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FROM OPEN QUANTUM SYSTEMS TO OPEN QUANTUM MAPS

STEPHANE NONNENMACHER, JOHANNES SJOSTRAND, AND MACIEJ ZWORSKI

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In this paper we show that for a class of open quantum systems satisfying a natural
dynamical assumption (see §R.2) the study of the resolvent, and hence of scattering, and of
resonances, can be reduced, in the semiclassical limit, to the study of open quantum maps,
that is of finite dimensional quantizations of canonical relations obtained by truncation of
symplectomorphisms derived from the classical Hamiltonian flow (Poincaré return maps).

We first explain the result in a simplified setting. For that consider the Schrédinger
operator

(1.1) P(h) = —R*A+V(z)—1, V€C* R,

and let ®' be the corresponding classical flow on T*R" > (z,§):

Ol (x,6) = (x(t),£(t)),

FIGURE 1. An example of a potential, V' € C°(R?), to which the results
apply: the Hamiltonian flow is hyperbolic on the trapped set in a range of
energies — see [BY, Appendix c|. In this example each energy surface p~!(FE)
is three dimensional, so the Poincaré section is two dimensional as shown in

Fig. B
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Equivalently, this flow is generated by the Hamilton vector field

(1.2) w6 =3 2 0 00

associated with the classical Hamiltonian
(1.3) p(r,€) = |2+ V(a) — 1.

The energy shift by —1 allows us to focus on the quantum and classical dynamics near the
energy E = 0, which will make our notations easierf]. We assume that the Hamiltonian
flow has no fixed point at this energy: dp[,-1()# 0.

The trapped set at any energy F is defined as

(14) Kg o {(x,€) € T*R" : p(z,€) = E, ®'(x,€) remains bounded for all ¢ € R} .
The information about spectral and scattering properties of P = P(h) in ([.J]) can be
obtained by analyzing the resolvent of P,

R(z)=(P—2)"", Imz>0,

and its meromorphic continuation — see for instance [BJ] and references given there. More
recently semiclassical properties of the resolvent have been used to obtain local smoothing
and Strichartz estimates, leading to applications to nonlinear evolution equations — see [[[4]
for a recent result and for pointers to the literature. In the physics literature the Schwartz
kernel of R(z) is referred to as Green’s function of the potential V.

The operator P has absolutely continuous spectrum on the interval [—1, 00); nevertheless,
its resolvent R(z) continues meromorphically from Im z > 0 to the disk D(0, 1), in the sense
that xYR(z)x, x € C°(R™), is a meromorphic family of operators, with poles independent
of the choice of x # 0 (see for instance [[[I], Section 3] and [BY, Section 5]).

The multiplicity of the pole z € D(0, 1) is given by

mg(z) & rank %xR(w)de,

z

where the integral runs over a sufficiently small circle around z.

We now assume that at energy F = 0, the flow ® is hyperbolic on the trapped set K
and that this set is topologically one dimensional. Hyperbolicity means B4, Def. 17.4.1]
that at any point p = (z,£) € K, the tangent space to the energy surface splits into the
neutral (RH,(p)), stable (£), and unstable (E) directions:

(1.5) Tp~(0) =RH,(p) ® B, ® B,

IThere is no loss of generality in this choice: the dynamics of the Hamiltonian &2 + f/(z) at some energy
E > 0 is equivalent with that of €2 +V /E — 1 at energy 0, up to a time reparametrization by a factor VE.
The same rescaling holds at the quantum level.
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FIGURE 2. A schematic view of a Poincaré section ¥ = L;¥; for K inside
p~Y(F). The flow near K can be described by an ensemble of symplectomor-
phisms between different components %; — see §2.9 for abstract assumptions
and a discussion why they are satisfied when the flow is hyperbolic on Kg
and Kpg has topological dimension one. The latter condition simply means
that the intersections of Kg with X;’s are totally disconnected.

this decomposition is preserved through the flow, and is characterized by the following
properties:

(1.6) 3C >0, IA>0, |dexptHy(p)v| < Ce M|, Vove EY, £t>0.

When K| is topologically one dimensional we can find a Poincaré section which reduces the
flow near K, to a combination of symplectic transformations, called the Poincaré map F"
see Fig.P for a schematic illustration and §2.9 for a precise mathematical formulation. The
structural stability of hyperbolic flows P4, Thm. 18.2.3] implies that the above properties
will also hold for any energy E in a sufficientlys short interval [—4,d] around E = 0, in
particular the flow near Kg can be described through a Poincaré map Fpg.

Under these assumptions, we are interested in semiclassically locating the resonances of
the operator P(h) in a neighbourhood of this energy interval:

R(S, Mo, h) & [=6, 6] + i[— Myhlog(1/h), Mohlog(1/h)] ,

where 6, M are independent of h € (0, 1]. Here the hlog(1/h)-size neighbourhood is natural

in view of results on resonance free regions in case of no trapping — see [2q].

To characterize the resonances in R(d, My, h) we introduce a family of “quantum prop-
agators” quantizing the Poincaré maps Fg.
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Theorem 1. Suppose that ®' is hyperbolic on Ky and that K, is topologically one dimen-
sional. More generally, suppose that P(h) and ® satisfy the assumptions of §2-1-§2-3.

Then, for any 6 > 0 small enough and any My > 0, there exists hg > 0 such that there
exists a family of matrices,

{M(z,h), z € R(6, My, h), h € (0,ho]},
holomorphic in the variable z, and satisfying
h™"*t1/Cy < rank M(z,h) < Coh™™*, Cy > 1,

such that for any h € (0, he|, the zeros of
def

g(zv h) - det(I - M(Z, h)) )
give the resonances of P(h) in R(d, Moy, h), with correct multiplicities.

The matrices M (z, h) are open quantum maps associated with the Poincaré maps Fge . de-
scribed above: for any L > 0, there exist a family of h-Fourier integral operators, {M(z, h)},

quantizing the Poincaré maps Fre. (see §2.3.3 and §3.3), and projections 11}, (see §0.2.3)

of ranks
h™" T /Cy < rankII), < Coh™™ 1,
such that

(1.7) M (z,h) = Mz, W), + O(R*).
The statement about the multiplicities in the theorem says that
1 [ (w)
= — d
ma(z) = 5 7{ C(w) ™
1
L trj{([ M (w)) " M (w)dw .

271

(1.8)

A more precise version of Theorem [I], involving complex scaling and microlocally deformed
spaces (see §B.4 and §B.J respectively), will be given in Theorem | in §5.4. In particular
Theorem [] gives us a full control over both the cutoff resolvent of P, xR(z)x, and the
full resolvent (Pyp — z)~! of the complex scaled operator Py g, in terms of the family of
matrices M(z, h); for this reason, the latter is often called an effective Hamiltonian for P.

The mathematical applications of Theorem [l and its refined version below include simpler
proofs of fractal Weyl laws [J and of the existence of resonance free strips [BI]. The
advantage lies in eliminating flows and reducing the dynamical analysis to that of maps.
That provides an implicit second microlocalization without any technical complication (see
B3, §5]). The key is a detailed understanding of the operators M(z,h) stated in the
theorem.

Relation to semiclassical trace formule. The notation ((z, h) in the above theorem hints at
the resemblance between this determinant and a semiclassical zeta function. Various such
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functions have been introduced in the physics literature, to provide approximate ways of
computing eigenvalues and resonances of quantum chaotic systems — see [f7, B0, [0].

These semiclassical zeta functions are defined through formal manipulations starting
from the Gutzwiller trace formula — see [ for a mathematical treatment and references.
They are given by sums, or Euler products, over periodic orbits where each term, or factor
is an asymptotic series in powers of h. Most studies have concentrated on the zeta function
defined by the principal term, without h-corrections, which strongly resembles the Selberg
zeta function defined for surfaces of constant negative curvature. However, unlike the case
of the Selberg zeta function, there is no known rigorous connection between the zeroes
of the semiclassical zeta function and the exact eigenvalues or resonances of the quantum
system, even in the semiclassical limit. Nevertheless, numerical studies have indicated that
the semiclassical zeta function admits a strip of holomorphy beyond the axis of absolute
convergence, and that its zeroes there are close to actual resonances [I0, £g.

The traces of M(z,h)¥, k € N admit semiclassical expressions as sums over periodic
points, which leads to a formal representation of

. tr M(z, h)*
2, h) = ex { — 7’}
C(z,h) = exp ; -

as a product over periodic points. That gives it the same form as the semiclassical zeta
functions in the physics literature. In this sense, the function ((z, h) is a resummation of
these formal expressions. As will become clear from its construction below, the operator
M (z, h) is not unique: it depends on many choices which affect the remainder term O(h%)
in (L.7). However, the zeroes of ((z,h) in R(d, My, h) are the exact resonances of the
quantum Hamiltonian.

Comments on quantum maps in the physics literature. Similar methods of analysis have
been introduced in the theoretical physics literature devoted to quantum chaos. The clas-
sical case involves a reduction to the boundary for obstacle problems: when the obstacle
consists of several strictly convex bodies, none of which intersects a convex hull of any other
two bodies, the flow on the trapped set is hyperbolic. The reduction can then be made
to boundaries of the convex bodies, resulting with operators quantization Poincaré maps
— see Gaspard and Rice [[[], and for a mathematical treatment Gérard [, in the case of
two convex bodies, and [Bg, §5.1], for the general case. Fig.f illustrates the trapped set in
the case of three discs. The semiclassical analogue of the two convex obstacle, a system
with one closed hyperbolic orbit, was treated by Gérard and the second author in [I9]. The
approach of that paper was also based on the quantization of the Poincaré map near this
orbit.

A reduction of a more complicated quantum system to a quantized Poincaré map was
proposed in the physics literature. Bogomolny [[] studied a Schrodinger operator P(h)
with discrete spectrum, and constructed a family of energy dependent quantum transfer
operators T'(E, h), which are integral operators acting on a hypersurface in the configuration
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FIGURE 3. This figure, taken from [B4], shows the case of symmetric three
disc scattering problem (left), and the associated Poincaré section (right).
The section is the union of the three coball bundles of circle arcs (in red)
parametrized by s (the length parameter on the circle, horizontal axis), and
cos p (vertical axis), where p is the angle between the velocity after impact
and the tangent to the circle. Green, blue,red strips correspond to different
regions of forward escape; they are bounded by components of the stable
manifold. The trapped set, T, shown in yellow, is the intersection of the
latter with the unstable manifold.

space. These transfer operators are asymptotically unitary as h — 0. The eigenvalues of
P(h) are then obtained, in the semiclassical limit, as the roots of the equation det(1 —
T(E)) = 0. Smilansky and co-workers derived a similar equation in the case of closed
Euclidean 2-dimensional billiards [[J], replacing T(E) by a (unitary) scattering matrix
S(FE) associated with the dual scattering problem. Prosen [BJ] generalized Bogomolny’s
approach to a nonsemiclassical setting. Bogomolny’s method was also extended to study
quantum scattering situations [[[7, BJ.

Open quantum maps have first been defined in the quantum chaos literature as toy
models for open quantized chaotic systems (see [R9, §2.2], B0, §4.3] and references given
there). They generalized the unitary quantum maps used to mimic bound chaotic systems
[[]. Some examples of open quantum maps on the 2-dimensional torus or the cylinder,
have been used as models in various physical settings: Chirikov’s quantum standard map
(or quantum kicked rotator) was first defined in the context of plasma physics, but then
used as well to study ionization of atoms or molecules [[], as well as transport properties
in mesoscopic quantum dots [[if]. Other maps, like the open baker’s map, were introduced
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as clean model systems, for which the classical dynamics is well understood [Bg, Bl]. The
popularity of quantum maps mostly stems from the much simplified numerical study they
offer, both at the quantum and classical levels, compared with the case of Hamiltonian flows
or the corresponding Schrodinger operators. For instance, the distribution of resonances
and resonant modes has proven to be much easier to study numerically for open quantum
maps, than for realistic flows [, B7, B9, B9, B7]. Precise mathematical definitions of quantum
maps on the torus phase space are given in [B9, §4.3-4.5].

Organization of the paper. In the remainder of this section we give assumptions on the
operator P and on the corresponding classical dynamical system, in particular we introduce
a Poincaré section ¥ and map associated with the classical flow. We refer to results
of Bowen and Walters [§] to show that these assumptions are satisfied if the trapped
set supports a hyperbolic flow, and is topologically one dimensional, which is the case
considered in Theorem [I.

In §f we recall various tools needed in our proof: pseudodifferential calculus, the concept
of semiclassical microlocalization, local h-Fourier integral operators associated to canonical
tranformation (these appear in Theorem [I]), complex scaling (used to define resonances
as eigenvalues of nonselfadjoint Fredholm operators), microlocally deformed spaces, and
Grushin problems used to define the effective Hamiltonians.

In §f] we follow a modified strategy of [f2] and construct a microlocal Grushin problem
associated with the Poincaré map on 3. No knowledge of that paper is a prerequisite but
the self-contained discussion of the problem for the explicit case of S given in [, §2] can
illuminate the complicated procedure presented here. In [, §2] one finds the proof of the
classical Poisson formula using a Grushin problem approach used here.

Because of the hyperbolic nature of the flow the microlocal Grushin problem cannot
directly be made into a globally well-posed problem — see the remark at the end of §f]. This
serious difficulty is overcome in §f by adding microlocal weights adapted to the flow. This
and suitably chosen finite dimensional projections lead to a well posed Grushin problem,
with an effective Hamiltonian essentially given by a quantization of the Poincaré map: this
fact is summarized in Theorem P}, from which Theorem [[ is a simple corollary.

ACKNOWLEDGMENTS. We would like to thank the National Science Foundation for partial
support under the grant DMS-0654436. This article was completed while the first author
was visiting the Institute of Advanced Study in Princeton, supported by the National
Science Foundation under agreement No. DMS-0635607. The first and second authors
were also partially supported by the Agence Nationale de la Recherche under the grant
ANR -09-JCJC-0099-01. Thanks also to Edward Ott for his permission to include Fig.f in
our paper.
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2. ASSUMPTIONS ON THE OPERATOR AND ON CLASSICAL DYNAMICS

Here we carefully state the needed assumptions on quantum and classical levels.

2.1. Assumptions on the quantum Hamiltonian P(h). Our results apply to operators
P(h) satisfying general assumptions given in [B], §3.2] and [[], (1.5),(1.6)]. In particular,
they apply to certain elliptic differential operators on manifolds X of the form

X = Xp Ll |i| (R" \ BRn(O,R)> ,

j=1
where R > 0 is large and Xp is a compact subset of X. The reader interested in this higher
generality should consult those papers.

Here we will recall these assumptions only in the (physical) case of differential operators
on X = R". We assume that

(2.1) P(h) =Y aa(x,h)(hD,)",

o] <2

where a,,(z, h) are bounded in C*(R"), a,(z,h) = a2 (x)+O(h) in C*, and a,(z, h) = a,(z)
is independent of h for |a| = 2. Furthermore, for some Cy > 0 the functions a,(z, h) have
holomorphic extensions to

(2.2) {r e C" : |Rex| >Cy, |Ilmz|<|Rex|/Cy},

they are bounded uniformly with respect to h, and a,(z,h) = a(x) + O(h) on that set.

Let P(z,€) denote the (full) Weyl symbol of the operator P, so that P = P*(x; hD;h),
and assume

(2.3) P(z,&h) — & —1

when z — oo in the set (B-3), uniformly with respect to (£, h) € K x]0,1] for any compact
set K € R" (here, and below, € means that the set on the left is a pre-compact subset of
the set on the right). We also assume that P is classically elliptic:

S aal(w)g" # 0 on TR\ {0},

jof=2

def

(2.4) pa(z, &) =

and that P is self-adjoint on L?(R™) with domain H*(R"). The Schrodinger operator (7))
corresponds to the choices 37, _, aal” = €2, aq = 0 for |a| = 1, and ag(z) = V(z) — 1.
The assumption (B.3) show that we can also consider a slowly decaying potential, as long
as it admits a holomorphic extension in (B.3).
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2.2. Dynamical Assumptions. The dynamical assumptions we need roughly mean that
the flow @' on the energy shell p~1(0) € T*X can be encoded by a Poincaré section,
the boundary of which does not intersect the trapped set Ky. The abstract assumptions
below are satisfied when the flow is hyperbolic on the trapped set which is assumed to be
topologically one dimensional — see Proposition .]].

To state the assumption precisely, we notice that
(2.5) p(z,&) = Y al(x)¢
ja|<2

is the semi-classical principal symbol of the operator P(z,hD;h). We assume that the
characteristic set of p (that is, the energy surface p~(0)) is a simple hypersurface:

(2.6) dp # 0 on p~1(0).
Like in the introduction, we denote by

o Y exp(tH,) : T*X — T*X

the flow generated by the Hamilton vector field H, (see (L[.2)).

Our assumptions on p(z, &) ensure that, for E close to 0, we still have no fixed point in
p Y(F), and the trapped set K (defined in ([[.4)) is a compact subset of p~!(E).

We now assume that there exists a “nice” Poincaré section for the flow near Ky, namely
finitely many compact contractible smooth hypersurfaces ¥, C p~1(0), k = 1,2,..., N with
smooth boundaries, such that

(2.7) D NKo=0, SNy =0, k#FK,
(2.8) H, is transversal to ¥ uniformly up to the boundary,

For every p € Ky, there exist p_ € X;_(,), p4 € Xj,(p)
(2.9) of the form py = &= (p), with 0 < t1(p) < tmax < 00, such that
{2 (p); —t—(p) <t <ti(p), t£0}N%, =0, Vk.

We call Poincaré section the disjoint union

>N S,
The functions p — p+(p), p — t+(p) are uniquely defined (p+(p) will be called respectively
the successor and predecessor of p). They remain well-defined for p in some neighbourhood
of Ky in p~(0)) and, in such a neighbourhood, depend smoothly on p away from 3. In
order to simplify the presentation we also assume the successor of a point p € ¥ belongs
to a different component:

(2.10) If p € ¥ N Ky for some k, then p, (p) € Xy N Ky for some £ # k.
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The section can always be enlarged to guarantee that this condition is satisfied. For in-
stance, for K consisting of one closed orbit we only need one transversal component to
have (P7)-(R-§); to fulfill (B-I() a second component has to be added.

We recall that hypersurfaces in p~'(0) that are transversal to H, are symplectic. In fact,
a local application of Darboux’s theorem (see for instance [R3, §21.1]) shows that we can
make a symplectic change of variables in which p = ¢, and H, = 0,,. If ¥ C {{, = 0}
is transversal to 0., then (zy, - 2, 1;&, -+ ,&—1) can be chosen as coordinates on .
Since w(p-1(0)= Z?;l d&; A dxj, that means that wly is nondegenerate. The local normal
form p = &, will be used further in the paper (in its quantized form).

The final assumption guarantees the absence of topological or symplectic peculiarities:
There exists a set ik € T*R"! with smooth boundary, and a symplectic
(2.11) diffeomorphism &y, : ik — Y which is smooth up the boundary together

with its inverse. We assume that rj extends to a neighbourhood of 5, in T*R™.
In other words, there exist symplectic coordinate charts on ¥, taking values in ik

The following result, due to Bowen and Walters [, shows that our assumptions are
realized in the case of 1-dimensional hyperbolic trapped sets.

Proposition 2.1. Suppose that the assumptions of §@-3 hold, and that the flow ® |y,
is hyperbolic in the standard sense of Eqs. ([J[-8). Then the existence of X satisfying
(B7)-(B11) 4s equivalent with Ky being topologically one dimensional.

Remark. Bowen and Walters [§] show more, namely the fact that the sets {3} can be
chosen of small diameter, and constructed such that 3 N K, forms a Markov partition for
the Poincaré map. Small diameters ensures that (.11]) holds, while, as mentioned before,
(RB:10) can always be realized by adding some more components.

Proposition P.]] shows that the assumptions of Theorem [[] imply the dynamical assump-
tions made in this section. The proof of [BY, Appendix c] shows that the following example
of “three-bumps potential”,

exp(—R(z — z)?) ,

M)

P=-RPA+V(z)—1, z€R* V(z)=2

e

=1

xy = (cos(2mk/3),sin(27k/3)),

satisfies our assumptions as long as R > 1 is large enough (see Fig. [l]).

2.3. The Poincaré map. Here we will analyze the Poincaré map associated with the
Poincaré section discussed in 8.3, and its semiclassical quantization.
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FIGURE 4. Schematic representation of the components Fj; of the Poincaré
map between the sets D;; and Ay, (horizontal /vertical ellipses). The reduced
trapped set 7; is represented by the black squares. The unstable/stable
directions of the map are the horizontal/vertical dashed lines.

2.3.1. Classical analysis. The assumptions in §2.9 imply the existence of a symplectic re-
lation, the so-called Poincaré map on X.

More precisely, let us identify »;’s with ik using ky, given in (R.11]), so that the Poincaré

section

N N N

=] S| S| TR

k=1 k=1 k=1

Let us call
TY KoNXx = |_|77C the reduced trapped set.
k

The map

f T —T, p— flp) < pilp)

(see the notation of (.9)) is the Poincaré map for ®|,. It is a Lipschitz bijection. The
decomposition 7 = | |, T allows us to define the arrival and departure subsets of T

def

D ={peTu CZk : pr(p) €T} =T fY(T),
def

A ={peTiCXi : p-(p) € Tey =T f(Tx) = f(Dix),
For each k we call J (k) C {1,..., N} the set of indices i such that Dy is not empty (that
is, for which 7; is a successor of 7). Conversely, the set J_ (i) refers to the predecessors of
T:.

Using this notation, the map f obviously decomposes into a family of Lipschitz bijections

fir : Dy = Ay Similarly to the maps p4, each f;; can be extended to a neighbourhood
of Dy, to form a family of local smooth symplectomorphisms

Fix + Dy — sz<Dzk> oo A,
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Dik

Aik

FIGURE 5. Trajectories linking the boundaries of the departure set D;, C ¥
and the arrival set A;, C ;. Note the stretching and contraction implied
by hyperbolicity. These trajectories and D, U A;; form the boundary of the

tube Ty defined by (B-19).

where Dj; (resp. Aj) is a neighbourhood of Dy in ¥, (resp. a neighbourhood of Ay in 3;).
Since our assumption on K is equivalent with the fact that the reduced trapped set T is
totally disconnected, we may assume that the sets {Di;}ics, ) (vesp. the sets { A tres ()
are mutually disjoint. We will call

def def
Dy = Uies,iDin, A = Ures o Air-

Notice that, for any index 7, the sets D;, A; both contain the set 7;, so they are not disjoint.
We will also define the tubes T, C T*X containing the trajectories between D, and Ag:

(2.12) Tie € {®'(p), : p€ Dy, 0t <ti(p)}.

See Fig. [l for a sketch of these definitions, and Fig. [J for an artistic view of T}

The maps Fj; will be grouped into the symplectic bijection F' between | |, Dy and | |, Ay.
We will also call F' the Poincaré map, which can be viewed as a symplectic relation on 3.
We will sometimes identify the map Fj, with its action on subsets of T*R"~!.

= -1 = e =~ def _q T def 4
Fy, =k, oFjpoky: Dy — Aje, Dy = Ky, (Dir) s A = r; (Air) -

7

Using the continuity of the flow ®*, we will show in §fL.1.1] that the above structure can
be continuously extended to a small energy interval z € [—§,]. The Poincaré map for the
flow in p~!(z) will be denoted by F, = (Fix.)1<ix<n (see §EI] for details).
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In the case of K, supporting a hyperbolic flow, a structural stability of K, holds in a
stronger sense: the flows ®' . and ®'|, are actually orbit-conjugate (that is, conjugate up
to time reparametrization) by a homeomorphism close to the identity. [P4, Thm. 18.2.3].

2.3.2. Quantization of the Poincaré map. In this section we make more explicit the operator
M(z,h) used in Theorem [. The semiclassical tools we are using will be recalled in §f.
Let us first focus on a single component Fjj, : D;;. — A;; of the Poincaré map. A quantiza-

tion of the symplectomorphism Fj; (more precisely, of its pullback Ek) is a semiclassical (or
h-) Fourier integral operator, that is a family of operators M (h) : L*(R"™') — L*(R"™1),
h € (0, 1], whose semiclassical wavefront set satisfies

(2.13) WF), (M) € A x Dy,

and which is associated with the symplectomorphism Ek (h-FIOs are defined in §B.3, and
WF), is defined in (B.9) below).

Being associated to the symplectic map ﬁ’@k means the following thing: for any a €
C°(A;x), the quantum operator Op}(a) transforms as follows when conjugated by M. (h)

(2.14) M (h)*Opp (a) My, (h) = Opp (i Fa) + h*=2 Op(b) ,

where the symbol oy, € S(;(T*R"_l) is independent of a, a;p = 1 on some neighbourhood
of Ty in Xy, and b € S5(T*R" 1), for every 6 > 0. Here Op}’ denotes the semiclassical Weyl
quantization on R*™~1 (see eq.(B)), and S5(T*R"~!) is the symbol class defined in §B.1]
The necessity to have § > 0 in (B.14)) comes from the slightly exotic nature of our Fourier
integral operator, due to the presence of some mild exponential weights — see §8.§ below.

The property (B.14), which is a form of Egorov’s theorem, characterizes M.(h) as a
semiclassical Fourier integral operator associated with Fj (see A2, Lemma 2] and [,
§10.2] for that characterization).

We can then group together the M. (h) into a single operator-valued matrix (setting
Mx(h) =0 when i € J(k)):

M(n) = P2RHY — L2RHY, M(h) = (Ma(h), ;o -

We call this M(h) a quantization of the Poincaré map F.

The operators M(z, h) in Theorem [[] will also holomorphically depend on z € R(d, My, h),
such that for each z € R(d, My, h) N R the family (M2, h))ne, is an h-Fourier integral
operator of the above sense.

Comment on notation. Most of the estimates in this paper include error terms of the
type O(h*), which is natural in all microlocal statements. To simplify the notation we
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adopt the following convention (except in places where it could lead to confusion):

u=v <= |lu—ovl=0h)|u|,

2.15
219 [Sull S N[Tull + [lo]l <= [[Sull < OQ)([[Tul| + [Jv]]) + OB>)|ull,

with norms appropriate to context. Since most estimates involve functions u microlocalized
to compact sets, in the sense that, u — x(z, hD)u € h>*.(R"), for some x € C(T*R"),
the norms are almost exclusively L? norms, possibly with microlocal weights described in
§B.3.

The notation u = Oy(f) means that ||ully = O(f), and the notation 7' = Oy, (f)
means that | Tullw = O(f)||ul|y. Also, the notation

neigh(A, B) for A C B,

means an open neighbourhood of the set A inside the set B.

Starting with §f], we denote the Weyl quantization of a symbol a by the same letter
a = a"(x,hD). This makes the notation less cumbersome and should be clear from the
context.

Finally, we warn the reader that from § onwards the original operator P is replaced by
the complex scaled operator P g, whose construction is recalled in §B.4. Because of the
formula (B.13), that does not affect the results formulated in this section.

3. PRELIMINARIES

In this section we present background material and references needed for the proofs of
the theorems.

3.1. Semiclassical pseudodifferential calculus. We start by defining a rather general
class of symbols (that is, h-dependent functions) on the phase space T*R?. For any § €
[0,1/2] and m, k € R, let

SIHTRY) = {a € C¥(T"RY x (0,1]) : Va e N, BN, 3Cas >0,
1020 alx, & h)| < Cogh™F=00alH1BD (ymIslYy

def

where (€)% (14 |¢[?)%.

Most of the time we will use the class with ¢ = 0 in which case we drop the subscript.
When m = k = 0, we simply write S(T*R?) or S for the class of symbols. In the paper
d = n (the dimension of the physical space) or d = n—1 (half the dimension of the Poincaré
section), and occasionally (as in (P.13)) d = 2n — 2, depending on the context.
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The quantization map, in its different notational guises, is defined as follows

au—Oph( a"(z, hD)u(x)
. = 27rh // x+y e M (y ) dyd

and we refer to [[J, Chapter 7] for a detailed discussion of semiclassical quantization (see
also [0, Appendix]), and to [[[J, Appendix D.2] for the semiclassical calculus for the symbol
classes given above.

We denote by \I/?’k(Rd) or U™F(R9) the corresponding classes of pseudodifferential op-
erators. The quantization formula (BZ]) is bijective: each operator A € W}"*(R9) is exactly
represented by a unique (full) symbol a(z, &; h). It is useful to consider only certain equiv-

alence classes of this full symbol, thus defining a principal symbol map — see [[[J, Chapter
8]:

on \I]gL,kGRd) s Sgn,k(T*Rd)/sgnfl,kflJr%(T*Rd) )
The combination o, o Op}, is the natural projection from Sg”’k onto Sg“’k / Sg”fl’kflw‘s. The
main property of this principal symbol map is to “restore commutativity”:
O'h(A o B) = O'h(A)O'h(B) .

Certain symbols in S™°(T*R?) admit an asymptotic expansion in powers of h,

(3.2) a(z,&; h) Z b a;(x, €), a; € S™ 7 independent of h,

>0
such symbols (or the corresponding operator) are called classical, and make up the subclass
STO(T*R?) (the corresponding operator class is denoted by \I/mO(Rd)). For any operator
A € \I/mO(Rd), its principal symbol oy, (A) admits as representative the h-independent
function ag(x,€), first term in (B.F). The latter is also usually called the principal symbol
of a.

In §B.H we will introduce a slightly different notion of leading symbol, adapted to a
subclass of symbols in S(T*R) larger than S, (T*R?).

The semiclassical Sobolev spaces, Hj(R?) are defined using the semiclassical Fourier
transform, Fy:

63l [ (@ FaOPE. Fu© ™ o [ e

Unless otherwise stated all norms in this paper, || ||, are L? norms.

We recall that the operators in W(RY) are bounded on L? uniformly in h, and that they
can be characterized using commutators by Beals’s Lemma (see [[J, Chapter 8] and [[3,
Lemma 3.5] for the Ss case):

lady, - - -ady, Al|ga,ze = O(hO-ON)

(3.4) A€ V(X) = { for linear functions ¢;(z,&) on R? x RY,
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where adg A = [B, A].

For a given symbol a € S(T*R%) we follow [[J] and say that the essential support is
contained in a given compact set K € T*R?,

ess-supp;, a C K € T*R?,
if and only if
Vx € S(T'RY), suppxNK =0 = ya € h*F(T*R?).
The essential support is then the intersection of all such K’s.
Here . denotes the Schwartz space. For A € W(R?), A = Op}’'(a), we call
(3.5) WEF;,(A) = ess-supp,, a .
the semiclassical wavefront set of A. (In this paper we are concerned with a purely semi-

classical theory and will only need to deal with compact subsets of T*R?. Hence, we won’t
need to define noncompact essential supports).

3.2. Microlocalization. We will also consider spaces of L? functions (strictly speaking,
of h-dependent families of functions) which are microlocally concentrated in an open set
V e T*R%

H(V) &f {u = (u(h) € L*(RY))4e(o,], such that
(3.6) 3C, >0, Vhe(0,1], |uh)|ieme < Cu,

AxeCx(V), Xx"“(x,hDy)u(h) =u(h) + Oy (h™)}.

The semiclassical wave front set of u € H(V') is defined as:
(3.7)

WEF(u) = T*R\ {(z,€) € T*R? : Ja € S(I"RY), a(z,&) =1, [[a“ul2 = O(r™)}.
The condition (B-7) can be equivalently replaced with a® u = O (h*°), since we may always
take a € .7 (T*R?). This set obviously satisfies WF,,(u) € V. Notice that the condition
does not characterize the individual functions u(h), but the full sequence as h — 0.

We will say that an h-dependent family of operators T = (T'(h))peo,1) : < (RY) — &'(R¥)
is semiclassically tempered if there exists L > 0 such that

@) P T (h)ull - < C M@ ullge, he(0,1), (@) = (142212

Such a family of operators is microlocally defined on V' if one only specifies (or consid-
ers) its action on states u € H(V), modulo Oy, »(h*). For instance, T is said to be
asymptotically uniformly bounded on H (V) if

(38) dCr >0Vue H(V) = hT,u >0, Vhe (0, hT7u) , ||T(h)u(h)||L2(Rk) <Crd,.
Two tempered operators T, 7" are said to be microlocally equivalent on V', iff for any
u € H(V) they satisfy (T — T")u||r2@sy = O(h*); equivalently, for any x € CZ(V),
(T =T )x" || 122 = O(h>).
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If there exists an open subset W &€ T*R* and L € R such that 7 maps any v € H(V)
into a state Tu € h™F H(W), then we will write

T=T(h): HV)— HW),
and we say that T is defined microlocally in W x V.

For such operators, we may define only the part of the (twisted) wavefront set which is

inside W x V:
(3.9)
WE, (T)N (W x V) (W x V)\{(,p) €W xV : Jae S(T'RY), be S(T*RY),
a(p) =1,b(p) =1, b"Ta” = 0Or2,r2(h™)}.
If WF, (T)N(W x V) @ W x V, there exists a family of tempered operators T'(h) : L* — L2,
such that 7 and T are microlocally equivalent on V', while Tis O 91— (h™) outside V,
that is
Toa® =0Oh®): 7R — 7R,
for all @ € S(T*R?) such that suppa NV = (). This family, which is unique modulo
Oy7(h™), is an extension of the microlocally defined T'(h), see [, Chapter 10].

3.3. Local h-Fourier integral operators. We first present a a class of globally defined
h-Fourier integral operators following [fd] and [[3, Chapter 10]. This global definition will
then be used to define Fourier integral operators microlocally.

Let (A(t))ic[-1,1) be a smooth family of selfadjoint pseudodifferential operators,
vt e [-1,1], A(t) = Opy(a(t)), a(t) € Sq(T*R%:R),

where the dependence on t is smooth, and WF,(A(t)) C Q € T*R?, in the sense of (B.3).
We then define a family of operators

Ut) « L*(RY) — L*(RY),
hDU(t) +U(t)A(t) =0. U(0) = Id.
An example is given by A(t) = A = ", independent of ¢, in which case U(t) = exp(—itA/h).

(3.10)

The family (U(t))c[-1,1) is an example of a family of unitary h-Fourier integral oper-
ators, associated to the family of canonical transformations k(t) generated by the (time-
dependent) Hamilton vector fields Hy, ). Here the real valued function ay(t) is the principal
symbol of A(t) (see (B.4)), and the canonical transformations r(t) are defined through
d *

CR0(0) = (50 (o (0)) . w(O)(0) = p, p € TR

If U = U(1), say, and the graph of k(1) is denoted by C, we conform to the usual notation
and write

Ue(R"xR%C), where C'={(z,&y,—n) « (2,8) = k(y,n)}.
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Here the twisted graph C’ is a Lagrangian submanifold of 7%(R? x R%).

In words, U is a unitary h-Fourier integral operator associated to the canonical graph
C' (or the symplectomorphism (1) defined by this graph). Locally all unitary h-Fourier
integral operators associated to canonical graphs are of the form U(1), since each local
canonical transformation with a fixed point can be deformed to the identity, see [, Lemma
3.2]. For any y € S(T*R%), the operator U(1) ¥, with y € S(T*R?) is still a (nonunitary)
h-Fourier integral operator associated with C'. The class formed by these operators, which
are said to “quantize” the symplectomorphism x = x(1), depends only on &, and not on the
deformation path from the identity to x. This can be seen from the Egorov characterization
of Fourier integral operators — see [, Lemma 2| or [[3, §10.2].

Let us assume that a symplectomorphism & is defined only near the origin, which is
a fixed point. It is always possible to locally deform k to the identity, that is construct
a family of symplectomorphisms x(t) on T*R? such that (1) coincides with x in some
neighbourhood V' of the origin [2, Lemma 3.2]. If we apply the above construction to get
the unitary operator U(1), and use a cutoff y € S(T*R?), supp x € V, then the operator
U(1)x" is an h-Fourier integral operator associated with the local symplectomorphism
k| V. Furthermore, if there exists a neighbourhood V' € V such that x[ V' = 1, then
U(1)x" is microlocally unitary inside V.

For an open set V @ R% and » a symplectomorphism defined in a neighbourhood V of
V', we say that a tempered operator T satisfying
T : HV)— H(k(V)),
is a micrololocally defined unitary h-Fourier integral operator in V', if any point p € V has
a neighbourhood V,, C V such that

T H(V,) — H(r(V,))

is equivalent to a unitary h-Fourier integral operator associated with x| V,, as defined by
the above procedure. The microlocally defined operators can also be obtained by oscillatory
integral constructions — see for instance [BJ], §4.1] for a brief self-contained presentation.

An example which will be used in §f£.1] is given by the standard conjugation result, see [f2,
Proposition 3.5 or [[F, Chapter 10] for self-contained proofs. Suppose that P € 0"""(R9)
is a semi-classical real principal type operator, namely its principal symbol p = o, (P) is
real, independent of h, and the Hamilton flow it generates has no fixed point at energy
zero: p =0 == dp # 0. Then for any py € p~1(0), there exists a canonical transformation,
K, mapping V = neigh((0,0), T*R%) to x(V) = neigh(po, T*R?), with x(0,0) = py and

por(p) =&lp) peV,

and a unitary microlocal h-Fourier integral operator U : H(V) — H(k(V)) associated to
k, such that

U*PU = hD,, : H(V) = H(V).
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While &, is the (classical) normal form for the Hamiltonian p in V| the operator hD, is
the quantum normal form for P, microlocally in V.

The definition of h-Fourier integral operators can be generalized to graphs C' associated
with certain relations between phase spaces of possibly different dimensions. Namely, if a
relation C' C T*R? x T*RF is such that its twist

Cl = {(37,§7y, _77) ; (l’,f,y, —77/) S C}
is a Lagrangian submanifold of 7%(R? x R¥), then one can associate with this relation
(microlocally in some neighbourhood) a family of h-Fourier integral operators T : L?(R*) —
L*(R?) [B, Definition 4.2]. This class of operators is denoted by I} (R?xR*; C’), with r € R.
The important property of these operators is that their composition is still a Fourier integral
operator associated with the composed relations.

3.4. Complex scaling. We briefly recall the complex scaling method of Aguilar-Combes
[ — see [E],[BY, and references given there. In most of this section, this scaling is inde-
pendent of h, and allows to obtain the resonances (in a certain sector) for all operators
P(h), h € (0,1], where P(h) satisfies the assumptions of §p.1]

For any 0 < 6 < 6, and R > 0, we define I'g p C C" to be a totally real deformation of
R", with the following properties:
F,g N B(Cn((), R) - BRn(O, R) 5
(3.11) [y N C™\ Ben(0,2R) = ?’R" N C™ \ Bea(0,2R)
Fg={x+ifor(zr) : x €eR"}, 07 for(x)=04(0).
If R is large enough, the coefficients of P continue analytically outside of B(0, R), and we
can define a dilated operator:

def =~

Pyr = P Py ru = ]S(a)f

FG,R ? FQ,R )

where P is the holomorphic continuation of the operator P, and u is an almost analytic
extension of u € C°(I'p g) from the totally real submanifold I'y p to neigh(Iy z, C").

The operator Py p — z is a Fredholm operator for 20 > arg(z + 1) > —26. That means
that the resolvent, (Py g —2)~', is meromorphic in that region, the spectrum of Py x in that
region is independent of # and R, and consists of the quantum resonances of P.

To simplify notations we identify I'y p with R" using the map, Spr : I'g. r — R",
(3.12) I'hrp>x+—— Rex e R",

and using this identification, consider Py g as an operator on R, defined by (5, =) Pa, RS) R
(here S* means the pullback through S) We note that this identificaton satisfies

CH lull 2@y < 115 rull e
with C' independent of 0 if 0 < 6 < 6,.

) S C HUHLQ(Rn) s

To.r
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FI1GURE 6. The complex scaling in the z-plane used in this paper.

The identification of the eigenvalues of Py r with the poles of the meromorphic continu-
ation of

(P—2)"": C*(R") — C™(R")
from {Im z > 0} to D(0,sin(26)), and in fact, the existence of such a continuation, follows
from the following formula (implicit in [BY], and discussed in [H]): if x € C°(R"), supp x €
B(0, R), then
(3.13) X(Por—2)"x = x(P—2)""x.

This is initially valid for Im z > 0 so that the right hand side is well defined, and then by
analytic continuation in the region where the left hand side is meromorphic. The reason
for the Fredholm property of (Pyr — z) in D(0,sin(260)) comes from the properties of the
principal symbol of Py r — see Fig. f|l. Here for convenience, and for applications to our
setting, we consider Py p as an operator on L?(R™) using the identification Se,r above. Its
principal symbol is given by

(3.14)  powl@,€) = plz + ifon(e), [(1 +idfor(@))] 7€), (2,€) € T'RY,

where the complex arguments are allowed due to the analyticity of p(z,&) outside of a
compact set — see §2.1. We have the following properties

Repo,r(z,€) = p(z, &) + O(0%)(€),

Impy,p(, &) = —dep(w, &) [dfo,r(2)'€] + dup(z, )| fo,r(2)] + O(0%)(€)* .
This implies, for R large enough,

(3.16) Ip(z,€)] <9, |z| >2R = Impygr(z,§) < —-CO.

(3.15)

For our future aims, it will prove convenient to actually let the angle 6 explicitly depend
on h: as long as § > chlog(1/h), the estimates above guarantee the Fredholm property
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of (Py.r — z) for z € D(0,0/C), by providing approximate inverses near infinity. We will
indeed take 6 of the order of hlog(1/h), see (B-3]).

3.5. Microlocally deformed spaces. Microlocal deformations using exponential weights
have played an important role in the theory of resonances since [RI]]. Here we take an
intermediate point of view [Bf, 3 by combining compactly supported weights with the
complex scaling described above. We should stress however that the full power of [RI]
would allow more general behaviours of p(z, &) at infinity, for instance potentials growing
in some directions at infinity.

Let us consider an h-independent real valued function Gy € C°(T*R¢%; R), and rescale it
in an h-dependent way:

(3.17) G(z,&) = Mhlog(1/h)Go(z,&), M >0 fixed.

For A € U™%(R%), we consider the conjugated operator

efG“’(m,hD)/hAeG“’(m,hD)/h e~ adgw (¢,nD) /hA

2 \n

(3.18) LUy /1 ¢
:Z( ) <— adG’“’(a:,hD)) A+ Ry,

where

The semiclassical calculus of pseudodifferential operators [[3, Chapter 7],[[5, Chapter 4,
Appendix D.2] and (B:I7) show that

1 ¢ .
(ﬁ adG“’(m,hD)) A = (Mlog(1/h))" (adgw(wnp)) A € (Mhlog(1/h)" T, R, V£>0.

Since ||GY||L2— 2 < Cy, functional calculus of bounded self-adjoint operators shows that
| exp(£G™ (&, D)) < b~
so we obtain the bound,
Rp = 02, 12(log(1/h)E hE2CMY — @, 5 (RL-2CoM-LbY
with § > 0 arbitrary small. Applying this bound,we may write (B.I§) as

v v (1) (1 !
(319) efG (:B,hD)/hAeG (z,hD)/h ~ Z ( E') (ﬁ a,de(x,hD)) A c \I]m,O(Rd) )
£=0 '

In turn, this expansion, combined with Beals’s characterization of pseudodifferential oper-
ators (B.4), implies that the exponentiated weight is a pseudodifferential operator:

(3.20) exp(G¥(z, hD)/h) € WYY (RY) | 5 > 0.
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Using the weight function G, we can now define our weighted spaces. Let H(R?) be the
semiclassical Sobolev spaces defined in (B.J). We put

(3.21) HE(RY) = & @D EERTY) | u|jp, S [|eC @Ry

and

o~ G (@hD)/h 7Gw(m,hD)/hv>

<u7U>H’é = < u,e H’}f :

As a vector space, HE(R?) is identical with HF(R?), but the Hilbert norms are different.
In the case of L2, that is of k = 0, we simply put H2 = H.

The mapping properties of P = p¥(z,hD) on Hg(RY) are equivalent with those of
Pe & e=CU/hp eGU/h on [2(RY), which are governed by the properties of the (full) symbol
pe of Pg: formula (B.19) shows that

(3.22) pe =p —iH,G + O(h*log*(1/h)).

At this moment it is convenient to introduce a notion of leading symbol, which is adapted
to the study of conjugated operators such as Pg. For a given Q € S(T*R?), we say that
q € S(T*RY) is a leading symbol of Q¥ (z, hD), if
(3.23) ¥y € (0,1),Va, Be N, RT70200(Q — q) = Oa (&)™),
that is, (Q —q) € S®7(T*RY) for any v € (0, 1). This property is obviously an equivalence
relation inside S(T*R%), which is weaker than the equivalence relation defining the principal
symbol map on ¥, (see §B.1). In particular, terms of the size hlog(1/h) are “invisible” to

the leading symbol. For example, the leading symbols of pg and p are the same. If we can
find ¢ independent of A, then it is unique.

For future use we record the following:
Lemma 3.1. Suppose
Q"(z,hD) : Hg(RY) — Hg(RY), Q€ S(T*RY),

is self-adjoint (with respect to the Hilbert norm on Hg). Then this operator admits a real
leading symbol. Conversely, if ¢ € S(T*R?) is real, then there exists Q € S(T*RY) with
leading symbol q, such that Q*(z, hD) is self-adjoint on Hg(RY).

Proof. This follows from noting that
Q= e MQ (x, hD)e ",

has the same leading symbol as Q" (x,hD), and that self-adjointness of @Q* on Hg is
equivalent to self-adjointness of Q% on L?: the definition of Hg in (B:21) (the case of
k =0) gives

(QYu,v) g, = (e @""Q u, e ") 2 = (Q%(e /M), e M) 1o
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The weighted spaces can also be microlocalized in the sense of §8.3: for V' &€ T*R?, we
define the space

Ha(V) = {u=u(h) € Hg(R?), : 3C, > 0, ¥h € (0,1, [u(h)| o) < Cu

IxelCx(V), x“u=u+0xh>)}.

In other words, Hg(V) = & @hP)/h (V). This definition depends only on the values of
the weight GG in the open set V.

(3.24)

For future reference we state the following

Lemma 3.2. Suppose T : H(V) — H(x(V)) is an h-Fourier integral operator associated
to a symplectomorphism r (in the sense of §3.3), and is asymptotically uniformly bounded
(in the sense of (B.3)). Take Gy € C°(neigh(k(V))), G = Mhlog(1/h)Go.

Then the operator

(3.25) T : Heg(V) = Hg(k(V))

1s also asymptotically uniformly bounded with respect to the deformed norms.

Proof. Since the statement is microlocal we can assume that V' is small enough, so that
T = TyA in V, where Tj is unitary on L?*(R?) and A € U;,. As in the proof of Lemma ]|
the boundedness of (B.29)) is equivalent to considering the boundedness of

=GV @hD)T ("G @hD)/h A . [2(RY) — [}(RY),
where

A def o~ (K" G)¥(@,hD)/h A (K" G)" (@,hD)/h

Because of (B:19), we have uniform boundedness of A,-¢ on L?. Unitarity of Ty means that
it is sufficient to show the uniform boundedness of

Toflewa(:v,hD)/hTOe(n*G)w(m,hD)/h _ o~ Mlog(1/h)(Ty ' GY (2,hD)Ty) , M log(1/h) (i Go)" (x,h D)

on L?. Egorov’s theorem (see [[3, §10.2]) shows that
Ty 'G¥ (2, hD)Ty = G (x,hD), G.—K*Gy € ¥, (RY).
Since [GY,x*G3] = h*B, B € U, °(R?), the Baker-Campbell-Hausdorff formula for

bounded operators showsﬂ that
To—le—Gw(x,hD)/hToe(f@*G)“’(J:,hD)/h _ e—Mlog(l/h)G’,Ef (z,hD) 6Mlog(l/h)(H*Go)“’(a:,hD)

_ eMlog(l/h)(fG}g’(m,hD)+n*Go)w(m,hD))Jr(’)Lg%Lg(log(l/h)2h2)

= exp Orz2,12(hlog(1/h))
=1Id + OLQ%LQ(hIOg(l/h)) .

fAlternatively, we can compare exp(M log(1/h)GY) with (exp(M log(1/h)G,))" and use product for-
mulze for pseudodifferential operators — see [i3, Appendix] or [[[§, Section 8.2].
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This proves uniform bounded of globally defined operators ThA, and the asymptotic uni-
formly boundedness in the sense of (B.§) of 7" on spaces of microlocally localized func-
tions. n

3.6. Escape function away from the trapped set. In this section we recall the con-
struction of the specific weight function G' which, up to some further small modifications,
will be used to prove Theorems [[] and [.

Let Kp C p~'(F) be the trapped set on the E-energy surface, see ([.4), and define
(3.26) K=EK% ] Ke.
|E|<6
The construction of the weight function is based on the following result of [[9, Appendix]:
for any open neighbourhoods U,V of K, U C V, there exists G| € C>®(T*X), such that
(3.27) Gilv=0, H,G1 >0, H,Gilp1(-252)<C, HyGilp1(-s5\v=>1.

These properties mean that Gy is an escape function: it increases along the flow, and strictly
increases along the flow on p~!([—6,d]) away from K (as specified by the neighbourhood
V). Furthermore, H,G is bounded in a neighbourhood of p~*(0).

Since such a function G; is necessarily of unbounded support, we need to modify it
to be able to use Hg-norms defined in §B.5 (otherwise methods of [BI] could be used
and that alternative would allow more general behaviours at infinity, for instance a wide
class of polynomial potentials). For that we follow {3, §§4.1,4.2,7.3] and [BT, §6.1]: G is
modified to a compactly supported Gy in a way allowing complex scaling estimates (B.1Q)
to compensate for the wrong sign of H,G5. Specifically, BI], Lemma 6.1] states that for
any large R > 0 and &y € (0,1/2) we can construct G5 with the following properties:
Gy € C°(T*X) and

H,Gy >0 on T 3r X,
(3.28) HyGy 2 1 on TiosmX N (P~ ([=6,0]) \ V),
H,Gy > = on T*X.

Let

G Mh log(1/h)Gy, with M >0 a fixed constant.

Then, in the notations of §B.5, we will be interested in the complex-scaled operator
Pyr : HG(R") — Hg(R"),

for a scaling angle depending on h:

(3.29) 0 = 0(h) = My hlog(1/h), M; > 0 fixed.

Inserting the above estimates in (B.29), we get

(3.30) |Repo.rc(p)| <9/2, Rep¢V, = Impyralp) < —-0/C,
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provided that we choose [B], §6.1]

M M
(3.31) el > M, > 507, for some C' > 0,

Assuming that the constant M, appearing in the statement of Theorem [[] satisfies
0 < My < M,

for § > 0 and h > 0 small enough, the rectangle R(d, My, h) is contained in the uncovered
region in Fig. fI, hence the scaling by the angle (B.29) gives us access to the resonance
spectrum in the rectangle R(d, My, h). In §6.3 we will need to further adjust My with
respect to Mj.

3.7. Grushin problems. In this section we recall some linear algebra facts related to the
Schur complement formula, which are at the origin of the Grushin method we will use to
analyze the operator Py p.

For any invertible square matrix decomposed into 4 blocks, we have

-1
P11 Pi2 qin Q2 1 1
— — — _ ,
(P21 P22) <QQ1 q22) Pir = @11 — 12922 21

provided that ¢; exists (which implies that go2, and hence pq1, are square matrices). We
have the analogous formula for g5,

(G2 = P22 — P21P1y P12 -
One way to see these simple facts is to apply gaussian elimination to
D — (pn plz)
P21 P22

so that, if py; is invertible, we have an upper-lower triangular factorization:

pu 0 (1 Pii P12
3.32 P = ~ .
( ) (p21 1) (0 P22 — p21p111P12

The formula for the inverse of p;; leads to the construction of effective Hamiltonians for
operators (quantum Hamiltonians) P : H; — Hy. We first search for auxiliary spaces H.
and operators Ry for which the matrix of operators

<P—z R_

R. 0) cHIOH. — Ho D H,

is invertible for z running in some domain of C. Such a matrix is called a Grushin problem,
and when invertible the problem is said to be well posed.
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When successful this procedure reduces the spectral problem for P to a nonlinear spectral
problem of lower dimension. Indeed, if dimH_ = dim H, < co, we write

(s )= (E £0).

and the invertibility of (P — z) : H; — H, is equivalent to the invertibility of the finite
dimensional matrix E_,(z). The zeros of det E_(z) coincide with the eigenvalues of P
(even when P is not self-adjoint) because of the following formula:

(3.33) tr 7{(]3 —w) tdw = — tr%EJr(w)lE’_Jr(w) dw ,

valid when the integral on the left hand side is of trace class — see [[[4, Proposition 4.1]
or verify it using the factorization (B.33). Here fz denotes an integral over a small circle
centered at z. The above formula shows that dimker(P — z) = dimker £, (2).

The matrix £, (2) is often called an effective Hamiltonian for the original Hamiltonian
P —see [ for a review of this formalism and many examples. In the physics literature,
this reduction is usually called the Feshbach method.

We illustrate the use of Grushin problems with a simple lemma which will be useful later
in §6.3.
Lemma 3.3. Suppose that

det [ P R_
P‘(m 0

where H; and Hy are Banach spaces. If P~': Hy — Hy exists then

) . H1@H_—>H2@H+,

P is a Fredholm operator <= R P 'R_:H_ — H, is a Fredholm operator,
and
ind? =ind R, P"'R_.

Proof. We apply the factorization (B.33) with p;; = P, p1o = R_, po1 = R4, pas = 0. Since
the first factor is invertible we only need to check the the Fredhold property and the index

of the second factor:
1 PR
0 —R,P'R_)"

and the lemma is immediate. O

4. A MICROLOCAL GRUSHIN PROBLEM

In this section we recall and extend the analysis of 9] to treat a Poincaré section X C
p~1(0) for a flow satisfying the assumptions in §2.3. In [[] a Poincaré section associated
to a single closed orbit was considered. The results presented here are purely microlocal in
the sense of §B.3, first near a given component ¥ of the section, then near the trapped set



FROM OPEN QUANTUM SYSTEMS TO OPEN QUANTUM MAPS 27

K. In this section P is the original differential operator, but it could be replaced by its
complex scaled version P g, since the complex deformation described in §B.4 takes place
far away from Kj. Also, when no confusion is likely to occur, we will often denote the Weyl
quantization ¥ of a symbol y € S(T*R?) by the same letter: y = x¥.

4.1. Microlocal study near ¥,. First we focus on a single component ¥, of the Poincaré
section, for some arbitrary k& € {1,..., N}. Most of the time we will then drop the subscript
k. Our aim is to construct a microlocal Grushin problem for the operator

E(P_Z)a

near ¥ = X, where |Rez| <4, |Im z| < Myhlog(1/h), and ¢ will be chosen small enough
so that the flow on @[, . is a small perturbation of ®[,.

4.1.1. A normal form near ¥i. Using the assumption (R.11) and a version of Darboux’s
theorem (see for instance [B3, Theorem 21.2.3]), we may extend the map kp = k : X — X
to a canonical transformation kj defined in a neighbourhood of ¥ in T*R",

O {(2.6) € TR (2',€) € S, [l S, J6] <5},

such that
(41) Rk(l‘/a 07 5/7 0) - K’k(l‘/a gl) € Zkﬁ ) pbo ”‘%k - gn .

We call ), = Rk(ﬁk) the neighbourhood of ¥; in 7% X in the range of k. The “width along
the flow” € > 0 is taken small enough, so that the sets {4, & = 1,..., N} are mutually
disjoint, and it takes at least a time 20e for a point to travel between any () and its
SUCCessors.

The symplectic maps K allow us to extend the Poincaré section 3 to the neighbouring
energy layers p~!(2), z € [—4,4]. Let us call

def ~

Fke = Bl (N {& = 2}).
Then, if 6 > 0 is taken small enough, for z € [—§, d] the hypersurfaces

S(2) = ks () = {R(,0:€, 2), (¢, &) € 5y}

are still transversal to the flow in p~*(z). Using this extension we may continuously deform

the departure sets Djj into Dji(2) o mk7z(l~?jk) C Yi(z), and by consequence the tubes

Tji. into tubes Tji(z) C p~*(2) through a direct generalization of (2:I3). The tube Tj.(2)
intersects 3;(z) on the arrival set A;,(2) C X;(z); notice that for z # 0, the latter is in

general different from r;.(A;;) (equivalently Aj(z) = k2 (Ajr(2)) is generally different
from E]k(())) These tubes induce a Poincaré map Fjj . bijectively relating D;x(z) with
Ajk(z)-
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The following Lemma, announced at the end of §@.3.1], shows that for |z| small enough
the interesting dynamics still takes place inside these tubes: the trapped set is stable with
respect to variations of the energy.

Lemma 4.1. Provided § > 0 is small enough, for any z € [0, ] the trapped set K, €
Uk T (2)-

As a consequence, in this enerqy range the Poincaré map associated with 3(z) fully
describes the dynamics on K.

Proof. From our assumption in §R.1], there exists a ball B(0, R) (the “interaction region”)
such that, for any F € [—1/2,1/2], the trapped set Kz must be contained inside Th0.mX-
If R is large enough, any point p € p~1(2) \Tg(0 r) X, 2~ 0, will “escape fast” in the past
or in the future, because the Hamilton vector field is close to the one corresponding to
free motion, 23 ; £j0,;. Hence we only need to study the behaviour of points in pHz)N
T0,r)R™

Let us define the escape time from the interaction region Ty, 5 X: for any p € T p X,

tese(p) = inf{t > 0, max(|m, @' (p)], |72~ (p)]) > R},

For any E € [—1/2,1/2], the trapped set K can be defined as the set of points in p~!(E)
for which t.s.(p) = co. Let us consider the neighbourhood of K formed by the interior
of the union of tubes, (LTj)°. By compactness, the escape time is bounded from above
outside this neighbourhood, that is in p~!(0) N T0.mX \ (UTi%)°, by some finite ¢; > 0.
By continuity of the flow @', for § > 0 small enough, the escape time in the deformed
neighbourhood p~!(2) N T 0. X \ (WTk(2))° will still be bounded from above by 2¢;: this
proves that K, € UT;(2). O

def

A direct consequence is that the reduced trapped sets 7T;(z) 4
inside D;(z).
For any set S(z) depending on the energy in the interval z € [—§, d], we use the notation

(4.2) S=E s

|z]<é

¥(z) N K, are contained

We will extend the notation to complex values of the parameter z € R(d, My, h), identifying
S(z) with S(Re z).

4.1.2. Microlocal solutions near ¥. Let us now restrict ourselves to the neighbourhood of
Yk, and drop the index k. The canonical transformation x can be locally quantized using
the procedure reviewed in §B.3, resulting in a microlocally defined unitary Fourier integral
operator

(4.3) U : HQ)— H(Q), U*PU=hD,,, microlocally in €.
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For z € R(d, My, h), we consider the microlocal Poisson operator

(4.4) K(2): LP(R™) = Lo (R"),  [K(2) vi] (2’ ) = e/ vy (),

loc
which obviously satisfies the equation (hD,, — z) K(2) v, = 0.

For v, microlocally concentrated in a compact set, the wavefront set of K(z) vy is not
localized in the flow direction. On the other hand, the Fourier integral operator U is well-
defined and unitary only from € to 2. Therefore, we use a smooth cutoff function ygq,
Xo = 1in Q, xq = 0 outside 2" a small open neighbourhood of €2 (say, such that |z,| < 2¢

inside '), and define the Poisson operator

def i

K(z) = xoUK(z): HX) — H(Q).

This operator maps any state v, € H(X) C L*(R"!), to a microlocal solution of the
equation (P — z)u = 0 in Q, with u € H('). As we will see below, the converse holds:

each microlocal solution in € is parametrized by a function vy € H(X).

In a sense, the solution u = K(z)v, is an extension along the flow of the transverse data
vy. More precisely, K(z) is a microlocally defined Fourier integral operator associated with
the graph

(4.5) C_ = {(R(@, 2n, &, Rez2); 2, &), (.)€, |z, < e} CTHX x R*™).

Equivalently, this relation associates to each point (2/,¢’) € 3 a short trajectory segment
through the point k(2’,0;¢’,Rez) € X(Re z). We use the notation C_ since this relation is
associated with the operator R_ defined in ([.I3) below.

Back to the normal form hD, . let us consider a smoothed out step function,
Xo € C*(R,,), xo(xn) =0 for z, < —€/2, xo(z,) =1 for z, >¢/2.

We notice that the commutator (i/h)[hD,,, xo] = X((x,) is localized in the region of the
step and integrates to 1: this implies the normalization property

(4.6) ((i/W)[hDs,, XolK(2)v4, K(2)vs) = |04 ]| Z2@a1)

where (e, @) is the usual Hermitian inner product on L?(R"). Notice that the right hand
side is independent of the precise choice of .

We now bring this expression to the neighbourhood of ¥ through the Fourier integral
operator xygU. This implies that the Poisson operator K (z) satisfies:

(4.7) ((@/W)[P, X" K (2)vs, K(2)vy) = [Jog | for any vy € H(Y).

Here the symbol x is such that x* = U x{ U* inside €2, so x is equal to 0 before &~¢(X)
and equal to 1 after ®¢(X) (in the following we will often use this time-like terminology
referring to the flow @), In (.7), we are only concerned with [P, x*] microlocally near €,
since the operator x3U is microlocalized in €' x Q. Hence, at this stage we can ignore the
properties of the symbol x outside €.
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The expression ([L.71) can be written

(4.8) K(2)*[(i/h)P,x"|K(2) = Id : HX) — H(Z).
Fixing a function y with properties described after (f.7) and writing x = x (where f is
for forward), we define the operator

def _

(4.9) Ri(2) = K(2)"[(i/h) P, xs] = K(2)" U'xq [(i/h) P, xy]

(from here on we denote y = x" in similar expressions). This operator “projects” any

u € H(2) to a certain transversal function vy € H(X). But it is important to notice that
R, (z) is also well-defined on states u microlocalized in a small neighbourhood of the full
trapped set K: the operator x& [(i/h)P, x 7] cuts off the components of u outside €2. Hence,
we may write

R, (2) : H(neigh(K)) — H(Y).
The equation ([.§) shows that this projection is compatible with the above extension of
the transversal function:

(4.10) R.(2)K(z)=1Id : HX)— H().

This shows that transversal functions v, € H(X) and microlocal solutions to (P — z)u =0
are bijectively related. Since | Im z| < Myhlog(1/h) and |z, | < 2¢ inside ' (resp. |z,| <€
inside €2), we have the bounds

1K (2)||r2—r2 = O(h*M0) , [|[R(2)|| 122 = O(R™M0).

Just as K(z)*, Ry(z) is a microlocally defined Fourier integral operator associated with the
relation

(4.11) C, = {2, & (72, 0,6 Rez)), (¥ 2,,& Rez) e Q) C TR x X),

namely the inverse of C_ given in ([L.F). In words, this relation consists of taking any
p € QN p Y (Rez) and projecting it along the flow on the section (z).

We now select a second cutoff function y;, with properties similar with x, and satisfying
also the nesting property

(4.12) X» =1 in a neighbourhood of supp x; .
With this new cutoff, we define the operator

(4.13) R_(2)u_ = [(i/h)P, x| K(2) : H(S) — H(Q).

Starting from a transversal data u_ € H(X), this operator creates a microlocal solution in
2 and truncates by applying a pseudodifferential operator with symbol H,x;. Like K(z), it
is a microlocally defined Fourier integral operator associated with the graph C'_. its norm
is bounded by ||R_(2)||z2— 2 = O(h~Mo).
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4.1.3. Solving a Grushin problem. We are now equipped to define our microlocal Grushin

problem in Q. Given v € H(2), vy € H(X), we want to solve the system

(4.14) { EZ 235 — 2)u+ R_(2)u- - Z+

with u € L*(X) a forward solution, and u_ € H(X).

Let us show how to solve this problem. First let @ be the forward solution of (i/h)(P —
z)u = v, microlocally in 2. That solution can be obtained using the Fourier integral oper-
ator U in ([.J) and the easy solution for hD,, . We can also proceed using the propagator
to define a forward parametrix:

T
(4.15) e E(z)w, E(z) o / e~ HP=2)h gy
0

The time T is such that ®7(Q) N Q = () (from the above assumption on the separation
between the Q) we may take T'= 5¢). By using the model operator hD,, , one checks that
the parametrix E(z) transports the wavefront set of v as follows:

(4.16) WEF,(E(2)v) € WF,(v) U T (WF,(v)) U U O (WF,(v) Np t(Rez)).

In general, u does not satisfy R, (z)u = v, so we need to correct it. For this aim, we solve
the system

(i/h)(P—2)u+ R_(2)u- =0,
(4.17) {R+(z)ﬂ =v, — R, (2)u
through the Ansatz
u- =-—vy + R (2)u,
(4.18) {ﬂ =—xps K(2)u_.

Indeed, the property (P — z) K(z) = 0 ensures that (i/h)(P — 2)u = —R_(2)u_. We then
obtain the identities
Ri(z)u=—K(2)"[(i/h)P, xy] xo K(2) u_
= _K(2)" [(i/h)P, x1) K(2) u

= —U_.

I8}

The second identity uses the nesting assumption (H,xs)x» = Hpxs, and the last one
results from ([.§). This shows that the Ansatz (f.1§) solves the system (f.17). Finally,

(u = u+u, u_) solves (J.I4) microlocally in Qx X, forv € H(2) and v, € H(X) respectively.
Furthermore, these solutions satisfy the norm estimate

(4.19) lull + llu—l < A=<l + o)) -
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The form of the microlocal construction in this section is an important preparation for the
construction of our Grushin problem in the next section. In itself, it only states that, for v
microlocalized near 3, (i/h)(P — z)u = v can be solved microlocally near ¥ in the forward
direction.

4.2. Microlocal solution near K. We will now extend the construction of the Grushin
problem near each Y, described in §f.1], to obtain a microlocal Grushin problem near the
full trapped set K. This will be achieved by relating the construction near > to the one
near the successor sections ;. We now need to restore all indices & € {1,..., N} in our
notations.

4.2.1. Setting up the Grushin problem. We recall that H(ik) C L*(R™') is the space
of functions microlocally concentrated in ) (see (Bf])). For u € L*(X) microlocally
concentrated in neigh(K,T*X), we define

(4.20) Ri(2)u = (RL(2)u, ..., R (z)u) € H(Z,) x ... x H(Zy),

where each RE(z) : H(neigh(K)) — H(S)) was defined in §[EJ] using a cutoff X5 e
Ce(T*X) realizing a smoothed-out step from 0 to 1 along the flow near 3.

Similarly, we define

R_(z) H(Z)) x ... x H(Sy) — HUN_ ),
(4.21)

R_(z2)u_ = ZR{(z)uﬂ, u_ = (u', ..., u).

Each R (z) was defined in ([EI3) in terms of a cutoff function xF € C(T*X) which also
changes from 0 to 1 along the flow near >, and does so before Xl}- Below we will impose
more restrictions on the cutoffs 7.

With these choices, we now consider the microlocal Grushin problem

{(z’/h)(P —u+R_(2u. =v,

(4.22) Ry(2)u =0, .

The aim of this section is to construct a solution (u,u_) microlocally concentrated in a
small neighbourhood of

Ko x k74T % o x 53 (Tw)
provided (v, v, ) is concentrated in a sufficiently small neighbourhood of the same set.

To achieve this aim we need to put more constraints on the cutoffs x¥. We assume that
each ¥ € C°(T*X) is supported near the direct outflow of T;. To give a precise condition,



FROM OPEN QUANTUM SYSTEMS TO OPEN QUANTUM MAPS 33

let us slightly modify the energy-thick tubes j\}k (see (.12), (E2)) by removing or adding
some parts near their ends:

j\ﬁ;” o {®'(p) : p€ Bjk, —892e <t <ty (p)+ s12€}, si==t.
With this definition, the short tubes fﬁ; do not intersect the neighbourhoods €, €2;, while
the long tubes fj};* intersect both (see Fig. ).

We then assume that

(4.23) Xi(p)=1 for pe | T,
JEJ+ (k)

and supp x¥ is contained in a small neighbourhood of that set. Furthermore, we want
the cutoffs {X’g}k:17.,,7N to form a microlocal partition of unity near Ky: there exists a

neighbourhood Vj of K containing all long tubes:

(4.24) Vo o | JThT,
k7j

and such that

N
(4.25) > Xtlp)=1 for pelp.

k=1

These conditions on ¥ can be fulfilled thanks to the assumption (Z:I{) on the section
3. A schematic representation of these sets and cutoffs is shown in Fig. [].

4.2.2. Solving the homogeneous Grushin problem. Let us first solve (f.29) when v = 0. The
wavefront set WFh(vi) - ZNIk is mapped through k. to a subset of ¥;(z). The microlocal
solution Kj(z)v¥, initially concentrated inside the neighbourhood €2}, can be extended
along the flow to a larger set (2, which intersects the successors 3;(z) of £x(z) and contains

~

the union of tubes ;. 1) T;." (we remind that j # k according to assumption (E10)).
This can be done by extending the symplectomorphism £y, the associated unitary Fourier
integral operator Uy, and replace the cutoff function xq, by a function Xof supported in

the set Q;; we can then define the extended Poisson operator as:

K (z) = ngr UpK(2): HX) — H(Q).

Assuming ky, .(WF,,(v¥)) is contained in the departure set Dy(z) C X4(z), the extended

microlocal solution K, (z)v* is concentrated in the union of tubes Uj€J+(k)Tj,;+(z). In that

case, we take as our Ansatz

(4.26) up & E K (2) 0k
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FIGURE 7. Schematic representation of (part of) the neighbourhoods V; C
Vo of Ky (resp. green shade and green dashed contour), some sections >y
(thick black) and arrival sets Ay; C ¥ (red). We also show the tubes 755+
connecting s with A;o (the dashed lines indicate the boundaries of 775 ),
the supports of the cutoffs x¥ and X? (dot-dashed line), and two trajectories
in Ky (full lines inside V7).

Set

(4.27) tmax = max{t, (p), p € UpDy(2), |Rez| < 6}

the maximal return time for our Poincaré map. Then the above Ansatz satisfies the estimate

(4.28) |z S BN F o |y

Due to the assumption ([:23), the cutoff x§ effectively truncates the solution only near
the sections Y1 (z) and X;(2), j € Jo(k), but not on the “sides” of supp x¥. Hence, the
expression

(4.29) (i/R)(P — 2)ux = [(i/h) P, xp] K (2) v}
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can be decomposed into one component R (2)v% supported near Dy(z), and other com-

ponents supported near the arrival sets A;.(z) C €, due to the “step down” of xF near
Aj(z). The assumption ([.25) ensures that

(4.30) [(i/h) P, x¥] = —[(i/h)P, xi] microlocally near A;;(z),

so the expression in ([.29) reads

(431) /1P = 2u = REGE = 3 (6P K7 () ok
JjEJ+ (k)

Now, for each j € Ji (k) we notice that K, (z) vk is a solution of (P — z)u = 0 near Aj,(z),
so this solution can also be parametrized by some transversal data “living” on the section
3;(2) (see the discussion before ([7)). This data obviously depends linearly on v*, which
defines the monodromy operator M (2):

(4.32) K (20" = Kj(2) Mj(2)v%,  microlocally near Ajx(z).

The operators M (z) are microlocally defined from Dy, C 3 to Ejk(z) C f]j, they are
zero on H(Dy,) for £ # j. The identity ({.§) provides an explicit formula:

(4.33) Mii(z) = K;(2)" [(i/ )P XK (2) = RL(2) K] (2)

Before further describing these operators, let us complete the solution of our Grushin

problem. Combining ({.31) with ([.39), we obtain
(434) (/P — 2 = Rk — 3 RE(2) Mys(2)ok

JjeJ+ (k)
This shows that the problem (f:23) in the case v = 0 and a single v;", WF,(vf) C Dy, is
solved by
u=xpKf(z)of, b =0k wl = My (), g e (k).
We now consider the Grushin problem with v = 0, vy = (vi,...,vY) with each v¥ mi-

crolocalized in ﬁk By linearity, this problem is solved by
U= Z Xb K+ U+7

u];E—UJFJr Z Mr(2)0%

keJ—(4)

(4.35)

From the above discussion, u is microlocalized in the neighbourhood Vj of K , while ul s
microlocalized in D; U A;(z).

Let us now come back to the monodromy operators. The expression ([.33) shows that
Mi(2) is a microlocal Fourier integral operator. Since we have extended the solution
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Ki(z) vk beyond €, the relation associated with the restriction of K (z) on H(Dj) is a
modification of (7)), of the form

CF = {(@' (Fr=(p)); p); p € Diy —€ <1< by + €},
such that the trajectories cross ¥;. On the other hand, the relation C associated with

R’.(2) is identical with ([EIT). By the composition rules, the relation associated with
Mi(2) is

C"={(p',p), p€Djr, p =kl o Fjp.onkp:lp) = Fi:(p)}.

This is exactly the graph of the Poincaré map Fjj . : Djp(2) — Ajx(z), seen through the
coordinates charts Ky ., K; ..

When 2 is real, the identity ({.§) implies that M (z) : H(ﬁjk) — H(Avjk(z)) is microlo-
cally unitary. Also, the definition ([.33) shows that this operator depends holomorphically
of z in the rectangle R (9, My, h). To lowest order, the z-dependence takes the form

M(z) = M;i(0) Op} (exp(izt /h)) (1 + O(hlog(1/h)))

where £, € C°(R"!;R,) is an extension of the return time associated with the map ﬁjk,z
on Djj. For z € R(9, My, h), this operator satisfies the asymptotic bound

(4.36) Mk b (ppy— (A, (2)) = O Motmax).

4.2.3. Solving the inhomogeneous Grushin problem. It remains to discuss the inhomoge-
neous problem

(4.37) (i/h) (P —2)u+R_u_=wv,
for v microlocalized in a neighbourhood V; of K , which satistfies
(4.38) vic| Tt

gk

(each tube @;’L intersects € only near Dy, see figure ).

Let us first assume that v is microlocally concentrated inside a short tube fﬁg—. We use
the forward parametrix E(z) of (i/h)(P — z) given in (f.17) with the time
(439) T = tmax + 567

and consider the Ansatz

(4.40) u Xy B(2)v.

According to the transport property (f.I€), F(z)v is microlocalized in the outflow of fj;_,

so the cutoff y§ effectively truncates E(z)v only near Aj,(z) C ©;. The partition of unity
(E:23) then implies that

(i/h) (P —2)u=v+|[(i/h)P,x}] E(z)v =v —[(i/h)P, Xi] E(z)v.
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Also, the choice of the time T ensures that F(z)v is a microlocal solution of (P — z)u =0
near A;(2), so
E(z)v = K;(2)R}.(2)E(z)v microlocally near A;(2).
Thus, we can solve ([.37) by taking
W = R.(2)E(z)v, u' =0, (#].

The propagation of wavefront sets given in (II0) shows that v/ € H (ij(z)), and that
WEF),(u) C Tﬁ;_ does not intersect the “step up” region of the forward cutoffs X?, so that
Ri(z)Ju=0forall{=1,...,N.

If v is microlocally concentrated in Vi N U‘t|§€<1>t(l3k), we can replace the cutoff x} in

(F40) by
X5 + Z Xb
teg_(k
and apply the same construction. The only notable difference is the fact that Rﬁ(z)u may
be a nontrivial state concentrated in U|t‘<eﬁk
In both cases, we see that |ju| + [[u_| < h~Moltmaxt29)|y||. By linearity, the above

procedure allows to solve ([.37) for any v mlcrolocahzed inside the neighbourhood Vj.

This solution produces a term R u, which can be solved away using the procedure of
§2.3. Notice that || R ul < h=Moltmaxte)||y)|.

We summarize the construction of our microlocal Grushin problem in the following

Proposition 4.2. For d > 0 small enough there exist neighbourhoods ofK K(; T X,
Vi and V_, and neighbourhoods of k; (7;) mn Zj, V+, and V?, j=1,--- N, such that for
any

(v,vy) € H(V,) x HVY) x - H(VY),
we can find

(w,u_) € H(V_) x H(V}) x --- H(VN),
satisfying
%(P —2)u+ R_(2)u- =0, Ri(2)u=wvy microlocally in Vi x V] x - V.
Here Ry (z) are given by (E20) and (E21). Furthermore, the solutions satisfy the norm
estimates

ull + ffu—|| S B=Mo@om29([fo] + [foy ) ,
where tyay 18 the maximal return time defined in (E27).

One possible choice for the above sets is

Vi=Vi, V.5V, Vif=Dy, VE=Dyu (J A2)

|Re z|<6
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Proof. Take v € H(V7), and call (u,u_) the solution for the inhomogeneous problem ([.37).
Then the propagation estimate ([.1¢) implies that u is concentrated inside the larger neigh-

bourhood Vy C UJ-’kfjJ,;* (see (E24)), while &/ € H(A,(z)).

We have R* (z)u € H (Dy) so, provided the data satisfies b e Dy, the computations
of §f.2.9 show how to solve the homogeneous problem with data (vy — R, (z)u). That
solves the full problem. The expressions (f.35) show that the solutions to the homogeneous

problem (@, @*) are microlocalized, respectively, in Vo and in Dy, U Ay(z). O

Remark. The proof of the proposition shows that the neighbourhoods Vf and V* are
different. For given data (v, v™), the solutions (u,u_) will not in general be concentrated in
the same small set as the initial data. This, of course, reflects the fact that a neighbourhood
V of Kj is not invariant under the forward flow, but escapes along the unstable direction.
In order to transform the microlocal Grushin problem described in this proposition into a
well-posed problem, we need to take care of this escape phenomenon. This will be done
using escape functions in order to deform the norms on the spaces L?(X) (as described in
§8.1), but also on the auxiliary spaces L?(R"™1).

5. A WELL POSED GRUSHIN PROBLEM

The difficulty described in the remark at the end of § will be resolved by modifying the
norms on the space L?(X) x L*(R* 1) through the use of exponential weight functions
as described in §B.5. These weight functions will be based on the construction described in
§B.0.

In most of this section we will consider the scaled operator Py r globally, so we cannot
replace it by P any longer. To alleviate notation, we will write this operator

(51) PIP&R, 92M1h10g<1/h), R>>Co,

where Cj is the constant appearing in (B.9), and M; > 0 is a constant (it will be required
to satisfy (B.31]) once we fix the weight G, and is larger than M, appearing in Theorem [I)).

We will first discuss the local construction near each ¥, and then, as in the previous
section, adapt it to construct a global Grushin problem.

Our first task is still microlocal: we explain how a deformation of the norm on L?(X) by
a suitable weight function GG can be used to deform the norms on the N auxiliary spaces
L?(R™ 1), microlocally near Y.

5.1. Exponential weights near ;. As in §[L.1], in this subsection we work microlocally
in the neighbourhood €, of one component X, (Q is the neighbourhood described in §f1]);
we drop the index k in our notations. Notice that the complex scaling has no effect in this
region, so P = Py r. We will impose a constraint on the weight function G near X, and
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construct a weight functions ¢ on 3. The construction of the local solution performed in
S]] will then be studied in these deformed spaces.

Take a function ¢° € C°(R"™ 1), and use it to define Go € C>®(T*R™), so that
é(](x‘/’xn’fl’fn) = go<x/,§/) n Q/.

Then, using the Fourier integral operator U given in ([[.3), one can construct a weight
function Gy € S(7T*X) such that

GY = U (Gp)" U*  microlocally near (.
Notice that Gg now depends on h through an asymptotic expansion
(5.2) Go(h) ~ Z W Goj, Goj € CP(T*X) independent of h.
Jj=0
This weight satisfies Gy = Goorlin 2, and the invariance property
(5.3) [P(h), Gy (x,hD)] =0 microlocally in 2.

As in §B.1, we rescale these weight functions by

def

(5.4) G Y Mhlog(1/h) Gy, g% Mhlog(1/h)¢".

Still using the model hD,, , one can easily check the intertwining property

5.5) G"(x,hDgy;h) K(z) = K(2) g* (', hDy; h) : HX) — H(Q'),
' e G @D/ (1) = [ (z) e 9" @ hDw/h L [() - H(RY).

Using the weights G and ¢g we define the microlocal Hilbert spaces Hg(§') and Hy(X) by the
method of §8.5. We need to check that the construction of a microlocal solution performed
in §ff.1.9 remains under control with respect to these new norms.

Lemma 5.1. The operators

K(2) : Hy(S) — Ha(), =€ RS, My, h)

satisfy the analogue of (7). Namely, taking a cutoff x jumping from 0 to 1 near 3 as in

8. 1.3, then any vy € Hy () will satisfy
(5.6) ([i/h) P, X" ) K (2) vy, K(2) vi)mg = ||vll7, -
Proof. From the cutoff y we define the deformed symbol yg through

X¢&(x, hD) def —G*(2,hD)/h " (z, hD) oG (@,hD)/h
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The symbol calculus of §B.5 shows that x¢ also jumps from 0 to 1 near ¥, so that (returning
to the convention of using y for x*)

([i/P)P,XIK (2)vs, K(2)vy)me = (e 9M(i/h)PXIK (2)vy, e MK (2)v) 12

(K (2)*[(i/h)Pa, xc) K(2) e M v e v, ) 1
(K(2)*[(i/h)P,xa] K(2) e " vy, e vy o
= e v |* = oyl -

In the second line we used (p.5), the third line results from P = Py, due to (b.3), and the
last one from (7)) applied to xg. O

Equation (B.H) shows that, for z € R(d, My, h), the operators K(z) and Ry (z) defined
respectively in ([L9) and (f.13), satisfy the same norm estimates with respect to the new
norms as for the L? norms:

(5.7) K (), ) 10y = O
(58) ||R+(Z)||HG(Q)*>H!](§) = O(h_MOE) ’ HR—(Z)HHg(f])aHG(Q) _ O(h—Moe) )

The arguments presented in §fI.]] carry over to the weighted spaces, and the microlocal
solution to the problem ([:I4) constructed in §f.1.J satisfies the norm estimates

(5.9) lullsre + llu-ll, S 27200l + vl ) -

Given a function Go(x, &) satisfying H,Goo = 0 in €2, one can iteratively construct a full
symbol Gy of the form (B.3), such that (f-J) holds. Now, the lower order terms in Gy may
change the norms only by factors (1+ O(Mhlog(1/h))), so the same norm estimates hold
if we replace Gy by its principal symbol G in the definition of the new norms. As a result,
we get the following

Proposition 5.2. Tuke ¢° € CX(T*R™Y), Go(z',2n,&. &) = ¢, €), Gy € C°(X)
satisfying Go = Gg o K in €2, and

G = Mhlog(1/h)Gy, g = Mhlog(1/h)Gy.
Then, the estimates (5.315.9) hold in the spaces Ha(Q), Hy(3).

5.2. Globally defined operators and finite rank weighted spaces. In this section
we transform our microlocal Grushin problem into a globally defined one. This will require
transforming all the microlocally defined operators (Ry(z), M;x(z)) into globally defined
operators acting on L?(X) or L?(R"1). Because our analysis took place near the trapped
set Ky, we will need to restrict our auxiliary operators to some subspaces of L?(R""1) ob-
tained as images of some finite rank projectors. These subspaces are composed of functions
microlocalized near K. To show that the resulting Grushin problem is well-posed (invert-
ible), the above construction must be performed using appropriately deformed norms on
the spaces L?(X), L*(R"!), obtained by using globally defined weight functions G, g;.
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Our first task is thus to complete the constructions of these global weights, building on

4] and §1.

5.2.1. Global weight functions. We will now construct global weight functions G € C°(X),
g; € C(T*R™!) (one for each section X;). For this, we will use the construction of an
escape function away from K presented in §B.6, and modify it near the Poincaré section so
that it takes the form required in Proposition p.3, and allows us to define auxiliary escape
functions g;. These weight functions will allow us to to define finite rank realizations of the
microlocally defined operators Ry (z) and M(z).

Our escape function Gy € S(T*X) is obtained through a slight modification of the weight

Go(z,€) described in (B:2§). The modification only takes place near the trapped set K,
and in particular near the sections ;. The following lemma is easy to verify.

Lemma 5.3. Let {Q;, };-1.x be the neighbourhoods of ¥; described in §[{.1.1, Q and Qf

be small neighbourhoods of Q;, 2y @ QO € QF, and let V' be a small neighbourhood of IA((;
(see (B:2Q)). Then there exists Gy € C°(T*X) such that

N
H,Go>1 on ThoanX Np t([=6.a)\W, W=Evul]ay,
j=1
(5.10) H,Go=0 on €,
HpGO > —50 onT"X.

Besides, using the coordinate charts K; : (2; — Y (see §f.7.1), we can construct Gy such
that G o k;|

" is independent of the energy variable &, € [—9,0].

The last assumption (local independence on &,) is not strictly necessary, but it sim-
plifies our construction below, making the auxiliary functions g; independent of z — see
Proposition [.2.

For the set V we assume that V' &€ Vi, where V; is the set defined in (f.3§). As a
consequence, there exists a set V/, with V' € V] € V; with the following property. Consider
the the parametrix E(z) ([L.I3) with the time 7" = ¢,.x + 5e. Then there exists t; > 0 such
that, for any p € p~1([—d,6]) \ V/, the trajectory segment {®'(p), 0 < t < T} spends a
time t > t; outside of W. The main consequence of this property is a strict increase of the
weight along the flow outside V/:

(5.11) Vp € Tham X NP~ ([=0,0)\ VI, Go(®"(p)) — Golp) = 1.

(Here we use the fact that 7" is small enough, so that a particle of energy z ~ 0 starting
inside T o) at ¢ = 0 will remain inside T 35 up to ¢ = T.) The set V will be further
characterized in the next subsection.
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From now on, we will take for weight function G = Mhlog h GGy with such a function Gy,
and use it to define a global Hilbert norm || e ||y« x) as in (B:2T]). As in Proposition p.3,
we define, for each j = 1,..., N, the auxiliary weight

(5.12) gi(a’, €)= Mhlog(1/h) Gy o iy(«/,0,€,0), («/,€) €%y,
and extend it to an element of C°(T*R" V), so that the deformed Hilbert norm
ol = lle=% AP o gy

is globally well-defined. Proposition p.9 shows that our microlocal construction near ;

satisfies nice norm estimates with respect to the spaces Heo(X), Hy,.

To see the advantages of having weights which are escape functions we state the fol-
lowing lemma which results from applying Lemma .9 to the Fourier integral operator

exp(—itP/h):
Lemma 5.4. Suppose that p; = ®(pg) for some t > 0, and that

A Golpr) — Golpo) > 0.

Suppose also that x; € C(T*X), j = 0,1, have their supports in small neighbourhoods of
p;’s. Then for h small enough we have

(5.13) e X e < R X € g < RO
5.2.2. Finite dimensional projections. We want to construct a finite dimensional subspace

of the Hilbert space H, (R"'), such that the microlocal spaces H,, (V) are both approxi-
mated by it modulo O(h™).

For each j =1,...,N, let S}, S; be two families of open sets with smooth boundaries in
T*R™ 1, satisfying
(5.14) FNT)eS eS;cDy, j=1,...,N.

In particular, each S;, S} splits into disjoint components S,'gj € S C Ekj.

Once these sets are chosen, we need to adjust the set V' in Lemma p.3, making it thinner
if necessary:

Lemma 5.5. For § > 0 small enough, there ezists V = neigh([A(g, Vi) and to > 0 such that
the following property holds.

For any indices j = 1,...,N, k € J.(j), any z € [=4,8] and any point p € ﬁkj n.S;
such that its successor ﬁkm(p) does not belong to S}, then the trajectory between r;.(p)
and Fy; .(k;.(p)) spends a time t >ty outside of W =V U U;V:1 Q.

The time ¢, is necessarily smaller than the maximal return time ¢, of (f:27); on the
other hand, o increases if we decrease the width ~ e of the sets Q7. See figure {§ for a
sketch. Now, let
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FIGURE 8. Schematic representation (inside some energy layer p~!(z)) of
the neighbourhood V' and the sets Sy, S;. The departure/arrival sets Dy, Ay,
are similar to the ones appearing in figure [I. The sets Sy, S; are represented
through their images in X, ¥; through sj ., ;.. We showe 3 trajectories
staying inside V' all the time, and one ending outside Sj.

Q; = Q;(',&;h) € S(T"R™Y),
with leading symbol ¢; independent of h (the leading symbol is meant in the sense of
(B:23)). We choose that leading symbol to be real and have the following properties:

gi(p) <0, pes;,

(5.15) qj(p) >0, peT*R*"'\S;, liminfg(p)> 0.
p—00

Lemma B.1] shows that one can choose ); so that
QY (x',hDy) : Hy (R"') — Hy (R™") s self-adjoint.

Under the assumptions (B.19), we know that @); has discrete spectrum in a fixed neigh-
bourhood of R_ when h > 0 is small enough. Let

(5.16) H; 10, (Hy, (R™)), where II; © 1p_(Q¥(2/,hD,))

that is, II; is the spectral projection corresponding to the negative spectrum of Q7. In
particular,

(5.17) Iy, m,, =1, dim(Hy) ~ ;A" ;> 0.
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We group together these projectors in a diagonal matrix I, o diag(I1y, ..., IIy) projecting
Hy (R™1) x -« Hy (R™1) onto H % Hy x -y
The space #H; will be equipped with the norm || e || m,,- For future reference we record

the following lemma based on functional calculus of pseudodifferential operators (see for
instance [[[J, Chapter 7]):

Lemma 5.6. For any uniformly bounded family of states u = (u(h) € L*(R™™1))n—0,
WFh(U) c Sj — ||U — HJuHHgJ = O(hOO)HUHHqJ .

In §p.J we used the microlocally defined operators
R(2) : Ho(Q) = Hy, (%)),
Renaming them Rﬁrm(z) (where m stands for microlocal) we now define

def

(5.18) R.(2) ST R, : Ho(X) — H;.
The estimate (p-§) together with the above Lemma shows that
(5.19) IR (g, = O0%), 2 € R(S, Moy, ).

The operators Ri(z) are globally well-defined once we choose a specific realization of
Ri’m(z), which gives a unique definition mod O(h*). We have thus obtained a family
of operators

def

Ri(z) = (RL,....,RY) : He(X) — Hix - Hy.

In turn, the operators R’ (z) are obtained by selecting a realization of the microlocally
defined operator R’ , () on Hy, (3;), and restricting that realization to H,;:

(5.20) R (2) =R, (2)11; : H; — Ha(X).
Again, these operators are well defined mod O(h*). Putting together (p.§) with (5.17)

ensures that
1RZ ()34, 110 = O(R7).
We group these operators into
R (z) : Hyx - Hy — Hg(X)

(5.21) R ()u_ = iRj_(z) W ul = (ut, . udY).
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5.3. A well posed Grushin problem. With these definitions we consider the following
Grushin problem:

P(z) : HixH— HoxH, HEH < Hy,
(5.22) wt /(i (b)) —2) R_(z
play & (I =) ) e i .

Since Py p(h) — z (which we will denote by P — z for short) is a Fredholm operator, so is
P(z), as we have only added finite dimensional spaces. For Im z > 0 the operator (P — z)
is invertible, so Lemma B-J shows that the index of P(z) is 0. Hence, in order to prove
that P(z) is bijective it suffices to to construct an approximate right inverse and then use a
Neumann series. The rest of this section will be devoted to the proof of this (approximate)
right invertibility of P(z).

5.3.1. A well-posed homogeneous problem. As before we first consider the homogeneous
problem

(5.23) (i/h)(P —2)u+ R_(2)u_ =0, Ri(z)u=vy,

where only one component v% is nonzero (we may assume that ||[v¥ |3, = 1). For that we
adapt the methods of §f£.2.9. We construct an approximate solution using the extended
Poisson operator K, (z) (that operator acts on the microlocal space H,, (3), so its action

on Hy, is well-defined modulo O(h>)), and take
u=x, K (2) v},

where ¥ is the backwards cutoff function with properties given in (E13),([fE23) and (E25).
The fact that GG increases along the trajectories implies that u satisfies the same norm
bound as with the “old norms” (see ([.2§)):

ull gy S Bt kg,

The microlocally defined operator satisfies
Rim(z) u= v_li + OHgk (h™), Rim(z) U= OHQJ_ (h™), j#k.
As a result, projecting the left hand side onto H* has a negligible effect:
RE(2)u =T (0% + O(h™)) = v + Oy, (h™).
Following (f.29) we write
(5.24) /B)(P = 2)u = [(i/ )P, xE) Kif (2)vs € H(X).

As noticed in §[£2.7, the transport properties of K, (z) show that u is microlocalized inside
the union of tubes Ujeh(kﬂ?,j(z), so the right hand side in ((.24) splits into a component
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concentrated near Dy, and other components concentrated near the arrival sets A;x(z),
J € Ji(k). We rewrite (:39) for the present data:

(5.25) (i/h)(P — z)u=RE | (2)ok — > R (2)M(2)0h .

JE€J+(k)

Each state M x(2)v% is microlocalized inside the arrival set gjk(z) C f]j, which is not
contained in S; in general — see the remark at the end of §f] and Fig. §.

Consequently one could fear that replacing the operators R’ .m(2) by the truncated oper-

ators R?. (z) would drastically modify the above right hand side. The microlocally weighted
spaces Hg, Hy, have been constructed precisely to avoid this problem. The mechanism is a
direct consequence of the relative properties of the sets .S; and V' explained in Lemma p.5
Namely, a point p, € Sj; is either “good”, if its image p; = Fji.(px) € S5, or “bad”, in
which case

(5.26) Go(pj) — Golpr) = to -
Let us choose a cutoft
(5.27) X; €CE(S;), x;=1 onSj, x;=0 outside neigh(Sj},sS;).

Since the Fourier integral operator Mi(z) : H (D) — H (K]k(z)) is uniformly bounded,
(P-29) implies the norm estimate (see Lemma [5.9)

Vol € Hi, (1= x5) Muw(2) v llm,, S BMOTMO [0l Ly, 2 € R(6, Mo, h)

~

For this estimate to be small when h — 0, we require the ratio My/M to be small enough
to ensure the condition
My
to — —tmax > 19/2 > 0.
(The bounds (B-31]) and My < M; show that the ratio My/M can indeed be chosen arbitrary
small.)

On the other hand, x¥ Mx(z)v% is microlocalized inside neigh(Sj}, S;), so Lemma p.q
implies that (I[; — 1)x¥ Mp(2) v = Ong(hoo). Putting these estimates altogether, we
find that

(5.28) Vot € Hy, Mp(2) v =T Mp(2) of + ORM0/2) || .

This crucial estimate shows that the projection of M, (2) v_’i on H; has a negligible effect.
We now define the finite rank operators

(5.29)

Mu(z) & {Hj Mip(2) 1y, Hie = H;, j € Ju(k),

. in short M(z) = IT,M(2) 1, .
0 otherwise,
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This operators satisfy the same norm bounds ([.3G) as their infinite rank counterparts.
Using these operators, and remembering that the operators R’ : H; — He(X) are bounded
by O(h=*0¢) we rewrite (f.29) as
(i/)(P = z)u = RE(z)of = ) RL(2)Mji(z) ol + O(RMF) ol
j€J4 (k)
Generalizing the initial data to arbitrary v, € H; X --- X Hy, we obtain the

Proposition 5.7. Assume z € R(J, Mo, h). Let vy € H. Then there ezists (u,u_) €
HZ(X) x H such that

(5.30) (i/h)(P — 2)u+ R_(2)u_ = O(WM) vyl in Ha(X),
(5.31) Ri(z)u =vp+OMX) vyl inH,
(5.32) lull oo S ATME=F oy [l ufla S B7M o 3.

The second part of the solution, u_, is of the form
U— = (M(z) - Id)”—}—, ||M(Z)||H_),H 5 h_MOtmax ,
where M(z) = (M]k(z))]kzlj\f is the matriz of operators defined in (529).

We collect some properties of the operators ]\A/fjk(z), j € Jy(k), for z € [-4,4]:

o Mji(2) is uniformly bounded, and WF},(M;,(z)) C S; x Sy
o take pp € Sy, p; = jhz(pk) € Sj:

(1) if the trajectory segment connecting the points rk:(pk), £j:(p;) is contained
in W, then microlocally near (p;, p), M;i(2) is an h-Fourier integral operator
of order zero with associated canonical transformation F’]kz = /{J_zl o Fijk . 0 Kz

(2) if furthermore the above segment is disjoint from the support of G, then M, (2)
is microlocally unitary near (p;, pi).

(3) if, on the opposite, this segment contains a part outside W, then there exist
X; € C°(neigh(p;)), xx € C°(neigh(py)), equal to 1 near p; and pj, respectively,
and a time #(p;) > 0 independent of the exponent M, such that

XY My(z)x} = O(WM )y - Hy — Hy .
For z € R(d, My, h) similar statements hold, modulo the fact that the symbol of the Fourier
integral operator is multiplied by exp(—izt, /h), which modifies the order of the operator.

5.3.2. A well-posed inhomogeneous problem. Let us now consider the inhomogeneous prob-
lem

(5.33) (i/h)(Por — 2)u+ R_(2)u_ =v veE Hg(X).

We will use a partition of unity to decompose v into several component.
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Take 15 € S(T*X), s = 1 near p~([—§/2,6/2]), and ¥5 = 0 outside p~*([—4,4]). The
operator (Pyr — z) is elliptic outside p~'[—d/2,6/2]. Taking 15 similar with 5 but with
supp s C p~'([—46/2,8/2]), the operator

LY (Ppp—z— i) : H: — Hg

is invertible, with uniformly bounded inverse L™! € ¥9. Hence, by taking
w= (/L (- ),
we find
(i/D)(Por — 2)u = (i/B)(Pyr — 2 — 0§ Ju + O(h) Jull = (1 = v§) v+ O(h=)|v],

which solves our problem for the data (1 —§") v. The first equality uses pseudodifferential
calculus and the fact that ¢5s = 1 on the support of ;:

JELTN L = YP) = Qg (h®)

Let us now consider the data (¢¥v) microlocalized in p~!([—d,d]). We split this state
using a spatial cutoff g € C°(X), such that ¢g = 1 in B(0, R), ¥r = 0 outside B(0,2R).
To solve the equation

(5.34) (i/h)(Py.p — 2)u =, v=(1—19gr)Y5v,
we take the Ansatz
(5.35) u=FE(z)v,

with F(z) the parametrix of ([.15)) (with P replaced by Py ), for the same time 7" = tyax+€
as in ([39). It satisfies

(536) (’L/h) (PG,R — z)u =7 — e_iT(PG,R_Z)/h .
The time T' is small enough, so that
* (p_l([_‘Sa d]) \TE(O,R)X) NTpo.r/2)X = 0, 0<t<T.

Hence, the states
’,D’(t) déf e*lt(Pg’sz)/h’,&’

are all microlocalized outside T3, p o) X for t € [0, T]. The estimate (B.30) (adapted to the

weight Gy) then implies that B, Lemma 6.4]
~ 2 o~
O[o(O)lrg = 7 T((Fo. = 2)8(2), 0(0)) e < (=Ma/Cy +2My) log(1/h), ¥t € [0, 7],

where C; > 0 is independent of the choice of M;. Once more, we assume M,/M; is small
enough so that —M;/Cy + 2My < —M;/2C}, and hence

e TPor=2/h g < O BT

so the problem ([-34) is solved modulo a remainder O(RM17/261),
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We now consider the component (¢z¢§'v) microlocalized in 17 o) N pY([-9,6]). W

split it again using a cutoff ¢y, € C°(V1), ¢y, = 1 in the set V] €@ V; (see the dlscussmn
after Lemma [.J). To solve the problem for the inhomogeneous data

v=(1—¢y)vrdsv,
we use the Ansatz (f.39), resulting in the estimate (5.3G). The microlocalization of v outside
of V/, together with the assumption (B.I11]), implies the norm estimate (see Lemma [.4)

e TR < € RMOIMOT ]|

Again, we assume My/M small enough, so that Mt,/2 — MyT > Mt;/3. We have solved
the problem for ¥ up to a remainder O(hM"/3)||3|| ...

We finally consider the data v = 9} ¥ ry§"v microlocalized inside V. For this data, we
can use the microlocal analysis of §f1.2.3. If WF,(?) is contained inside V; N 7/?.;_, then

WEF,(xF E(2)0) (see the Ansatz (E40)) will intersect ¥, inside the arrival set ij(z), but
not necessarily inside S;. However, the same phenomenon as in Lemma [.J occurs: there

exists a time ¢3 > 0 such that, for any z € [~4,6] and any p € Vi NT;;~ (2),
(537 0 (9) € 55(2) \ 15-(8)) = Gol () — Gol) > 1.

If we decompose R, ,(2)E(z)v using the cutoff y; of (F-21), the property (5:37) implies
that

(1= x}) R u(2) E(2)0 |, = O(BM2MT) 5]
Again we assume M, /M small enough, so that Mt3/2 — MyT > Mts/3. Hence, if we set
W = B ()0 B0
R, (2)X E(2)0 + O(h) |0l g
R, 1 (2) E(2)0 + O(M)|[0] g

we end up with a solution of (E:33) modulo a remainder O(hM%/3)||7]| ..

We recall that M; /M is bounded by (B-31)), so all the above error estimates can be put
in the form O(h“™)||7|| g, with ¢ > 0 independent of M: we have thus shown that the
problem (5.33) admits a solution for any v € Hg, up to this remainder. We may then
apply Proposition p.7 to solve the resulting homogeneous problem, and get an approximate
solution for the full problem (F:27). We summarize this solution in the following

Proposition 5.8. Assume z € R(J, My, h). Let (v,vy) € Hg x H. Then there exists
(u,u_) € HZ x H such that

(5.39) (i/h)(P = 2)u+ R_(2)u— =v+OMM)([ollng + velln)  in He(X),
R (2)u = vy + Oh®) (Jvllag + lvell) — inH,
(5:39)  lullaz, + llu-llse S P02 (o] g + o ]|2) -



50 S. NONNENMACHER, J. SJOSTRAND, AND M. ZWORSKI

5.4. Invertibility of the Grushin problem. We can transform this approximate solution
into an exact one. The system (f.3§) can be expressed as an approximate inverse of P(z):

(5.40) <uu) = &) (vi)

P(2)E(z) =T+ R(h): Ho x H — Ho xH, [|[R(h)| = OhM).

For h small enough the operator I + R(h) can be inverted by a Neumann series, so we
obtain an exact right inverse of P(z),

E(z) =E(z) (I +R(2))"".

Since P(z) is of index zero, £(z) is also a left inverse, which proves the well-posedness of

our Grushin problem (F:27).

Theorem 2. We consider h > 0 small enough, and z € R(J, My, h). For every (v,vy) €
Hg x H, there exists a unique (u,u_) € HE x H such that

(5.41) { EZ f(Ligfe,R — 2)u+ R_(2)u_ - Z+

where Ry (z) are defined by (b.18) and (5.20). The estimates ([5.39) hold, so if we write

()=ea () eo= (e 2),

then the following operator norms (between the appropriate Hilbert spaces) are bounded by:
(542 I, 1B NE-N. (B ]| = O YoCmest29),

Moreover, we have a precise expression for the effective Hamiltonian:
(5.43) E_y(2) = =1 + M(2) + Oy (h™) < 1 4+ M(z, h),

where M(z) is the matriz of “open quantum maps” defined in (529) and described after
Proposition [5.7.

Remark. If we restrict the parameter z to a rectangle of height |Im z| < Ch instead of
| Im z| < Myhlog(1/h), the bounds (p.43) become || E,(z)] = O(1).

Theorem [ and the formula ([[.§) follow from this more precise result. In fact, the equality

(B:13) shows that

1
(5.44) rankfo(w)X dw = rankfog,R(w)X dw = ~5. trj{Rg,R(w) dw ,
s i

z z

see [A1], Proposition 3.6] for the proof of the last identity in the simpler case of compactly
supported perturbations, and [BY, Section 5] for the general case.
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The well-posedness of our Grushin problem means that we can apply formula (B.33)
recalled in §B.7. It shows that the right hand side in (f.44) is equal to

ot f B () L ) du,

2mi .

which in view of (p.43) gives ([[.§). The exponent L ' M in the remainder of B4
depends on the integer M > 0 used in the scaling of the weight function G, which can be
chosen arbitrary large, independently of ¢ > 0.
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