y) and such a control on it. The classical situation in which P t is Hilbert-Schmidt is when µ has finite mass and p t is bounded. For example, under the Nash inequality (1) or [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF], then according to the ultracontractive bound (9) the operator P t is bounded from L 1 (µ) into L ∞ (µ) with norm C t . In this case P t may be represented by a kernel density p t which is µ ⊗ µ almost surely bounded by the same constant C t under a mild assumption on (E, E, µ) (for instance if E is generated by a countable family, up to zero measure sets, see [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF]Lemma 4.3]): spaces (E, E, µ) for which this holds will be called nice measure spaces. They include Polish spaces on which Markov semigroups can be represented by a kernel. This work is devoted to the case of non ultracontractive semigroups, that is, of non bounded kernel densities. We shall replace the Nash inequality by the weighted Nash inequality [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] with a weight V such that LV ≤ cV to obtain the existence of a density p t which satisfies

p t (x, y) ≤ K(t, φ, c) V (x) V (y), (12) 
see Proposition 2.1, Theorem 2.5 and Corollary 2.8.

In section 3 we give a simple illustration of this method, see Theorem 3.1. There we deduce the following universal bound on R n from the classical Nash inequality (1) : if the invariant measure µ, not necessarily finite, has a positive density ρ, then

||f || 2+ 4 n 2 ≤ C n ||f V || 4 n 1 E(f, f ) + R n LV V f 2 dµ ,
where V = ρ -1/2 . This leads to a weighted Nash inequality if moreover LV ≤ cV , whence to bounds such as [START_REF] Carlen | Upper bounds for symmetric Markov transition functions[END_REF].

A case study of symmetric semigroups on R consists in the Sturm-Liouville operators : given a probability measure µ with smooth and positive density ρ with respect to the Lebesgue measure, the Sturm-Liouville operator

Lf = f ′′ + log(ρ) ′ f ′
defined on smooth functions leads to a symmetric Markov semigroup in L 2 (µ). Depending on ρ, this family shows all possible behaviours. The main example studied in this article concerns the probability measures dµ a (x) = ρ a (x)dx = C a e -|x| a dx on R and their associated Markov semigroup (P t ) t≥0 ; here a > 0 and C a is a normalization constant.

If a > 2 then the semigroup is ultracontractive and the density with respect to the measure µ a is uniformly bounded (see [START_REF] Kavian | Quelques remarques sur l'ultracontractivité[END_REF] for the proof, among more general examples). In the limit Gaussian case when a = 2 then the semigroup is the well known Ornstein-Uhlenbeck semigroup (up to normalization), which is not ultracontractive any more but only hypercontractive. It means that for t > 0, P t maps L 2 (µ a ) into some L q(t) (µ a ), where 2 < q(t) < ∞ : this is Nelson's Theorem. Observe that in this case one explicitly knows the density p t (x, y) and the spectrum λ n = n, and that P t is Hilbert-Schmidt. Now, if 1 < a < 2 the semigroup P t is not hypercontractive anymore since the measure µ a does not satisfy a logarithmic Sobolev inequality anymore. In fact, as shown in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF], P t with t > 0 satisfies Orlicz hypercontractivity : it maps L 2 (µ a ) into a Orlicz space slightly smaller than L 2 (µ a ). This functional regularity does not bring any explicit upper bound on the kernel density p t .

As a simple illustration of our general method, we shall prove that for all real β there exists θ > 0 such that the density p t (x, y) satisfies the explicit upper bound

p t (x, y) ≤ C(a, β) e ct t θ ρ -1/2 a (x)ρ -1/2 a (y) (1 + |x| 2 ) β (1 + |y| 2 ) β .
For β > 1/2, this estimate is in L 2 (µ a ), so that the operator P t is Hilbert-Schmidt : to our knowledge this is a new result. In the other limit case, when a = 1, such estimate can not hold anymore : indeed the spectrum of -L does not only have a discrete part but lies in {0} ∪ (λ 0 , ∞), with λ 0 > 0 (see [START_REF] Wang | Functional Inequalities, Markov Processes and Spectral Theory[END_REF]). Let us note that studying the measures µ a for a ∈ (1, 2) is a current active domain in functional analysis. These measures represent a large class of log-concave measures: they are not log-concave enough to satisfy a logarithmic Sobolev inequality, but some of their properties, as the concentration for instance, are similar of the standard Gaussian measure, one can see [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF][START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF][START_REF] Gentil | Modified logarithmic Sobolev inequalities in null curvature[END_REF][START_REF] Lata | Between Sobolev and Poincaré[END_REF] for example.

The method used here to get the weighted Nash inequalities on the real line will be quite close to the method introduced by B. Muckenhoupt in [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF] and generalized later by S. Bobkov and F. Götze in [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] to characterize measures which satisfy Poincaré or logarithmic Sobolev inequalities in the real line. We shall not try here to get the same kind of if and only if results, since there are too many parameters to control (the weight function V , the rate function Φ and so on).

We shall not either try to extend our results to the most general setting, for example Riemannian manifolds, which would require a more precise analysis of the Laplacian of the distance function, and therefore lower bounds on the Ricci curvature. Instead we prefer to concentrate on some key one-dimensional models to show the easiness and the efficiency of the methods presented here. Moreover, as usual when using Lyapunov functions, constants obtained in these estimates are far from optimal and that is why we only focus on the overall behavior of the estimates but not try to make the constants finer.

The plan of the article is the following. In the next section we explain the abstract result : how a weighted Nash inequality coupled to a Lyapunov function implies a nonuniform estimate of the kernel density. In section 3 we prove a universal weighted Nash inequality. In section 4 we finally apply the method of section 2 to the measures µ a defined above for a ∈ (1, 2).

Notation : In the whole article, • p stands for the L p norm with respect to the measure µ. The measure µ could change, depending on the context, but it should be always clear.

The abstract result

In this section we present a simple method to obtain the existence and explicit and nonuniform bounds on Markov semigroup kernel densities.

In the classical ultracontractive case the upper bound on the kernel density

q 2 of Q • Q follows from Qf 2 ≤ f 1 ⇔ Q•Q f ∞ ≤ f 1 ⇔ |q 2 (x, y)| ≤ 1.
We extend this property to non-uniform estimates.

Proposition 2.1 Let (E, E, µ) be a nice measure space, Q a symmetric bounded operator on L 2 (µ) and V a positive measurable function on E. Then the two assertions are equivalent :

(i) The operator Q satisfies Qf 2 ≤ f V 1 for all f ∈ L 2 (µ) ; (ii) The operator Q 2 = Q • Q may be represented by a kernel density q 2 (x, y) with respect to µ which satisfies |q 2 (x, y)| ≤ V (x)V (y) for µ ⊗ µ almost every (x, y) in E × E. If moreover the function V is in L 2 (µ), then Q is Hilbert-Schmidt, and therefore has a discrete spectrum (µ n ) n∈N such that, n µ 2 n ≤ V 2 dµ.
Proof. -Let us assume (i) and let us consider the operator Q 1 = 1 V QV , that is, defined by

Q 1 f = 1 V Q(f V ). By hypothesis, Q 1 is a contraction from L 1 (ν) into L 2 (ν) where dν = V 2 dµ.
Moreover it is symmetric with respect to the measure ν since so is Q with respect to µ, so by duality it is also a contraction from L 2 (ν) into L ∞ (ν), and by composition the operator

Q 2 1 = Q 1 •Q 1 is a contraction from L 1 (ν) into L ∞ (ν).
This implies that Q 2 1 may be represented by a kernel density q 2 1 (x, y) in the space L 2 (ν) which satisfies |q 2 1 (x, y)| ≤ 1 for ν ⊗ ν almost every (x, y) in E × E (see [2, Lemme 4.3] for instance). On the other hand,

q 2 1 (x, y) V (x) V (y) = q 2 (x, y)
for µ ⊗ µ every (x, y), noting that V is positive. This implies (ii).

Conversely, if f ∈ L 2 (µ), then, by symmetry of Q, Qf 2 2 = f Q 2 f dµ = q 2 (x, y) f (x) f (y) d(µ ⊗ µ)(x, y) ≤ |f |V dµ 2 ,
which proves (i).

If now V ∈ L 2 (µ), then the kernel q 2 (x, x) is integrable on E with respect to µ, which just means that Q is Hilbert-Schmidt.

Example 2.1 The first and explicit example is the classical Ornstein-Uhlenbeck semigroup in R n , with generator L = ∆ -x • ∇ : in a probabilistic form it is given by the Mehler formula

P t f (x) = E f (e -t x + √ 1 -e -2t Y ) ,
where Y is a standard Gaussian variable with law γ. It admits a kernel density with respect to the Gaussian measure, given by

p t (x, y) = (1 -e -2t ) -n/2 exp - 1 2(1 -e -2t ) (|y| 2 e -2t -2 x • ye -t + |x| 2 e -2t )
for all x, y ∈ R n and t > 0. In particular

p 2t (x, y) ≤ p 2t (x, x) 1/2 p 2t (y, y) 1/2 = (1 -e -4t ) -n/2 exp |x| 2 1 + e 2t exp |y| 2 1 + e 2t ( 13 
)
by the Cauchy-Schwarz inequality, with equality if x = y. Hence, by Proposition 2.1,

P t f L 2 (dγ) ≤ f V t L 1 (dγ)
where

V t (y) = (1 -e -4t ) -n/4 exp |y| 2 2(1 + e 2t )
.

This bound has been obtained in a more general context in [START_REF] Bakry | Dimension dependent hypercontractivity of gaussian kernels[END_REF], where it is shown to be optimal, being an equality for square-exponential functions f . By Proposition 2.1 we are now brought to prove bounds such as (i).

When the operator Q is a Markov semigroup P t with a kernel p t , evaluated at time t, then one may obtain such bounds through functional inequalities that we describe here. We shall mainly be concerned with the case when µ is a probability measure, although much of what follows could be extended to the case when µ has infinite mass.

Let (P t ) t≥0 be a symmetric Markov semigroup on E with generator L and associated Dirichlet form

E µ (f, f ) = -f Lf dµ.
This quadratic form can be defined on a larger subspace than the domain of L, which is called the domain of the Dirichlet form.

Bounds such as P t f 2 ≤ K(t) f V 1 will be obtained by means of weighted Nash inequalities and Lyapunov functions, that we now define. Definition 2.2 Let V be a positive function on E, M be a nonnegative real number and φ be a positive function defined on (M, ∞) with φ(x)/x non decreasing.

The Dirichlet form E µ satisfies a weighted Nash inequality with weight V and rate function φ if

φ f 2 2 f V 2 1 ≤ E µ (f, f ) f V 2 1 ( 14 
)
for all functions f in the domain of the Dirichlet form such that

f 2 2 > M f V 2 1 .
As recalled in the introduction, the fundamental two examples are the classical Nash inequality (1) for the Lebesgue measure, with φ(x) = Cx 1+2/n and M = 0, (M > b n/2 for the generalized inequality (4)) and those [START_REF] Barthe | Isoperimetry between exponential and Gaussian[END_REF] given by Super-Poincaré inequalities, with φ the inverse of inf a {ax + b(a)} and M = 0. They all have weights V = 1, and in the following we shall be concerned with Nash inequalities with a general positive weight V.

Definition 2.3 A Lyapunov function is a positive function V on E in the domain of the generator L such that LV ≤ cV ( 15 
)
for a real constant c, called the Lyapunov constant.

It is not really necessary for V to be in the L 2 -domain of L, but for simplicity we restrict to this situation, which will be the situation in our examples below.

Remark 2.4

In our context the Lyapunov constant c will be nonnegative. Negative Lyapunov constants can also be considered, but by adding an extra term : for instance the authors in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF][START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF] consider Lyapunov functions V such that LV ≤ -γV + 1 K where γ > 0, V ≥ 1 and K is a compact set. These Lyapunov functions are a powerful tool to obtain rates of the long time behavior of the Markov semigroup, for example, through the obtention of Poincaré or more generally weak Poincaré inequalities.

As mentioned in the introduction, Lyapunov functions defined as in our definition 2.3 with c ≥ 0 are introduced to obtain smoothing properties of the Markov semigroup for a fixed time t > 0.

When µ has finite mass, one can also observe that the restriction V ≥ 0 in (15) could be replaced by V ≥ 1 when c ≥ 0, since one may always change V into V + 1. This will be the case in the main application given in section 4.

Then, one has the following.

Theorem 2.5 (Wang) Let (P t ) t≥0 be a Markov semigroup on E with generator L symmetric in L 2 (µ).

Assume that there exists a Lyapunov function V in L 2 (µ) with Lyapunov constant c ≥ 0, and that the Dirichlet form associated to L satisfies a weighted Nash inequality with weight V and rate function φ on (M, +∞) such that

∞ 1 φ(x) dx < ∞. ( 16 
)
Then P t f 2 ≤ K(2t) e ct f V 1
for all t > 0 and all functions f ∈ L 2 (µ); here the function K is defined by

K(x) = U -1 (x) if 0 < x < U(M), √ M if x ≥ U(M)
where U denotes the (decreasing) function defined on (M, +∞) by

U(x) = ∞ x 1 φ(u) du.
Remark 2.6 After completing this work, we learnt from F.-Y. Wang that he obtained this result under weighted Super-Poincaré inequalities in [START_REF] Wang | Functional inequalities and spectrum estimates: the infinite measure case[END_REF]Theorem 3.3]. We state and prove it in our context to show that our method is simple and self contained.

Here the measure µ need not be a probability measure and may have infinite mass and, in the case when U(M) = +∞, then K is just defined by the first line.

Observe also that if M = 0 then we can take any real parameter c, as one can see from the proof.

Remark 2.7 As mentionned in Remark 2.4, we are not mainly concerned with the long time behaviour of the Markov semigroup, though in some cases a weighted Nash inequality may reveal adapted: for instance, in the case when c = 0, M = 0 and U(M) = 0, then Theorem 2.5 ensures that P t f converges to 0 in L 2 (µ) for all f ∈ L 2 (µ) with finite f V 1 ; observe that in this case µ has necessarily infinite mass. If µ is a probability measure, then we expect P t f to converge to f dµ, which is a priori nonzero, so the rate K(2t)e ct can not converge to 0.

On the contrary weighted Nash inequalities are adapted to get estimates on the small time behavior : Theorem 2.5 gives a bound on P t f 2 for t > 0 which depends on f only in terms of a weighted L 1 norm, which is an illustration of the gain of integrability induced by the semigroup. Observe that the coefficient K(2t) tends to +∞ as t goes to 0. By Proposition 2.1 this leads to the following bounds on the kernels: Corollary 2.8 If the Markov semigroup (P t ) t≥0 satisfies the assumptions of Theorem 2.5 above, then P t has a density p t with respect to µ which satisfies

p 2t (x, y) ≤ K(2t) 2 e 2ct V (x)V (y),
for all t > 0 and µ ⊗ µ almost every (x, y) ∈ E × E.

Moreover P t is Hilbert-Schmidt for all t > 0, and therefore has a discrete spectrum

(µ n (t)) n∈N such that n µ n (t) 2 ≤ K(2t) 2 e 2ct V 2 dµ.
Proof of Theorem 2.5. -Let f be given in L 2 (µ). With no loss of generality we can assume that f > 0 by writing the argument for |f | + ε, and letting ε go to 0 and using the bound

|P t f | ≤ P t |f |.
First notice that the map G(t) = V P t f dµ has derivative

G ′ (t) = V LP t f dµ = LV P t f dµ ≤ c G(t), so that V P t f dµ ≤ e ct V f dµ. (17) 
Then, given 0 ≤ t ≤ T fixed, consider the function

R(s) = P s f 2 2 e ct f V dµ 2 on [0, t]. Then -R ′ (s) 2 = E µ (P s f, P s f ) e ct f V dµ 2 = E µ (P s f, P s f ) P s f V dµ 2 P s f V dµ e ct f V dµ 2 . ( 18 
)
In particular R is decreasing. Moreover, if there exists s ∈ [0, t] such that R(s) ≤ M, then R(t) ≤ R(s) ≤ M, which yields the result. Hence we now assume that R(s) ≥ M on [0, t]. Then, by [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF],

P s f 2 2 P s f V dµ 2 = P s f 2 2 e ct f V dµ 2 e ct f V dµ 2 P s f V dµ 2 = R(s)e 2c(t-s) e cs f V dµ 2 P s f V dµ 2 ≥ M for c ≥ 0.
Hence, by applying the weighted Nash inequality to P s f , [START_REF] Kavian | Quelques remarques sur l'ultracontractivité[END_REF] gives [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF] and the fact that φ(x)/x is non decreasing, so that

-R ′ (s) 2 ≥ φ P s f 2 2 P s f V dµ 2 P s f V dµ e ct f V dµ 2 . Moreover φ P s f 2 2 P s f V dµ 2 ≥ φ P s f 2 2 e ct f V dµ 2 P s f V dµ e ct f V dµ 2 from the inequality
-R ′ (s) 2 ≥ φ(R(s)).
In turn this may be seen as

U(R(s)) ′ ≥ 2 which integrates into U(R(t)) ≥ U(R(0)) + 2t ≥ 2t.
Since U -1 is defined on (0, U(M)] and is decreasing then we obtain the upper bound

R(t) ≤ U -1 (2t)
for all t ≤ U(M)/2. For those t ≥ U(M)/2 then we have R(t) ≤ M. Combining all these estimates gives the result.

Remark 2.9 In the main application of the weighted Nash inequality given in section 4, the weight function V is in L 2 (µ). But formally, one does not need V to be in L 2 (µ) to get the result. This restriction is made here not only in view of Proposition 2.1. It is also made to ensure the integration by parts formula LP s f V dµ = P s f LV dµ which leads to [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], and automatically holds when V is in L 2 (µ) and in the domain of L. For those V which increase too rapidly at infinity, then it may be false in general; it requires a more precise analysis of the semigroup (P t ) t≥0 and restricting to a large subclass of functions in L 2 (µ).

Here are two fundamental examples in the two cases when µ has finite or infinite mass :

• The Lebesgue measure on R n satisfies the classical Nash inequality (1), hence a weighted Nash inequality with weight V = 1 and rate function φ(x) = Cx 1+2/n , for instance on the set (0, +∞). Then, by Theorem 2.5 applied with V = 1 and c = 0, one recovers the well known contraction property of the classical heat kernel on R n ,

P t f 2 ≤ C t n/4 f 1 ,
for all t > 0 and for the non optimal constant C = n/4 instead of 1/(8π) (see [START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF] for instance). In this case, we only have to consider functions f ∈ L 1 (µ) and in the domain of the Dirichlet form |∇f | 2 dµ. The main tool to get optimal bounds in any L p (µ) for p ≥ 1 for the classical heat kernel on R n is the Euclidean logarithmic Sobolev inequality as explained for instance in [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF] or [START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF].

• The second example concerns the Sturm-Liouville operator Lf = f ′′ + (log ρ) ′ f ′ on R, associated with the measure dµ = ρ(x)dx. Here it would be enough to know that (log ρ) ′′ is bounded from above and that V ρ ′ and V ′ ρ go to 0 at infinity. Indeed, in this situation, it is enough for smooth functions f and g that f ′ gρ and f g ′ ρ go to 0 at infinity to ensure, through integration by parts, that

Lf gdµ = -f ′ g ′ dµ = f Lgdµ.
When (log ρ) ′′ is bounded from above, the semi-group satisfies a CD(a, ∞) inequality; hence, as soon as f is bounded, then so is (P t f ) ′ when t > 0 (see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]Remark 5.4.2]).

Hence in this case we may work with the space of bounded functions to get the result.

Examples will be studied in sections 3 and 4.

Theorem 2.5 has the following converse:

Theorem 2.10 Let µ be a measure on E and let (P t ) t≥0 be a Markov semigroup on E with generator L symmetric in L 2 (µ).

If there exists a positive function V and a positive function K defined on (0, ∞) such that

P t f 2 ≤ K(t) f V 1
for all t > 0, then the weighted Nash inequality (14) holds with the same function V , M = 0 and function

φ(x) = sup t>0 x 2t log x K(t) 2 , x ≥ 0.
Here again µ need not be a probability measure.

Remark 2.11 For instance, by Theorem 2.5, if we assume a Nash inequality with φ(x) = Cx r for large x, with r > 1, then we obtain a bound such as

P t f 2 ≤ K(t) f V 1 with K(t) = C ′ t 1/2(1-r) for small t.
Conversely, if we assume such a bound with such a K, then, by the converse Theorem 2.10, we obtain a Nash inequality with function φ(x) = C ′′ x r for large x. Therefore, in this case and up to the values of the constants, we have a true quantitative equivalence between the Nash inequality and the bound on P t f 2 .

Proof of Theorem 2.10. -It is based on the observation that the function

t → log( P t f 2 2 )
is convex for any symmetric semigroup. Indeed, if h(t) = P t f 2 , then h ′ (t) = 2 P t f L(P t f )dµ and h ′′ (t) = 4 (LP t f ) 2 dµ; hence h ′2 ≤ hh ′′ , or equivalently (log h) ′′ ≥ 0.

Therefore

log h(u) -log h(0) ≤ u t log h(t) -log h(0)
for all 0 < u ≤ t, so that

h ′ (0) ≤ h(0) t log h(t) h(0) (19) 
by letting u go to 0. Now, if moreover

h(t) ≤ K(t) 2 f V 2 1 , then (19) gives -2 E(f, f ) f V 2 1 ≤ f 2 2 f V 2 1 1 t log K(t) 2 f V 2 1 f 2 2 .
This gives the claimed weighted Nash inequality.

A universal weighted Nash inequality on R n

Let ρ be a positive smooth function on R n . We prove a weighted Nash inequality for the operator Lf = ∆f + ∇ log ρ • ∇f with the universal weight V = ρ -1/2 and the measure dµ(x) = ρ(x) dx. As usual, • p stands for the L p (µ) norm and (P t ) t≥0 is the semigroup with generator L.

Theorem 3.1 In the above notation, the classical Nash inequality (1) is equivalent to

||f || 2+ 4 n 2 ≤ C 4 n n ||f V || 4 n 1 E(f, f ) + R n LV V f 2 dµ ( 20 
)
for all smooth functions f on R n with compact support. If moreover LV ≤ cV for c ∈ R then

||f || 2+ 4 n 2 ≤ C 4 n n ||f V || 4 n 1 E(f, f ) + c R n f 2 dµ
Proof. -Let g be a smooth function with compact support and let

f = g √ ρ. Then R n |f | 2 dx = ||g|| 2 2 , R n |f | dx = R n |g| √ ρ dx = ||gV || 1 ,
and

R n |∇f | 2 dx = R n |∇g| 2 dµ + R n 2 g V ∇g.∇ 1 V dx + R n g 2 ∇ 1 V 2 dx.
By integration by part, the middle term is

R n ∇(g 2 ). 1 V ∇ 1 V dx = - R n g 2 ∇ 1 V ∇ 1 V dx = R n g 2 ∆V V -3 |∇V | 2 V 2 dµ, so that R n |∇f | 2 dx = R n |∇g| 2 dµ + R n g 2 ∆V V -2 |∇V | 2 V 2 dµ. Moreover LV V = 1 V (∆V -2 ∇ log V • ∇V ) = ∆V V -2 |∇V | 2 V 2 , so R n |∇f | 2 dx = E(g, g) + R n LV V g 2 dµ.
Hence the classical Nash inequality (1) for f is equivalent to [START_REF] Lata | Between Sobolev and Poincaré[END_REF] for g, which concludes the proof.

This type of transformation has been performed by F.-Y. Wang in [START_REF] Wang | Functional inequalities and spectrum estimates: the infinite measure case[END_REF] at the level of the Super-Poincaré inequality [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF]. From this the author estimates the kernel density of semigroups with infinite invariant measure. From Theorem 3.1 we now give estimates in the case of probability invariant measures.

Corollaire 3.1 In the above notation, assume that µ is a probability measure and that V ∈ L 1 (µ) satisfies LV ∈ L 1 (µ) and LV ≤ cV with c ≥ 0. Assume moreover that the Hessian of log ρ is uniformly bounded from above on R n and that

sup |x|=r ρ(x) 1/2 r n-1 → 0 and sup |x|=r |∇ρ(x)|ρ -1/2 r n-1 → 0
as r tends to infinity. Then P t has a density p t which satisfies

p 2t (x, y) ≤ d t n/2 e 2ct V (x)V (y) ( 21 
)
for some d > 0 and for all x, y ∈ R n , t > 0.

Proof. -We cannot directly apply Theorem 2.5 since V = ρ -1/2 is never in L 2 (µ). The argument is exactly the same, but we have to justify the inequality G ′ (t) ≤ c G(t) where G(t) = V P t f dµ for any smooth function f with compact support. First of all G ′ (t) = V LP t f dµ since V ∈ L 1 (µ) and Lf is bounded.

Then we prove the integration by parts

R n V LP t f dµ = R n LV P t f dµ.
Let r > 0, B r be the centered ball of R n with radius r and v be its outward unit normal vector. Then, by two integrations by parts on B r ,

Br V LP t f dµ = Br LV P t f dµ - S n-1 P t f (rω) ∇V (rω) • v ρ(rω)r n-1 dω + S n-1 V (rω) ∇P t f (rω) • v ρ(rω)r n-1 dω.
But the Hessian of log ρ is uniformly bounded from above on R n , say by the real number λ, so L satisfies a CD(-λ, ∞) curvature-dimension criterion. In particular (see [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF] for instance) it implies the uniform bound

|∇P t f | ≤ e λt P t |∇f | ≤ e λt ∇f ∞ .
Then our assumptions on ρ ensure that the last two terms tend to 0 as r tends to infinity, which justifies the integration by parts.

Remark 3.2

The key point here is that V = ρ -1/2 is never in L 2 (µ), so this result does not ensure whether P t is Hilbert-Schmidt or not.

We illustrate Corollary 3.1 on the examples of Cauchy and exponential type measures. We have in mind the measure exp(-|x| a )dx in R n but for convenience we will study exp(-(1 + |x| 2 ) a/2 )dx instead of exp(-|x| a )dx which has the same behavior at infinity and has no singularity at x = 0.

Corollary 3.3 Let ρ(x) = (1 + |x| 2 ) -β with β > n or ρ(x) = exp(-(1 + |x| 2 ) a/2
) with a > 0. Then there exists a constant C such that for all t > 0 and x, y ∈ R n the kernel density p t satisfies

p t (x, y) ≤ C t n/2 e Ct ρ -1/2 (x) ρ -1/2 (y).
In the next section we shall improve the bound on the kernel density in the case of the measure with density ρ(x) = exp(-(1 + |x| 2 ) a/2 ) with a > 1 ; for that purpose we shall use a Lyapunov function V which will be now in L 2 (µ).

The measures on R between exponential and Gaussian

In this section we shall prove that the weighted Nash inequality (14) holds with power functions φ and L 2 weights V for the semigroups on R with the invariant measure exp(-|x| a )dx. Again for convenience we will study exp(-(1+x 2 ) a/2 )dx instead of exp(-|x| a )dx. The analysis made here would make no difference if one would work on R n , except for the values of the involved constants. We shall let

T (x) = (1 + x 2 ) 1/2 ,
and for a > 0 the probability measure

dµ a = C a e -T a dx,
where C a is the normalizing constant.

We are dealing with the Sturm-Liouville operator

Lf = f ′′ -aT a-1 T ′ f ′ ,
which is symmetric (and even self adjoint) with respect to the probability measure µ a . We let ρ a denote the density function of the measure µ a with respect to the Lebesgue measure, that is ρ a = exp(-T a ).

In this case, f is in the domain of the Dirichlet form as soon as f ′ ∈ L 2 (µ a ) and

E µa (f, f ) = f ′2 dµ a = -f Lf dµ a .
We shall not pay too much attention to the values of the constants which may be far from being optimal. Lemma 4.1 For all a > 0 and β ∈ R the function

V = ρ -1/2 a T -β = exp T a 2 T -β (22) 
is a Lyapunov function; moreover V ∈ L 2 (µ a ) as soon as β > 1/2.

Proof. -First observe that V is positive, and is a Lyapunov function with constant c if and only if

L(log V ) + (log V ) ′2 ≤ c.
But, with T = T (x),

L(log V ) + (log V ) ′2 = a 2 (a -1)T a-2 T ′2 - a 2 4 T 2a-2 T ′2 + β(β + 1) T ′2 T 2 + a 2 T a-1 T ′′ -β T ′′ T = a 4 T a-4 2(a -1)x 2 -aT a x 2 + 2 + β(β + 1)x 2 T -4 -βT -4
since T ′ (x) = x T (x) -1 and T ′′ = T (x) -3 . Now for all a > 0 the bracket tends to 0 as |x| tends to +∞ and for all β the last two terms go to 0, so the continuous map

L(log V ) + (log V ) ′2 is bounded from above on R.
The first basic result is the following Lemma 4.2 For all a ≥ 1 and β > 0 there exists a constant C = C(a, β) such that, for all smooth and compactly supported functions f such that f (0) = 0, (i)

f 2 dµ a ≤ CE µa (f, f ), (ii) 
f 2 dµ a ≤ CE µa (f, f ) γ |f |V dµ a 2(1-γ)
where V is the weight given by [START_REF] Maheux | Nash-type inequalities and decay of semigroups of operators[END_REF] 

and γ = 1 -2 a -1 3(a -1) + 2β ∈ 1 3 , 1 .
Proof. -We shall let C denote diverse constants depending only on a in the proof of (i), and only on a and β in the proof of (ii). For x > 0 we let q(x) = ∞ x dµ a (y). The argument will be based on the following classical estimate (see for instance [1, Corollaire 6.4.2]):

q(x) ≤ C ρ a (x) T (x) a-1 . (23) 
To prove (i), and for f satisfying f (0) = 0, we write

∞ 0 f 2 dµ a = 2 x t=0 f (t)f ′ (t)dµ a (x)dt = 2 ∞ 0 f (t)f ′ (t)q(t)dt.
But, by [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF], we have the upper bound q(t) ≤ Cρ a (t) since a, T ≥ 1, so that

∞ 0 f 2 dµ a ≤ C f 2 E µa (f, f ) 1/2
by the Cauchy-Schwarz inequality. A similar result holds for the integral on (-∞, 0], which gives (i).

Let us now prove (ii) for a > 1, since for a = 1 it amounts to (i). Without loss of generality, we assume that f is non-negative. Then

∞ 0 f 2 dµ a = ∞ 0 f 2 1 f f 2 ≤V Z -1/2 dµ a + ∞ 0 f 2 1 f f 2 >V Z -1/2 dµ a
where Z is a positive constant to be chosen later on. The first term is bounded from above by f 2 Z -1/2 f V dµ a . Then we write the second one as

∞ 0 f 2 1 f f 2 >V Z -1/2 dµ a = 2 ∞ 0 f (t) f ′ (t) [ ∞ t 1 f (x) f 2 >V (x)Z -1/2 dµ a (x)] dt (24) 
by writing f 2 (x) = 2

x 0 f (t)f ′ (t)dt. We bound the inner integral in the following two ways.

On the one hand

∞ t 1 f (x) f 2 >V (x)Z -1/2 dµ a (x) ≤ ∞ t dµ a (x) = q(t) ≤ Cρ a (t)T (t) 1-a (25) 
according to [START_REF] Muckenhoupt | Hardy's inequality with weights[END_REF].

On the other hand the map y → e y/2 y -β is decreasing on (0, 2β] and then increasing, and T ≥ 1; hence V is increasing on (0, +∞) if 2β ≤ 1, and it is decreasing on (0, 4β 2 -1] and then increasing otherwise. Hence, in any case, there exists C such that V (x) ≥ CV (t) for all x ≥ t > 0. Hence

∞ t 1 f (x) f 2 >V (x)Z -1/2 dµ a (x) ≤ ∞ t 1 f (x) f 2 >CV (t)Z -1/2 dµ a (x) ≤ Z C 2 V 2 (t) = Z C 2 ρ a (t)T (t) 2β (26) by the Markov inequality. Therefore ∞ t 1 f (x) f 2 >V (x)Z -1/2 dµ a (x) ≤ Cρ a (t) min T (t) 1-a , T 2β (t)Z .
Now, since a + 2β -1 > 0 and T is increasing, then for any Z ∈ (0, 1] there exists t 0 such that T (t 0 ) a+2β-1 = 1/Z, that is, T (t 0 ) 1-a = T (t 0 ) 2β Z. We split the integral in [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] into two parts, according to t ≥ t 0 or not, and obtain

∞ 0 f 2 1 f f 2 >V Z -1/2 dµ a ≤ CZ t 0 0 |f f ′ | T 2β dµ a + C ∞ t 0 |f f ′ | T 1-a dµ a ≤ CZT 2β (t 0 ) t 0 0 |f f ′ | dµ a + CT 1-a (t 0 ) ∞ t 0 |f f ′ | dµ a since β > 0 and 1 -a < 0. Moreover ZT 2β (t 0 ) = T (t 0 ) 1-a , so ∞ 0 f 2 1 f f 2 >V Z -1/2 dµ a ≤ CT (t 0 ) 1-a f 2 E µa (f, f ) 1/2 .
by the Cauchy-Schwarz inequality.

In the end we have obtained the bound

f 2 ≤ C Z -1/2 f V dµ a + Z 1-a 1-a-2β E µa (f, f ) 1/2 for all 0 < Z ≤ 1. If f V dµ a ≤ E µa (f, f ) 1/2 then we choose Z = f V dµ a E µa (f, f ) 1/2 2(1-a-2β) 3(1-a)-2β ∈ (0, 1] to get the inequality ∞ 0 f 2 dµ a ≤ CE µa (f, f ) γ f V dµ a 2(1-γ)
,

where γ = (a -1 + 2β)/(3(a -1) + 2β). The same estimate holds on (-∞, 0] which gives (ii).

If now E µa (f, f ) 1/2 ≤ f V dµ a , then, by (i),

f 2 dµ a ≤ CE µa (f, f ) = CE µa (f, f ) γ E µa (f, f ) 1-γ ≤ CE µa (f, f ) γ f V dµ a 2(1-γ)
for all 0 ≤ γ ≤ 1, which gives (ii).

Remark 4.3

The first point of Lemma 4.2 is only based on the tail estimate q(t) ≤ Cρ a (t), so holds for all measures dµ = ρ dx such that q(x) ≤ Cρ(x) where q(x) = µ([x, +∞)). In particular such probability measures µ satisfy a spectral gap inequality

f 2 2 ≤ f dµ 2 + CE µ (f, f ) by applying (i) to f -f (0), since Var µ (f ) := f 2 dµ - f dµ 2 ≤ (f -c) 2 dµ
for all constants c, and in particular for c = f (0).

In fact the probability measure µ a is log-concave on R and, according to the Bobkov Theorem (see [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF]), all log-concave measures on R n satisfy a Poincaré inequality. Note that a proof of this result is given in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF] by using the Lyapunov function W = e γT a for a γ > 0.

Remark 4.4 The condition a ≥ 1 is crucial in this proof of Lemma 4.2. The second point is obtained for all β > 0. For β ≤ 0 we may use the bound [START_REF] Th | Analysis and geometry on groups[END_REF] with T (t) 2β ≤ 1, but not [START_REF] Saloff-Coste | Sobolev inequalities in familiar and unfamiliar settings[END_REF]; then we choose Z = ( f V dµ a E µa (f, f ) -1/2 ) 2/3 to obtain (ii) with γ = 1/3. Observe that the best bound is obtained for β = 0, for which we have the following general bound.

Remark 4.5 Let µ be a probability measure on R, with a density ρ(x) increasing on (-∞, 0) and decreasing on (0, ∞) and let V = ρ -1/2 . Then

f 2 ≤ 27 2 1/3 |f |V dµ 1/3 E µ (f, f ) 1/3
for all smooth functions such that f (0) = 0. The proof follows the argument of Lemma 4.2, by using the bound [START_REF] Th | Analysis and geometry on groups[END_REF] but not [START_REF] Saloff-Coste | Sobolev inequalities in familiar and unfamiliar settings[END_REF]. It gives a Nash inequality with φ(x) = 2x 3/2 /27 on (0, +∞), so that 1/φ is integrable at infinity. However, besides the restriction f (0) = 0 which will be removed below only for a > 3 (with β = 0), it does not give any upper bound on the density, as in Corollary 2.8, since V is not in L 2 (µ).

The restriction f (0) = 0 is removed by the following Lemma 4.6 Given the measure dµ a = C a exp(-T a )dx with a > 0 and the weight function

V = exp(T a /2)T -β with β > 3 -a 2 ,
then there exist θ ∈ (0, 1) and constant C such that

|f -f (0)|V dµ a ≤ C |f |V dµ a + |f |V dµ a 1-θ E µa (f, f ) θ/2
for all nonnegative smooth compactly supported f on R.

Remark 4.7 For β > 3/2 then all θ ∈ (2/3, 1) are admissible.

Proof. -In the proof we shall let C denote diverse constants which depend only on a, β and a parameter α to be introduced later on. We start by writing

|f -f (0)|V dµ a ≤ |f |V dµ a + |f (0)| V dµ a . (27) 
For convenience we let U = |f |V dµ.

For any α > 0, and any x ∈ R, write

|f α (x) -f α (0)| = α | x 0 f α-1 f ′ dx| ≤ C x 0 |f V | α-1 |f ′ | 1 ρ a V α-1 dµ a .
By the Hölder inequality, for any p, q, r > 1 such that 1/p + 1/q + 1/r = 1, then f ghdµ a ≤ f p g q h r .

For q = 2, p = 1/(α -1) and r = 2/(3 -2α) with α ∈ (1, 3/2) this gives

|f α (x) -f α (0)| ≤ C U α-1 E µa (f, f ) 1/2 K α (x), where K(x) = x 0 ρ a (t) 1-r V (t) r(α-1) dt 1 rα . Then |f (0)| ≤ |f (x)| + |f α (0) -f α (x)| 1/α for all x since α ≥ 1, so |f (0)| ≤ C |f (x)| + U 1-1/α E µa (f, f ) 1/(2α) K(x) ,
and then

|f (0)| V dµ a ≤ C U + U 1-1/α E µa (f, f ) 1/(2α) KV dµ a . (28) 
Let us prove that KV dµ a is finite. By the definition ( 22) of V and [1, Corollaire 6.4.2] for instance, one has

K(x) = x 0 e T a 2 ( 3 2 r-1) T βr(α-1) dt 1 rα ≤ C exp T a (x) 2 T d (x), (29) 
with

d = β 1 - 1 α - a -1 rα .
In fact the two quantities in (29) are equivalent when |x| is large.

Hence KV ρ a ≤ CT d-β , so the integral KV dµ a is convergent as soon as d -β < -1, that is,

α < 1 + 1 a β - 3 -a 2 . Hence, if β > (3 -a)/2, then any 1 < α < min 3 2 , 1 + 1 a β - 3 -a 2 satisfies all conditions, so that KV dµ a < ∞. Then |f -f (0)|V dµ a ≤ C U + U 1-1/α E µa (f, f ) 1/(2α)
by ( 27) and ( 28). This proves Lemma 4.6 with θ = 1/α.

Remark 4.8

The argument is only based on the fact that the function

K(x) = x 0 ρ 1-r a V r(α-1) dt 1 rα satisfies Kρ a V dx < ∞.
In particular, in the limiting case when β = 0 and V 

(x) = ρ -1/2 a , this amounts to ∞ 0 [ x 0 ρ a (t) -α/(3-2α) dt] (3-2α)/2α ρ 1/2 a (x)dx < ∞, that is, a > 3 3 -2α (see
(x) = C a exp(-T a )dx with T (x) = (1 + |x| 2 ) 1/2
, and the weight function

V = exp T a 2 T -β
with a > 1 and β ∈ R. Then there exist C and λ ∈ (0, 1) such that

f 2 2 ≤ C |f |V dµ a 2 + |f |V dµ a 2(1-λ) E µa (f, f ) λ (30) 
for all functions f .

Proof. -The space of smooth functions with compact support is dense in the domain of L, so it is enough to consider the case when f is smooth and compactly supported. Also, without loss of generality, we may assume that f is nonnegative. Here again C will denote diverse constants depending on the parameters a and β and a parameter θ to be introduced later on. One has,

f 2 2 ≤ f dµ a 2 + |f -f (0)| 2 dµ a .
The weight V is bounded from below by a positive constant, so

f 2 2 ≤ C f V dµ a 2 + |f -f (0)| 2 dµ a . (31) 
Let now U = f V dµ a and U 0 = |f -f (0)|V dµ a and assume β > 0. By Lemma 4.2, applied to the function f -f (0), one has

|f -f (0)| 2 dµ a ≤ CE µa (f, f ) γ U 2(1-γ) 0 , (32) 
where

γ = 1 -2 a -1 3(a -1) + 2β
.

But, if moreover β > (3 -a)/2, by Lemma 4.6 there exists θ ∈ (0, 1) such that

U 0 ≤ C U + U 1-θ E µa (f, f ) θ/2 , so that |f -f (0)| 2 dµ a ≤ CE µa (f, f ) γ U 2(1-γ) + U 2(1-θ)(1-γ) E µa (f, f ) θ(1-γ)
by (32). Hence, by [START_REF] Yosida | Functional analysis[END_REF], [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]. This concludes the argument for β > max(0, 3-a 2 ). Then, since V is decreasing in β, then [START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF] holds for all real β. Remark 4.11 We are restricted to a > 1, since for a = 1 then only λ = 1 is admissible; this gives a useless inequality for our purpose, which is even weaker than the Poincaré inequality.

f 2 2 ≤ CU 2 1 + E µa (f, f ) U 2 γ + E µa (f, f ) U 2 γ+θ(1-γ) ≤ C U 2 + E µa (f, f ) λ U 2(1-λ) if λ = γ + θ(1 -γ) ∈ (0,
According to Lemma 4.6 and Remark 4.7 the larger β is, the smaller the weight V is, and the larger exponent λ of the Dirichlet form has to be in [START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF]; on the contrary, the smaller β is (> 3/2), the smaller exponent λ we can take.

We can now illustrate the abstract method of section 2 by obtaining the following pointwise bounds on the Markov semigroup associated to L, which bring new information on this semigroup for small time: Corollary 4.12 Let a > 1 and let (P t ) t≥0 be the Markov generator on R with generator Lf = f ′′ -aT a-1 T ′ f ′ , and reversible measure dµ a (x) = ρ a (x)dx = C a exp(-(1 + |x| 2 ) a/2 )dx.

Then for all real β there exists δ > 0 and a constant C such that, for all t, P t has a density p t with respect to the measure µ a , which satisfies for almost every x, y ∈ R.

Moreover, the spectrum of -L is discrete and its eigenvalues (λ n ) n∈N satisfy the inequality n e -λnt ≤ Ce Ct t δ for all t > 0.

Proof. -Letting C and λ ∈ (0, 1) be defined as in Theorem This proves the first statement for β > 1/2, with δ = 2λ/(1 -λ) > 0, and then for any β.

The second statement on the trace of P t is obtained by letting any β > 1/2 in the upper bound on p t (x, x) and integrating.

For β > 1/2, the non-uniform bound implies that P t is Hilbert-Schmidt but we do not recover the Orlicz hypercontractivity result of [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF]. This is not surprising since in fact no bound such as K(t)V (x)V (y) can imply hypercontractivity of more generally Orlicz hypercontractivity.

Remark 4. [START_REF] Carlen | Sharp constant in Nash's inequality[END_REF] The same method, with V = 1, leads to a (non weighted) Nash inequality for µ a with a > 1, with rate function φ(x) = C x (log x) 2(1-1/a) on an interval (M, ∞). By Theorem 2.5 this implies that the semigroup is ultracontractive as soon as 1/φ is integrable at infinity, that is, for a > 2, hence recovering a partial result of [START_REF] Kavian | Quelques remarques sur l'ultracontractivité[END_REF]. Remark 4.14 Observe in Corollary 4.12 that there is no optimal β, that is, no optimal bound on p t (x, x) of the form C(t)ρ(x) -1/2 T (x) -β . So one could look for an optimal bound on p t (x, x) such as C(t) ρ -λ (x) for a λ ∈ (0, 1/2). It is not the case in the Gaussian case when a = 2: in this case the optimal bound is C(t) exp |x| 2 /(1 + e 2t ) , hence of the form C(t) ρ(x) -λ(t) with λ(t) < 1/2; it is even an equality, see [START_REF] Carlen | Sharp constant in Nash's inequality[END_REF].

Also for 1 < a < 2 it seems that p t (x, x) can not be bounded by C(t)ρ -λ (x) for λ < 1/2. Indeed, for the weight V = exp(λT a ) with λ < 1/2, our method leads to a weighted Nash inequality with rate function φ(x) = C(a, λ) x (log x) 2(1-1/a) on an interval (M, ∞), where λ appears only in the value of the constant C(a, λ). Apart from the values of the constants, this is not better than the inequality obtained in Remark 4.13 with V = 1, and again this is not enough to obtain any bound on the density p t (x, y) by lack of integrability of 1/φ. Now we do not know whether a bound such as C(t) ρ(x) -λ(t) with λ(t) < 1/2 could be optimal, but we strongly doubt about it.

Again from this point of view the Gaussian case appears as a particular case, being a critical case as regards the two points of view of ultracontractivity and non-uniform bounds; in this case, and in this case only, one may do better, and Gaussian Nash inequalities are under study in a work in progress.

a

  {ax + b(a)} is an increasing concave function, or equivalently φ f 2

  |x| 2 ) β/2 (1 + |y| 2 ) β/2

  4.10, by the inequality[START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF] the Dirichlet form E µa satisfies a weighted Nash inequality with weight V = exp(T a /2)T -β and rate functionφ(x) = C -1/λ (x -C) 1/λ on (C, +∞). Moreover the weight V is a Lyapunov function with constant c > 0 by Lemma 4.1, it is in L 2 (µ a ) if β > 1/2 and hypothesis (16) of Theorem 2.5 holds since λ < 1. Hence, by Corollary 2.8 and for diverse constants C = C(a, β, λ), for all t > 0 the operator P 2t has a density p 2t with respect to µ a , which satisfies p 2t (x, y) ≤ C(1 + t |x| 2 ) β/2 (1 + |y| 2 ) β/2 ≤ Ct |x| 2 ) β/2 (1 + |y| 2 ) β/2 .

  for instance). In particular P t has a discrete spectrum (µ n (t)) n∈N , associated to a sequence of orthonormal eigenfunctions (e n ) n∈N in L 2 (µ). so that P 2t is in the trace class. Of course such estimates can be established only for t > 0.

				In
	this case		
	p t (x, y) =	µ n (t)e n (x)e n (y)
		n	
	and the series converges since		
	µ n (t) 2 =	p t (x, y) 2 dµ(x)dµ(y) < +∞.	(11)
	n	E×E	
	Moreover		
	p t (x, y) 2 dµ(x)dµ(y) =	p 2t (x, x)dµ(x)
	E×E		E
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