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FROM OPEN QUANTUM SYSTEMS TO OPEN QUANTUM MAPS

STEPHANE NONNENMACHER, JOHANNES SJOSTRAND, AND MACIEJ ZWORSKI

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In this paper we show that for a class of open quantum systems satisfying a natural
dynamical assumption (see §[.2) the study of the resolvent, and hence of scattering, and of
resonances, can be reduced to the study of open quantum maps, that is of finite dimensional
quantizations of canonical relations obtained by truncation of symplectomorphisms.

We first state the main result in a simplified setting. For that let
P=-RPA+V(z)—1, VeCR"),
and let @' be the corresponding classical flow on T*R"™ 3 (z,§):

Ot (z,6) E (a(t), (1)),
2(t) = 26(t), €(t)=—dV(z(t)), (0)=z, £0)=¢.
)_

This flow is generated by the classical Hamiltonian p(z, &) = |£]? + V(x
that dpl,-1)7# 0 and define the trapped set at energy 0 as

1. We asssume

(1.1) K& {(z,€) : p(z,&) =0, ®'(z,¢) remains bounded for all t € R} .

The resolvent of P, R(z) = (P — z)~', continues meromorphically from Imz > 0 to the
disk D(0,1), in the sense that xR(z)x, x € C®(R"), is a meromorphic family of operators,
with poles independent of the choice of x # 0.

Theorem 1. Suppose that ®' is hyperbolic on Ky and that K, is topologically one dimen-

sional. Then for 6 > 0 small enough, there exists a family of matrices, M(z,h), holomor-
def

phic in z € R(6,Ch) = [—6,0] + i[-Ch,Ch], and of rank comparable to h™"* such that

the zeros of
def

g(za h) - det(I - M(Z, h)) )
give the resonances of P in R(d, Ch) (with correct multiplicities). Moreover, M(z,h) are
open quantum maps in the sense that there exist projections 11, of rank comparable to
h="1 and an h-Fourier integral operator, M(z,h), quantizing a certain Poincaré map

(see §1.3.3), such that
(1.2) M(z,h) = T, M(z, W)L, + O(h*Y),

where M(z,h) can be constructed so that L is arbitrarily large.
1
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The multiplicity of resonances away from 0 can be defined using the cutoff resolvent: for

any x € C*(R"), x =1in B(0, R).

mp(z) = rank%xR(w)X dw, z€ R(0,Ch),

z

where the integral is over a small positively oriented circle around z. The theorem then
says that

L [C(w)
mp(z) = - dw

= —,tr%(] — M(w))M' (w)dw .

2mi .
A yet more precise global version, involving complex scaling and microlocally deformed
spaces (see §P.4 and §P.J respectively), will be given in Theorem | in §f.4. In particular
Theorem B gives us a full control over both the cutoff resolvent of P, yR(z)y, and the full
resolvent (Py — z)~! of the complex scaled operator Py.

The mathematical applications of Theorem [[] and its refined version below include simpler
proofs of fractal Weyl laws [BY| and of the existence of resonance free strips [P§]. The
advantage lies in eliminating flows and reducing the dynamical analysis to that of maps.
That provides an implicit second microlocalization without any technical complication (see
BY, §5]). The key is a detailed understanding of M (z, h) in the statement of the theorem.

Relation to semiclassical trace formule. The notation ((z, h) in the above theorem hints at
the resemblance between this determinant and a semiclassical zeta function. Various such
functions have been introduced in the physics literature, to provide approximate ways of
computing eigenvalues and resonances of quantum chaotic systems — see [{3, [[9, [[T].

These semiclassical zeta functions are defined through formal manipulations starting
from the Gutzwiller trace formula — see [BY| for a mathematical treatment of the trace
formula, and references therein. Zeta functions are given by sums, or Euler products,
over periodic orbits, where each term, or factor is an asymptotic series in powers of h.
Most studies have concentrated on the zeta function defined by the principal term, without
h-corrections, which strongly resembles the Selberg zeta function defined for surfaces of
constant negative curvature. However, unlike the case of the Selberg zeta function, there
is no known rigorous connection between the zeroes of the semiclassical zeta function and
the exact eigenvalues or resonances of the quantum system, even in the semiclassical limit.
Nevertheless, numerical studies have indicated that the semiclassical zeta function admits
a strip of holomorphy beyond the axis of absolute convergence, and that its zeroes there
are close to actual resonances [0, [5.
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The traces of M(z,h)¥, k € N admit semiclassical expressions as sums over periodic
points, which leads to a formal representation

. tr M(z, h)*
z,h) =ex { — 7}

((z,h) = exp ; .
as a product over periodic points. That gives it the same form as the semiclassical zeta
functions in the physics literature. In this sense, the function ((z,h) is a resummation of
these formal expressions. As will become clear from its construction below, the operator
M (z, h) is not unique: it depends on many arbitrary choices. However, the zeroes of ((z, h)
in R(6, Ch) are the resonances of the quantum problem.

Comments on quantum maps in the physics literature. Similar methods of analysis have
been introduced in the theoretical physics literature devoted to quantum chaos. The clas-
sical case involves a reduction to the boundary for obstacle problems: when the obstacle
consists of several strictly convex bodies, none of which intersects a convex hull of any
other two bodies, the flow is hyperbolic. The reduction can then be made to boundaries of
the convex bodies, resulting with operators quantization Poincaré maps — see Gaspard and
Rice [Iq], and for a mathematical treatment Gérard [[7], in the case of two convex bodies,
and [B9, §5.1], for the general case. Fig]] illustrates the trapped set in the case of three
discs. The semiclassical analogue of the two convex obstacle, a system with one closed
hyperbolic orbit, was treated by Gérard and the second author in [[[§]. The approach of
that paper was also based on the quantization of the Poincaré map.

A reduction of a more complicated quantum system to a quantized Poincaré map was
proposed in the physics literature by Bogomolny [{]. He studied a Schrodinger opera-
tor P(h) with discrete spectrum, and constructed a family of energy dependent quantum
transfer operators T'(E, h), which are integral operators acting on a hypersurface in the
configuration space. These transfer operators are asymptotically unitary as A — 0. The
eigenvalues of P(h) are then obtained, in the semiclassical limit, as the roots of the equa-
tion det(1 — T'(E)) = 0. Smilansky and co-workers derived a similar equation in the case
of closed Euclidean 2-dimensional billiards [[J], replacing T'(E) by a (unitary) scattering
matrix S(F) associated with the dual scattering problem. Bogomolny’s method was also
extended to study quantum scattering situations [[3, B{].

Quantum open maps have first been defined in the quantum chaos literature as toy
models for open quantized chaotic systems, independently of any Hamiltonian flow (see
B4, §2.2], [B7, §4.3] and references given there). They generalized the unitary quantum
maps used to mimic bound chaotic systems [[[T]. Some examples of open quantum maps
on the 2-dimensional torus or the cylinder, have been used as models in various physical
setings: Chirikov’s quantum standard map (or quantum kicked rotator) was first defined
in the context of plasma physics, but then used as well to study ionization of atoms or
molecules [[J], as well as transport properties in mesoscopic quantum dots [[]]. Other maps,
like the open baker’s map, were introduced as clean model systems, for which the classical
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F1GURE 1. This figure, taken from [BI], shows the Poincaré section for the
symmetric three disc scattering problem. The section is the union of the three
coball bundles of the circles parametrized by s (the length parameter on the
circle, horizontal axis), and cos p, where ¢ is the angle between the velocity
after impact and the tangent to the circle. Green, blue,red strips correspond
to different regions of forward escape; they are bounded by components of
the stable manifold. The trapped set, T, shown in yellow, is the intersection
of the latter with the unstable manifold.

dynamics is well understood [BZ, 7). The popularity of quantum maps mostly stems from
the much simplified numerical study they offer, both at the quantum and classical levels,
compared with the case of Hamiltonian flows or the corresponding Schrodinger operators.
For instance, the distribution of resonances and resonant modes has proven to be much
easier to study numerically for open quantum maps, than for realistic flows [, B3, B4, B3, 1.
Precise mathematical definitions of quantum maps are given in [R6, §4.3-4.5].
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1.1. Assumptions on the operator. The results apply to operator satisfying general
assumptions given in 8, §3] and BY, (1.5),(1.6)]. To simplify the presentation we will
consider differential operators on X = R"” only, stressing that the results apply to operators
on manifolds X, of the form,

X = KLl |i| (R” \ BRn(o,R)) :

j=1

where R > 0 is large and Kp is a compact subset of X. In the following we will use both
notations R" = X.

We assume that
(1.4) P(h) =Y au(z,h)(hD,)",
|| <2

where a,,(z, h) are bounded in C*(R"), a,(z,h) = a2 (x)+O(h) in C*, and a,(z, h) = a,(z)
is independent of h for |a| = 2. Furthermore, for some Cjy > 0 the functions a,(z, h) have
holomorphic extensions to

(1.5) {r €C" : |Rez| >y, |Imz| <|Rez|/Cyh},

they are bounded uniformly with respect to h, and a,(z,h) = a(x) + O(h) on that set.
Let P(x,&) denote the (full) Weyl symbol of the operator P, so that P = P“(xz;hD;h)

and assume

(1.6) P(z,&h) — & —1

when x — oo in the set ([.F), uniformly with respect to (£, h) € K x]0,1] for any compact
set K € R™. We also assume that P is classically elliptic:

(L.7) Pa(@,6) Y aa(@)6" # 0 on TR\ {0},
=2

and that P is self-adjoint on L?(R") with domain H?(R"™).

1.2. Dynamical Assumptions. The dynamical assumptions we need roughly mean that
the flow @ on the energy shell p~1(0) C T*X can be encoded by a Poincaré section, the
boundary of which does not intersect the trapped set Kj.

More precisely, we notice that

(1.8) p(z,€) = a(x)E”

o <2
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is the semi-classical principal symbol of the operator P(z, hD;h), and let
def x~ Op 0 dp 0

P =1 6@ &xj axjﬁ—fj’

be the Hamilton vector field of p. Assume that the characteristic set of p is a simple
hypersurface,

(1.9) dp # 0 on p~1(0).
We will denote by
o' exp(tH,) : T*X — T*X
the flow generated by the Hamilton vector field H,,.
For E close to 0 (so that dp[,-1(g)# 0) we define the trapped set Kp by

def

(1.10) Kg < {pep }(E); ®*(p) is bounded }.

We now assume that there exist a "nice” Poincaré section, namely finitely many compact
contractible smooth hypersurfaces ¥, C p~(0), k = 1,2,..., N with smooth boundaries,
such that

(111) 82ka0:@, ZkﬂEk/ :@, k#k/,
(1.12) H, is transversal to ¥ uniformly up to the boundary,

For every p € K, there exist p_ € X;_(,), p+ € Xj (p)
(1.13) of the form py = ®=¥(p), with 0 < t1(p) < tmax < 00, such that
{0'(p); —t-(p) <t<tilp), t#0}N% =0, Vk.

The functions p — pi(p), p — t+(p) are uniquely defined (p+(p) will be called respectively
the successor and predecessor of p). They remain well-defined for p in some neighbourhood

of Ky in p~1(0)) and, in such a neighbourhood, depend smoothly on p away from X o
LN %, In order to simplify the presentation we also assume

(1.14) If p € ¥ N Ky for some k, then p, (p) € Xy N Ky for some £ # k.

The section can always be enlarged to guarantee that this condition is satisfied. For in-
stance, for K, consisting of one closed orbit we only need one transversal section to have

(LID)-(L.1F). To fulfill (T.I4) an additional transversal section has to be added.

We recall that that hypersurfaces in p~(0) that are transversal to H, are symplectic. In
fact, a local application of Darboux’s theorem (see for instance [P3, §21.1]) shows that we
can make a symplectic change of variables in which p = ¢,, and H, = 0,,. If ¥ C {¢, =0}
is transversal to 0, , then (xy, - 2, 1;&, -+ ,&,—1) can be chosen as coordinates on .
Since w[p-1(0)= Z;:ll d&; A dxj, that means that wly is nondegenerate. The local normal
form p = &, will be used further in the paper.
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FIGURE 2. Schematic representation of the Poincaré return maps Fj; be-
tween the sets D and Ay, (horizontal /vertical ellipses). The reduced trapped
set 7; is represented by the black squares. The unstable/stable directions of
the map are represented by the horizontal /vertical dashed lines.

The final assumption guarantees no topological or symplectic peculiarities:
There exists a set £ € T*R™" ! with smooth boundary, and a symplectic
(1.15) diffeomorphism ky, : ik — Y which is smooth up the boundary together
with its inverse. We assume that rj extends to a neighbourhood of ik in T"X.

In other words, there exist symplectic coordinate charts on ¥, taking values in ik

We recall the following result due to Bowen and Walters [{]:

Proposition 1.1. Suppose that the assumptions of §[[.] hold, and that the flow ®' |, is
uniformly hyperbolic in the standard sense of [P, (3.11)]. Then the existence of ¥ = LY_ 3
satisfying (LI1)-([I79) is equivalent with Ky being topologically one dimensional.

In particular this shows that the assumptions of Theorem [l| imply the dynamical as-
sumptions made in this section.

Remark. Bowen shows more, namely the fact that the sets {¥; N Ky} can be chosen
of small diameter, and constructed such as to form a Markov partition. We only need to

ensure the properties ([.L14) and ([[.15) hold.

1.3. The Poincaré map. Here we will discuss the Poincaré map for the partition discussed
in §[[.7, and its semiclassical quantization.

1.3.1. Classical analysis. The assumptions in §[.9 imply the existence of an open relation,
whose quantization is given by the operator M(z, h) introduced in the statement of Theo-
rem [I.
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More precisely, let us identify >;’s with ik using 5y, given in ([L13). Then call

N N N
=Sk~ S| TR
k=1 k=1 k=1
the full Poincaré section, and

TY K NY = UE the reduced trapped set.
k

The map

F T —T, p— fp) = pilp)

(see the notation of ([LI3)) is a Lipschitz bijection. The decomposition T = | |, 7 allows
us to define the arrival and departure subsets of T :
def

Di={peT CZ : pilp) €T} =T N[ (T,
def
Aiw ={peTiC i p-(p) €Ty =T f(Tx) = f(Dar) ,
For each k we call J, (k) C {1,..., N} the set of indices i such that D;; is not empty (that
is, for which 7; is a successor of 7). Conversely, the set J_ (i) refers to the predecessors of
T:.

Using this notation, the map f obviously decomposes into a family of Lipschitz bijections
fir : Dy = Ay Similarly to the maps p4, each f;, can be extended to a neighbourhood
of Dy, to form a family of local smooth symplectomorphisms

Fi + Dy, — Fy(Dig) £ A
where Dy, (resp. Ay) is a neighbourhood of Dy, in X, (resp. a neighbourhood of Ay in 33;).
Since our assumption on K is equivalent with the fact that the reduced trapped set T is
totally disconnected, we may assume that the sets {Di;}ics, ) (vesp. the sets { A tres @)
are mutually disjoint. We will call
def def
Dy = Uics, k) Di, A = Ukes_ ) Aik -

Notice, however, that for any index 7, the sets D;, A; both contain the reduced trapped set
T:.
We will also define the tubes T, C T*X containing the trajectories between D, and A;:

(1.16) Tie = {®'(p), : p€ Dy, 0<t <t (p)}.

See Fig. P for a sketch of these definitions, and Fig. ] for an artistic view of T The maps
F, will be grouped into the symplectic bijection F' between | |, Dy and | |, Ax. We will
also call F' the Poincaré map. We will sometimes identify the map Fj; with its action on
subsets of T*R" !,

def 1

Fy = FG;I o Fip o Ky : 5zk — gim 5zk = kK, (D), szk o "i;l(Aik)-
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Dik

Aik

FI1GURE 3. Trajectories linking the boundaries of the departure set D;, C i
and the arrival set A;, C ;. Note the stretching and contraction implied
by hyperbolicity. These trajectories and D, U A;; form the boundary of the
tube Ty defined by ([-1G).

The above structure can be extended to a (small) energy interval z € [—4, ]; the Poincaré

maps for the flow in p~!(z) will be denoted by F, = (Fjx.)1<ir<n (see §B.1.9 for details).

1.3.2. Quantization of the Poincaré map. Let us first focus on a single component Fj; :
Yp D Dy — Ay C %; of the Poincaré map. A quantization of Fj; (more precisely, of
its pullback Ey) is a semiclassical Fourier integral operator My, : L*(R*™') — L*(R"1),
whose semiclassical wavefront set satisfies

(1.17) WF}, (M) @ Air X Dy,

(WF, is defined in (B-§) below, and Ay, Dj are identified with their pullbacks on T*R"~*
through ([.I79)), and which is associated with the symplectic map Fj, in the following
sense: for any a € C°(A;;) we have

(1.18) i1 O0py, (@) M = Opy (i Fija) + h Opy () ,

where oy, € Ss is independent of a, a;;, = 1 on some neighbourhood of T in Y, and b € Sy,
for every § > 0. Here Op? denotes the semiclassical Weyl quantization on R*"~1, and
Ss the symbol class defined in §27]. The presence of § in ([LI§) comes from the slightly
exotic nature of our Fourier integral operator, due to the presence of some mild exponential
weights — see §R.5 below.

The property ([LI§), which is a form of Egorov’s theorem, characterizes M, as a semi-
classical Fourier integral operator associated with Fj;, (see [B7, Lemma 2] and [[4, §10.2]
for that characterization):
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We can then group together the M, into a single operator-valued matrix (setting M, =
0 when i & J,.(k)):

M LARVHY — LARVHY M = (M)

1<i, k<N

We call this M a quantization of the Poincaré map F'.

Comment on notation. Most of the estimates in this paper include error terms of the
type O(h*), which is natural in all microlocal statements. To simplify the notation we
adopt the following convention (except in places where it could lead to confusion):

u=v <= |lu—2v| =0h)|ul,

1.19
1 [Sull S Tull + vl <= [ISull < OW)(|[Tull + [[v])) + OR=)|ull,

with norms appropriate to context. Since most estimates involve functions u microlocalized
to compact sets, in the sense that, u — x(z, hD)u € h*°S(R"), for some x € C°(T*R"), the
norms are almost exclusively L? norms, possibly with microlocal weights described in §P.5.

The notation u = Oy(f) means that ||ully = O(f), and the notation 7" = Oy, (f)
means that | Tullw = O(f)||ul|y. Also, the notation

neigh(A, B) for A C B,
means an open neighbourhood of the set A inside the set B.

Starting with §f, we denote the Weyl quantization of a symbol a by the same letter
a = a¥(x,hD). This makes the notation less cumbersome and should be clear from the
context.

Finally, we warn the reader that from § onwards the original operator P is replaced by
the complex scaled operator P r, whose construction is recalled in §@.4. Because of the
formula (PI3), that does not affect the results formulated in this section.

2. PRELIMINARIES

In this section we present background material and references needed for the proof of
the theorems.

2.1. Semiclassical pseudodifferential calculus. The class of symbols associated to or-
der m is defined as

SPHTRY = {0 € CX(TRY x (0,1)): |050]a(n, & )| < Coh™ e B0 (g ]

Most of the time we will use the class with 6 = 0 in which case we drop the subscript.
When m = k = 0, we simply write S(T*R%) or S for the class of symbols. In the paper
d = n (the dimension of the physical space) or d = n—1 (half the dimension of the Poincaré
section), and occasionally (as in ([.17)) d = 2n — 2, depending on the context.
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The quantization map, in its different notational guises, is defined as follows

GU—Oph( a"(z, hD)u(x)
Y = 27rh // x+y e M (y ) dyd

and we refer to [[[3, Chapter 7] for a detailed discussion of semiclassical quantization (see
also [BY, Appendix]), and to [[4, Appendix D.2] for the semiclassical calculus for the symbol
classes given above).

We denote by W7"*(R%) or U™*(R?) the corresponding classes of pseudodifferential op-
erators, with surjective symbol maps:

on » UPFRY — SPM(TRY) /ST (TRY) | 64 (Ao B) = 04(A)on(B)
o, 0 Opy « S{PM(T*RY) — SPM(T*RY) /5512 (T*RY)

where the last map is the natural projection.

The semiclassical Sobolev spaces, Hj(R?) are defined using the semiclassical Fourier
transform, F:

def 2s 2 _f 1 iwe)
22l [ @1 FaoreE, Fa© ™ o [ w9,
Unless otherwise stated all norms in this paper, || ® ||, are L? norms.

We recall that the operators in W(RY) are bounded on L? uniformly in h, and that they
can be characterized using commutators by Beals’s Lemma (see [[J, Chapter 8] and [Bg,
Lemma 3.5] for the Ss case):

lady, -+ -ady, Al2oze = O(RA-ON)

(2.3) A€ Ts5(X) = { for linear functions ¢;(z, &) on R? x RY,

where adg A = [B, A|.

For a given symbol a € S(T*R?) we follow [B7] and say that the essential support is equal
to a given compact set K € T*RY,

ess-supp;, a = K € T*R?,
if and only if
Vx € S(T*RY), suppx € CK = ya € h*S(T*R?).
Here S denotes the Schwartz space. For A € U(RY), A = Opy'(a), we call
(2.4) WEF;,(A) = ess-supp,, a .

the semiclassical wavefront set of A. (In this paper we are concerned with a purely semi-
classical theory and will only need to deal with compact subsets of T*RY.)
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2.2. Microlocalization. We will also consider spaces of L? functions (strictly speaking,
of h-dependent families of functions) which are microlocally concentrated in an open set
V € T*R%

H(V) o {u = (u(h) € L*(RY))4e(o,], such that
(25) iC, > 0, ”u(h)”LQ(Rd) <C,, 0<h<1,

IxeCx(V), x“(zr,hD;)u=u+ Os(h™)}.

The semiclassical wave front set of u € H(V') is defined as:
(2.6) WFy(u) =C{(z,¢) e T*"R? : 3a € S(T'RY), a(x,&) =1, ||a”ull2 = O(h™)}.

The condition (P.6) can be equivalently replaced with a* u = Og(h™), since we may always
take a € S(T*R?). This set obviously satisfies WFj,(u) € V. Notice that the condition
does not characterize the individual functions u(h), but the full sequence as h — 0.

We will say that an h-dependent family of operators T = (T'(h))ne(o,1) : S(RY) — S'(RF)
is semiclassically tempered if there exists L > 0 such that

Kz) " T (R)ull e < Ch7{a)  ullyr . k€ (0,1).
Such a family of operators is microlocally defined on V' if one only specifies (or considers) its

action on states u € H(V'), modulo Og/_,s(h™). For instance, T is said to be asymptotically
uniformly bounded on H (V) if

(27) = CT > O, Yuée H(V), = hT,ua ||T(h)u(h)||L2(Rk) S CT ||u||L2(]R’“) 5 h < hT,u .

Since we are dealing with families depending on h, without any uniformity assumptions,
the statement that the bound holds for sufficiently small A depends on the family w.

If there exists an open subset W @ T*R* and L € R such that 7 maps any v € H(V)
into a state Tu € h™F H(W), then we will write

T=T(kh): HV)— HW),
and we say that 7" is defined microlocally in W x V.

For such operators, we may define only the part of the (twisted) wavefront set which is
inside W x V:

(2.8)
WE, (T)N (W x V) (W x V)\{(p,p) €W xV : Jae S(T'RY), be S(T*RY),
alp) =1,b(p) =1, b"Ta” = Op2,2(h™)}.
If WE,,(T) N (W x V) € W x V, then the family of operators T'(h) can be modified into a
family of operators T'(h) : L* — L?, such that T is Os/_,s(h*) outside V, that is

Toa"” =0 : S RY) = SR,

for all a € S(T*R%) and suppa NV = (), while the action of 7" and T on H(V) are equal
modulo Opz_,;2(h*). This extension is unique modulo Og/_,s(h>).
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2.3. Local h-Fourier integral operators. We first present a global definition for a class
of h-Fourier integral operators following [B7 and [[[4, Chapter 10]. This global definition
will then be used to define Fourier integral operators microlocally.

Thus let A(t) be a smooth family of pseudodifferential operators,
A(t) = Op(a(t)), alt) € C*([~1,1]; S(T*R%R))

such that for all t, WF,(A(t)) @ T*RY, in the sense of (2:4). We then define a family of
operators

U(t) : L*(R%) — L*(RY),

(2.9) hDU(t) + Ut)A(t) =0, U0) = U € T)'(RY).

An example is given by A(t) = A, independent of ¢, in which case U(t) = exp(—itA/h).

The family (U(t))ic[-1,1) is an example of a family of unitary h-Fourier integral oper-
ators, associated to the family of canonical transformations (t) generated by the (time-
dependent) Hamilton vector fields H, ). Here the real valued function ag(t) is the principal
symbol of A(t), and the canonical transformations () are defined through

5(1)(p) = (5(0). (aoio(0)) . 5(0)(0) = (), p € TR

If U = U(1), say, and the graph of x(1) is denoted by C, we conform to the usual notation
and write

U€ LR xRLCY), where C'={(z,&y,—1) : (z,§) =x(y.n)}.
Here the twisted graph C” is a Lagrangian submanifold of 7% (R¢ x R?).

In words, U is a unitary h-Fourier integral operator associated to the canonical graph C
(or the symplectomorphism k(1) defined by this graph). Locally all unitary h-Fourier Inte-
gral Operators associated to canonical graphs are of the form U(1), since each local canon-
ical transformation with a fixed point can be deformed to the identity, see [B7, Lemma 3.2].
An operator of the form U(1) x%, with y € S(T*R?), is a (nonunitary) h-Fourier integral
operator associated with C'. This definition of the operator U, as an operator quantizing
k = k(1), depends only on k = (1), and not on the deformation from the identity to .
This can be seen from the Egorov characterization of Fourier integral operators — see [B7,
Lemma 2] or [I4, §10.2].

This definition can be generalized to graphs C' associated with certain relations between
phase spaces of possibly different dimensions. Namely, if a relation C' C T*R? x T*RF is
such that its twist

C'=A{(=.&y,—n); (x,&y,—n) € C}
is a Lagrangian submanifold of 7%(R? x R¥), then one can associate with this relation

(microlocally in some neighbourhood) a family of Fourier Integral Operators T : L?(R¥) —
L*(R?) [B, Definition 4.2]. This class of operators is denoted by I} (R?xR*; C’), with r € R.
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The important property of these operators is that their composition is still a Fourier integral
operator associated with the composed relations.

For an open set V @ R? and ~ a symplectomorphism defined in a neighbourhood V of
V', we say that a tempered operator 1" satisfying

T : H(V) — H(x(V)),
is a micrololocally defined unitary h-Fourier integral operator in V', if any point p € V has
a neighbourhood V, C V such that

T H(V,) — H(x(V)))

is a unitary h-Fourier integral operator associated with & [y, as defined by the above
procedure.The microlocally defined operators can also be obtained by oscillatory integral
constructions — see for instance [P§, §4.1] for a brief self-contained presentation.

An example which will be used in §B.1]is given by the standard conjugation result, see [B7,
Proposition 3.5] or [[4, Chapter 10] for self-contained proofs. Suppose that P € \Ifff’o(]Rd)
is a semi-classical real principal type operator: p = o(P) is real, independent of h, and
p=0= dp # 0. Then for any p, € p~*(0), there exists a canonical transformation, &,
mapping V = neigh((0,0), T*R%) to x(V) = neigh(py, T*R?), with x(0,0) = py and

poklp) =&(p) peV,

and a unitary microlocal h-Fourier integral operator U : H(V) — H(k(V)) associated to
k, such that

U*PU = hD,, : H\V) — H(V).

2.4. Complex scaling. We briefly recall the complex scaling method of Aguilar-Combes
M — see [BE, B4], and references given there. In this section we consider h as a fixed
parameter which plays no role in the definition of resonances and let P be an operator
satisfying the assumptions above.

For any 0 < 6 < 6y and R > 0, we define I'g g C C" to be a totally real deformation of
R™, with the following properties:

Pg N B(Cn(o, R) — B]Rn (0, R) y
(2.10) [y NC™\ Ben(0,2R) = e“R"NC" \ Ben(0,2R),
Ly ={x+ifor(x) : x € R"}, 07 for(z) = 0u(0).

If R is large enough, the coefficients of P continue analytically outside of B(0, R), and we
can define a dilated operator:

def 75 5/ ~
P@,R - PrFe,R ) P@,Ru - P(u)ng,R )

where P is the holomorphic continuation of the operator P, and @ is an almost analytic
extension of u € C°(I'y g) from the totally real submanifold I'y  to neigh(I'y g, C").
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FI1GURE 4. The complex scaling in the z-plane used in this paper.

The operator Py p — z is a Fredholm operator for 20 > arg(z + 1) > —26. That means
that the resolvent, (Py g —z) ™', is meromorphic in that region, the spectrum of Py x in that
region is independent of # and R, and consists of the quantum resonances of P.

To simplify notations we identify I'y p with R" using the map, Sp g : I'g r — R",
(2.11) I'hrp>x+— Rex e R",
and using this identification, consider Py g as an operator on R, defined by (5, 2)* P, RS) R
(here S* means the pullback through S) We note that this identificaton satisfies
O (k) | paqeey < 155500 20y ) < C ()| g2y
with C' independent of 0 if 0 < 6 < 6,.

The identification of the eigenvalues of P r with the poles of the meromorphic continu-
ation of
(P—2)"": C*(R") — C®(R")
from {Im z > 0} to D(0,sin(26)), and in fact, the existence of such a continuation, follows
from the following formula (implicit in [B4], and discussed in [A0)): if x € C°(R™), supp x €
B(0, R), then

(2.12) X(Por—2)'x=x(P—-2)""x.

This is initially valid for Im 2z > 0 so that the right hand side is well defined, and then by
analytic continuation in the region where the left hand side is meromorphic. The reason
for the Fredholm property of (Fyr — 2) in D(0,sin(260)) comes from the properties of the
principal symbol of Py r — see Fig. [l. Here for convenience, and for applications to our
setting, we consider Py r as a semiclassical operator on L*(R™) using the identification
above. The principal symbol is given by

(2.13) po.r(7,€) = p(a +ifor(@). [(1+idfo r(2))] 7€),
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where the complex arguments are allowed due to the analyticity of p(z,&) outside of a
compact set — see §[[.T. We have the following properties

Repo,r(z,§) = p(x, &) + O(67)(€)?,

Im pg,r(, &) = —dep(w, €)[dfo,r(2)"€] + dup(z, §)[ fo,r(2)] + O62)(€)* .
This implies, for R large enough,

(2.15) Ip(z,€)] <9, |z >2R = Impyg(z,§) < —-CO.

We can take 0 to be h dependent: as long as # > chlog(1/h) the estimates above guarantee
the Fredholm property of (P r — z) for z € D(0,60/C'), by providing approximate inverses
near infinity.

(2.14)

2.5. Microlocally deformed spaces. Microlocal deformations using exponential weights
have played an important role in the theory of resonances since [R(]. Here we take an
intermediate point of view [B4], B§| by combining compactly supported weights with complex
scaling. We should stress however that the full power of R(J] would allow more general
behaviours at infinity, for instance potentials growing in some directions at infinity.

Let us consider an h-independent function Gy € C°(T*R?), and take
(2.16) G(z,&) = Mhlog(1/h)Go(z,§) .
For A € U™%(R%), we consider the conjugated operator
o~ GP@hD)/h 4 G @hD)/h _ ,—adguanp) /h 4

(2.17) (=1 (1 :
=0
where ) .
_(=D*F —ice(@np) 1 {G¥ (2,hD)
RL = e ade (x,hD) Ae dt .
o, h 7
The semiclassical calculus and (P.16) show that
1 ¢ .
(ﬁ ade(x,hD)) A€ (Mhlog(1/h))* Vo Y(RY), £>0.

Since ||GY |22 < Cp, functional calculus shows that
exp(+tG™(x, hD)) = Opa_p2(h10M)
so we obtain the bound
RL — OLQHLQ(hL_QtCOM_Lé) )
Applying this bound and (P-3), we obtain (R.19). It is then justified to write (B.I7) as
w w it _]_ ¢ ]_ ¢
(218) efG (:v,hD)/hAeG (z,hD)/h Z ( el) (ﬁ ade(x,hD)) Ae @m,O(Rd) )

=0
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This expansion, combined with Beals’s characterization of pseudodifferential operators

(B), shows that
(2.19) exp(G¥(z,hD)/h) € BYPM(RY) | 5 > 0.

Using the weight function GG, we can now define weighted spaces which, as we will explain,
can be interpreted as to geometric deformation. Let HF(R?) be the semiclassical Sobolev

spaces defined in (2.3). We put
w (g def _G¥(z
(2.20) HE(RY) = e @RDVREERTY) g = [l @ P g

As a vector space, HE(RY) is identical with HF(R?), but the Hilbert norms are different.
In the case of L?, that is of k = 0, we simply put HY = Hg.

The mapping properties of P = p*(x, hD) on Hg(R?) are governed by the properties of
the symbol pg of Py & e=¢“/mP &/ formula (BI3) shows that

(2.21) pe = p — iH,G + O(hlog*(1/h).

At this moment it is convenient to introduce a notion of leading symbol, which is adapted
to the stuy of conjugated operators such as p&. For a given Q € S(T*R?), we say that
q € S(T*RY) is a leading symbol of Q¥(x, hD), if

(2.22) Va e N*  h770%Q —q) = O.(1), V0O<d§<1,

that is, (Q —q) € S®7(T*RY) for any v € (0, 1). This property is obviously an equivalence
relation inside S(T*R?), which is weaker than the equivalence relation defining the symbol
map on ¥™* (see §2.1). In particular, this allows us to look at symbols modulo terms of
the size hlog(1/h). For example, the leading symbols of pe and p are the same. If we can
find ¢ independent of A, then it is unique.

For future use we record the following:
Lemma 2.1. Suppose
Q"(z,hD) : Hg(RY) — Hg(RY), Q€ S(T*RY),

is self-adjoint. Then this operator admits a real leading symbol (in the sense of (B.23)).
Conversely, if ¢ € S(T*R) is real then there exists Q € S(T*RY) with leading symbol q,
such that Q" (z, hD) is self-adjoint on Hg(RY).

Proof. This follows from noting that
Q= e Q" (x, kD)™,

has the same leading symbol as Q“(z,hD), and that self-adjointness of @Q“ on Hg is
equivalent to self-adjointness of Q% on L. O
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The weighted spaces can also be microlocalized in the sense of §g.3: for V' &€ T*R?, we
define the space

He(V) € fu=u(h) :3xece(V), 3C,>0,
X"u=u+ Os(h™), Hu(h)HHG(Rd) < Cu}.

In other words, Hg(V) = & @hP)/R (V). This definition depends only on the values of
GinV.

For future reference we state the following

(2.23)

Lemma 2.2. Suppose T : H(V) — H(x(V)) is an h-Fourier integral operator associated
to a symplectomorphism r (in the sense of §2.3), and is asymptotically uniformly bounded
(in the sense of (R.1)). Take Gy € C*=(neigh(k(V))), G = Mhlog(1/h)Gy.
Then the operator

T : Hog(V)— Hg(k(V))

18 also asymptotically uniformly bounded with respect to the deformed norms.

Proof. Since the statement is microlocal we can assume that V' is small enough so that
T = Ty A where Ty is unitary on L?(R?) and A € ¥;,,. We then have to check that

T e~ GV @hD)/hy o(5°G) @hD)/h — =M log(1 /1)(Ty " G (2,hD)To , M log(1/h)(x* Go)® (2,h D)

—Mlog(1/h)((k*Go)¥+O(h)) M log(1/h)(k*Go)™ (x,hD)

=e e ,

and this is asymptotically uniformly bounded in the sense of (.7). Here, the second identity
resulted from Egorov’s theorem, and the last one from semiclassical calculus. U

2.6. Escape function away from the trapped set. In this section we recall the con-
struction of the specific weight function G' which, up to some further small modifications,
will be used to prove Theorems [[] and .

Let K5 C p~'(d) be the trapped set in the J-energy surface (defined by ([J]) with 0
replaced by 9), and define

(2.24) K=FK%=|] K.

The construction of the weight function is based on the following result of [[§, Appendix]:
for any open neighbourhoods U,V of K, U C V, there exists G| € C>®(T*X), such that

(2.25) G1 fUE O, HpG1 > O, HpG1 [p_l([,%,%])g C, HpG1 fp—l([,(g,(g])\vz 1.
These properties mean that Gy is an escape function: it increases along the flow, and strictly

increases along the flow on p~!([—6,d]) away from K (as specified by the neighbourhood
V). Furthermore, H,G is bounded in a neighbourhood of p~*(0).

Since such a function Gy is necessarily of unbounded support, we need to modify it
to be able to use Hg-norms defined in §P.7 (otherwise methods of [P{] could be used
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and that alternative would allow more general behaviours at infinity, for instance a wide
class of polynomial potentials). For that we follow [BY, §§4.1,4.2,7.3] and 2§, §6.1]: G is
modified to a compactly supported G in a way allowing complex scaling estimates (2.17)
to compensate for the wrong sign of H,G5. Specifically, B, Lemma 6.1] states that for
any large R > 0 and &y € (0,1/2) we can construct G5 with the following properties:
Gy € C°(T*X) and

(2.26) Gy > 1 on TosrmX N (P~ ([=6,0]) \ V),

HpG2 > —50 on T"X.

Let

G Mh log(1/h)Gy, with M > 0 a fixed constant.

Then, in the notations of §P.5, we will be interested in the operator
PG,R : Hé(Rn) — HGaRn) .
Inserting the above estimates in (.21)), we get

(227) |Rep97R[AG (p)| <(5/2, Rep¢ V, - Imp(;’R[AG (p) S —9/01,
provided that we choose [2g, §6.1]

M M
(2.28) — > 0 > % : for some C' > 0,

C' ~ hlog(l/h) — C

2.7. Grushin problems. In this section we recall some linear algebra facts related to the
Schur complement formula. Any invertible square matrix decomposed into 4 blocks, we

have )
a bl o 1 -1
[c d] = |y 5] = a =a—p0 v,
provided that 6~1 exists. As reviewed in [BY] this formula, applied to Grushin problems
P R_]
|:R+ O_ :H1@H_—>H2@H+,
is able to reduce the spectral problem for P to a nonlinear spectral problem of lower
dimension. If dimH_ = dimH, < oo, we write
P-—z R [E(R) E.()
R o) TlE( E.L()
and the invertibility of (P — z) : H; — H» is equivalent to the invertibility of the finite
dimensional matrix E_(z), more precisely dimker(P — z) = dimker £_,(z) (for this

reason, the latter is often called an effective Hamiltonian).

We illustrate this scheme with a simple lemma which will be useful later in §.3.
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Lemma 2.3. Suppose that

def | P R_
P G

] cHIOH. — Ho D H,,
where H; and Hy are Banach spaces. If P~': Hy — Hy exists then

P is a Fredholm operator <= R,P'R_:H_ — H. is a Fredholm operator,
and

indP = ind R, P'R_.

Proof. We proceed by constructing a Grushin problem for P:

P R_ 0
PEIR, 0 Iy | HioH OH, — H OH, DH_.
0 Idy 0

This Grushin problem is well posed, with the inverse given by

B p1 0 —P 'R
Pl = 0 0 Idy
~R.P' 1dy, R,P'R_

Hence the effective Hamiltonian for the Grushin problem for P is given by R, P 'R_ and
we can apply [B9, Proposition 2.2]. U

3. A MICROLOCAL GRUSHIN PROBLEM

In this section we recall and extend the analysis of [B7] to treat an ensemble of Poincaré
sections associated to a trapped set K g satisfying the assumptions in §[.3. In [B7] a Poincaré
section associated to a single closed orbit was considered. The results presented here are
purely microlocal in the sense of §2.9, first near a given component ¥, of the section, and
then near the trapped set K. In this section P is the original operator, but it could be
replaced by Py r since the complex deformation described in §P.4 takes place away from
Ky. Also, when no confusion is likely to occur, we will often denote the Weyl quantization
x* of a symbol y € S(T*R?) by the same letter: y = y*.

3.1. Microlocal study near ;. First we focus on a single component ¥, of the Poincaré
section, for some arbitrary k € {1,..., N}. Most of the time we will then drop the subscript
k. Our aim is to construct a microlocal Grushin problem for the operator

7

(P -2),
near ¥ = Y, where |Rez| < ¢, Imz = O(h), and § will be chosen small enough so that
the flow on @[, . is a small perturbation of ®'[,.
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3.1.1. A normal form near ¥j. Using the assumption ([[.LI§) and a version of Darboux’s
theorem (see for instance [P3, Theorem 21.2.3]), we may extend the map kp =k : ¥ — X
to a canonical transformation kj; defined in a neighbourhood of ¥ in T*R™,

U = {(,6) e T'RY (2/,€) € Sy, 14| < 6, [60] <0},
such that
(31) %k<x/7 07 5/7 0) = FJk(SL’/, g) S Ek‘ ) po Ek - gn .

We call ), = Rk(ﬁk) the neighbourhood of ¥; in 7% X in the range of k. The “width along
the flow” € > 0 is taken small enough, so that the sets {4, & = 1,..., N} are mutually
disjoint, and it takes at least a time 20e for a point to travel between any €1 and its
SUCCessors.

The symplectic maps Ky allow us to construct a Poincaré section in the neighbouring
energy layers p~!(2), z € [—4,4]. Let us denote

ke Rl (N {6 = 2)).

Then, if 6 > 0 is taken small enough, then for | Re z| < d the sets
Si(2) = fns(Se) = (R, 0:€,2), (2, €) € 5}

are still transversal to the flow, and 93;(z) N K, = (). Besides, decreasing § if necessary,
def ~

we can assume that the sets Di(z) = /{kz(f)k) C Yk(2) are still open neighbourhoods of
the reduced trapped set 7;(z) = X(2) N K, and that the Poincaré maps Fjj , still map

bijectively their connected components D, (2) = sz(f)]k) to arrival sets Ajx(z) C X;(2).
Notice that for z # 0 these arrival sets A;,(z) are in general different from mj7z(gjk), or
equivalently ij(z) = K_;(A]k(z)) is generally different from ij(()). The tube connecting
Dj(z) with Ajx(2) is denoted by T} (z) — see Fig]. For any set S(z) = S(Re z) depending

on the energy in the interval Re z € [—¢, 0], we use the notation

(3.2) S= S

|z]<é

3.1.2. Microlocal solutions near Y. Let us now restrict ourselves to the neighbourhood of
Yk, and drop the index k. The canonical transformation x can be locally quantized using
the procedure reviewed in §f.3, resulting in a microlocally defined unitary Fourier integral
operator

(3.3) U : HQ)— H(Q), U*PU=hD,,, microlocally in €.
For z € R(6,Ch), we consider the microlocal Poisson operator

(B4)  K():LER™Y) > IR(RY), (K)o )@ m) = e o, (@),
which obviously solves the equation (hD,, — z) K(z) vy = 0.
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For v, which is microlocally concentrated in a compact set, the wavefront set of K(z) v,
is not localized in the flow direction. On the other hand, the Fourier integral operator U is
well-defined and unitary only from €2 to €2. Therefore, we use a smooth cutoff function yq,
xo = 11in Q, yo = 0 outside €2’ a small open neighbourhood of 2, and define the Poisson

operator
def =

K(z) = xoUK(z): HX) — H().
This operator maps any state v, € H(Z) C L*R"™), to a microlocal solution of the
equation (P — z)u = 0 in Q, with v € H('). As we will see below, the converse holds:

each microlocal solution in € is parametrized by a function vy € H(X).

In a sense, the solution u = K(z)v, is an extension along the flow of the transverse data
vy. More precisely, K(z) is a microlocally defined Fourier integral operator associated with
the graph

(3.5) C_ = {(R(, xp, & Rez); 2, &), (.)€, |z, < e} CTHX x R*™).

Equivalently, this relation associates to each point (z/,¢’) € 3 a short trajectory segment
through the point k(2’,0;¢’,Rez) € X(Re z). We use the notation C_ since this relation is
associated with the operator R_ defined in (B.I3) below.

Back to the normal form hD, . let us consider a smoothed out step function,
Xo € C*(R,,), x(z,) =0 forz, < —€/2, xo(z,) =1 forz, >¢/2.

We notice that the commutator (i/h)[hD.,,, xo] = X{(x,) is localized in the region of the
step and integrates to 1 in x,,: this implies the normalization property

(3.6) ((i/W)[hDs,, XolK(2)v4, K(2)vs) = |04 Z2@a1)

where (e, ®) is the usual Hermitian inner product on L?(R"). Notice that the right hand
side is independent of the precise choice of yq.

We now bring this expression to the neighbourhood of ¥ through the Fourier integral
operator x4U. This implies that the Poisson operator K (z) satisfies:

(3.7) (/)P XK (2)us, K(2)0s) = o2 for any vy € H(S).
Here the symbol x is such that x* = U x{ U* inside €2, so x is equal to 0 before &~¢(X%)
and equal to 1 after ®¢(X) (in the following we will often use this time-like terminology
referring to the flow ®'). In (B7), we are only concerned with [P, x*] microlocally near €2,
since the operator x4U is microlocalized in Q' x Q. Hence, at this stage we can ignore the
properties of the symbol x outside €.

The expression (B.7) can be written

(3.8) K@) [(i/h)P,x"|K(z) =1d : HYX) — H(X).
Fixing such a cutoff function x = x (where f is for forward), we define the operator

(3.9) Ri(2) € K(2)*[(i/h)P, xs] = K(2)" Ux& [(i/h) P, x/]
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(from here on we denote y = x" in similar expressions). This operator “projects” any
u € H(Q) to a certain transversal function v, € H(X). But it is important to notice that

R, (z) is also well-defined on states u microlocalized in a small neighbourhood of K: the
operator x¢ [(¢/h)P, x¢| cuts off the components of u outside §2. Hence, we may write

~ ~

R, (z): H(neigh(K)) — H(X).

The equation (B.§) shows that this projection is compatible with the above extension of
the transversal function:

(3.10) Ri(2)K(z)=1Id : HE)— H(Y).

This shows that transversal functions v, € H(X) and microlocal solutions to (P — z)u =0
are bijectively related. Since Im z = O(h), it is clear that K (z) is uniformly bounded in the
L? sense, and from the definition above we get the same property for R, (z). Just as K(z)*,
R, (z) is a microlocally defined Fourier integral operator associated with the relation

(3.11) Cy = {2, & 7z, 0,6 Rez)), (¥ 2,,& Rez) e Q) c TR x X),

namely the inverse of C_ given in (B.f). In words, this relation consists of taking any
p € QNp 1 (Rez) and projecting it along the flow on the section ¥(z).

We now select a second cutoff function x; with properties similar with x, and satisfying
also the nesting

(3.12) X» = 1 in a neighbourhood of supp x; .
With this new cutoff, we define the operator

(3.13) R_(2)u_ = [(i/h)P,xs) K(2) : H(X) — H(Q).

Starting from a transversal data u_ € H(X), this operator creates a microlocal solution
in 2 and truncates by applying a pseudodifferential operator with symbol H,Y;. Same as
K(z), it is a microlocally defined Fourier integral operator associated with the graph C_.

3.1.3. Solving a Grushin problem. We are now equipped to define our microlocal Grushin

problem in Q. Given v € H(2), vy € H(X), we want to solve the system

(3.14) { gﬁ 2;5 — 2)u+ R_(2)u- - Z+

with u € L?*(X) a forward solution, and u_ € H(X).

Let us show how to solve this problem. First let @ be the forward solution of (i/h)(P —
z)u = v, microlocally in €2. That solution can be obtained using the Fourier integral oper-
ator U in (B.3) and the easy solution for hD,, . We can also proceed using the propagator
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to define a forward parametrix:
T
(3.15) i B, B(x)Y / et/ gy
0

The time T is such that ®7(Q) N Q = () (from the above assumption on the separation
between the Q) we may take T' = 5¢). By using the model operator hD,, , one checks that
the parametrix E(z) transports the wavefront set of v as follows:

(3.16) WE,(E(2)v) € WE,(v) URT(WE,(0)) U | ] @/(WF,(v) np' (Rez)).

0<t<T
In general, u does not satisfy R, (z)u = v, so we need to correct it. For this aim, we solve
the system

(3.17)

(i/h)(P—2)u+ R_(2)u- =0,
R, (2)u =v; — Ry (2)u

through the Ansatz

u- = —vy + Ri(2)u,
(3.18) {ﬁ =—xp K(2)u_.

Indeed, the property (P — z) K(z) = 0 ensures that (i/h)(P — 2)u = —R_(2)u_. We then
obtain the identities

Ri(2)u = —K2)"[(i/h)P,xs] xp K(2) u-

The second identity uses the nesting assumption (H,xs)x» = Hpxs, and the last one
results from (B.§). This shows that the Ansatz (B.1§) solves the system (B.I7). Finally,
(u = U470, u_) solves (BI4) microlocally in Qx 3, for v € H(Q) and v, € H(Z) respectively.
Furthermore, these solutions satisfy the norm estimate

(3.19) lll + flu- [l < ol + fos -

The form of the microlocal construction in this section is an important preparation for
the construction of our Grushin problem in the next section. In itself, it only states that
(i/h)(P — z)u = v can be solved microlocally near ¥ in the forward direction, for v mi-
crolocalized near 3.

3.2. Microlocal solution near K. We will now extend the construction of the Grushin
problem near each X, described in §B.1], to obtain a microlocal Grushin problem near the
full trapped set K. This will be achieved by relating the construction near > to the one
near the successor sections ;. We now need to restore all indices & € {1,..., N} in our
notations.
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3.2.1. Setting up the Grushin problem. We recall that H(ik) C L*(R™ ') is the space
of functions microlocally concentrated in Y (see (R-F])). For u € L?*(X) microlocally
concentrated in neigh(K,T*X), we define

(3.20) Ri(2)u = (RL(2)u, ..., R (z)u) € H(Z,) x ... x H(Zy),
where each RE(z) : H(neigh(K)) — H(S)) was defined in §B] using a cutoff X5 e
Ce(T*X) realizing a smoothed-out step from 0 to 1 along the flow near .

Similarly, we define

R_(2) H(Z)) x ... x H(Sy) — HUN_ ),

3.21 N .
(3:21) R_(2)u_ = ZRJ_(z)uJ_, u_ = (ut, ..., u).

Each RF (z) was defined in (B:I13) in terms of a cutoff function x5 € C°(T*X) which also
changes from 0 to 1 along the flow near ¥, and does so before lev- Below we will impose
more restrictions on the cutoffs yF.

With these choices, we now consider the microlocal Grushin problem

o fime—aesron =0

The aim of this section is to construct a solution (u,u_) microlocally concentrated in a
small neighbourhood of

Ko x k7 HT7) % . X 65 (T)
provided (v, v, ) is concentrated in a sufficiently small neighbourhood of the same set.

To this aim we need to put more constraints on the cutoffs yF. We assume that each
xr € C(T*X) is supported near the direct outflow of T;. To give a precise condition,

let us slightly modify the energy-thick tubes j\}k (see (I.IQ), (B-3)) by removing or adding
some parts near their ends:

T}?SQ o {®%p) : pe Bjk, —$92¢ <t <ty(p)+ s12€}, sp==+.

With this definition, the short tubes fﬁ; do not intersect the neighbourhoods €, €2;, while
the long tubes fﬁ;* intersect both.
We then assume that
(3.23) () =1 for pe |J T .
JEJ+ (k)
and supp x¥ is contained in a small neighbourhood of that set. Furthermore, we want

.....
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FIGURE 5. Schematic representation of (part of) the neighbourhoods V; C
Vo of Ky (resp. green shade and green dashed contour), some sections >y
(thick black) and arrival sets Ay; C ¥ (red). We also show the tubes 755+
connecting s with A;o (the dashed lines indicate the boundaries of 775 ),
the supports of the cutoffs x¥ and X“j} (dot-dashed line), and two trajectories
in Ky (full lines inside V7).

neighbourhood Vj of K containing all long tubes:
(3.24) Voo | JTh",
k.j

and such that
(3.25) leg(p) =1 for pelj.
k=1

These conditions on x¥ can be fulfilled thanks to the assumption ([CI4) on the section
3. A schematic representation of these sets and cutoffs is shown in Fig. fj.
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3.2.2. Solving the homogeneous Grushin problem. Let us first solve (B.23) when v = 0. The
wavefront set WFh(vﬁ) C ik is mapped through kj . to a subset of ¥(z). The microlocal
solution Kj(z)v¥, initially concentrated inside the neighbourhood €2}, can be extended
along the flow to a larger set 2, which intersects the successors 3;(z) of ¥x(z) and contains
the union of tubes ;. 1) fﬁ;* (we remind that j # k according to assumption ([I4)).
This can be done by extending the symplectomorphism ky, the associated unitary Fourier
integral operator Uy, and replace the cutoff function xq, by a function Xaf supported in

the set Q,; we can then define the extended Poisson operator as:

K (2) = x§+ Un K(2) - H(X) — H(Y).

Assuming ry .(WF,(vF)) is contained in the departure set Dy(z) C Z4(z), the extended
microlocal solution K, (z)v* is concentrated in the union of tubes UJ€J+(k)T]k (2). In that
case, we take as our Ansatz

def
(3.26) up = X K (2) o

Due to the assumption (B.23), the cutoff x¥ effectively truncates the solution only near
the sections . (2) and ¥;(z), j € J4(k), but not on the “sides” of supp x. Hence, the
expression

(3.27) (i/1)(P = 2)ug = [(i/n)P.xE] K (2) o

can be decomposed into one component R¥ (2)v% supported near Dy(z), and other com-
ponents supported near the arrival sets A;.(2) C €, due to the “step down” of x¥ near

Ajr(2). The assumption (B.29) ensures that

(3.28) [(i/h)P, x¥] = —[(i/h)P, x}] microlocally near A;;(z),

so the expression in (B:27) reads

(3.29) (i/h)(P = 2)u, = BE(2)0k — Y —[(i/h) P, i) K (2) o) .
JjeJ1(k)

Now, for each j € Ji (k) we notice that K, (z)v% is a solution of (P — z)u = 0 near Aj(z),
so this solution can also be parametrized by some transversal data “living” on the section
3;(2) (see the discussion before (B:H)). This data obviously depends linearly on v*, which
defines the monodromy operator M (2):

(3.30) K (20" = Kj(2) Mj(2)v%,  microlocally near Ajx(z).

The operators M ;(z) are microlocally defined from Dy C 3 to ij(z) C ZNDj, they are
zero on H(Dyy) for £ # j. The identity (B-§) provides an explicit formula:

(3.31) Mii(z) = K;(2)" [(i/ )P XK (2) = RL(2) K (2)
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Before further describing these operators, let us complete the solution of our Grushin

problem. Combining (B.29) with (B-30), we obtain

(3.32) (i/h)(P = z)up = RE (2)0f — > R (2)Mp(2)0f .

JjEJ+ (k)

This shows that the problem (B:23) in the case v = 0 and a single v;", WF,(v¥) C Dy, is
solved by

u=xy K (2) vi, uk = —vi, u = ./\/ljk(z)vi, je Ji(k).
We now consider the Grushin problem with v = 0, v, = (v_lF, e ,vf) with each v_’i mi-

crolocalized in Dy. By linearity, this problem is solved by
u=Y X K(2) 0k,
k

u = —vl + Z Mp(2)0" .

keJ-(j)

(3.33)

<.

From the above discussion, u is microlocalized in the neighbourhood Vj of K , while «’_is
microlocalized in 13j U Avj(z)

Let us now come back to the monodromy operators. The expression (B-31]) shows that
M (2) is a microlocal Fourier integral operator. Since we have extended the solution
Ki(2) vk beyond €, the relation associated with the restriction of K} (z) on H(f)jk) is a
modification of (B.J), of the form

CF = {(@' (Fax(p)); p)s p € Diy —€ <1< byas + €},

such that the trajectories cross »;. On the other hand, the relation C, associated with
R’ (z) is identical with (B.IT). By the composition rules, the relation associated with
M jk(z) is

C*={(p,p), p€Djr, p'=rj10Fjpzorna(p) = Fiz(p)}-

This is exactly the graph of the Poincaré map Fjj . : D;i(2) = Aji(2), seen through the
coordinates charts sy ., K; ..

When z is real, the identity (B.§) implies that M (z) : H(Ejk) — H(ij(z)) is microlo-
cally unitary. Also, the definition (B.31) shows that this operator depends holomorphically
of z in the rectangle R(9, Ch). To lowest order, the z-dependence takes the form

Mii(2) = M;i(0) Op} (exp(izt /) + O(h)

where 7, : Dy, — R, is the return time expressed in the coordinate chart k.
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3.2.3. Solving the inhomogeneous Grushin problem. It remains to discuss the inhomoge-
neous problem

(3.34) (i/h) (P —2)u+R_u_ =,
for v microlocalized in a neighbourhood V) of K , which satistfies

(3.35) et
gk

(each tube fjjj intersects () only near ﬁk, see figure ).

Let us first assume that v is microlocally concentrated inside a short tube fﬁ;. Using
the forward parametrix E(z) of (i/h)(P — z) given in (B:IJ), we propose the Ansatz

(3.36) u Xe B(z)v.

According to the transport property (B.10), E(z)v is microlocalized in the outflow of fj;_,

so the cutoff y§ effectively truncates E(z)v only near Aj,(z) C Q;. The partition of unity
(B:29) then implies that

(i/h)(P — 2)u = v+ (/W) P, xE) E(:)v = v — [(i/ )P, xl) B(2) v
Also, E(z)v is a microlocal solution of (P — z)u = 0 near A;(2), so
E(2)v = K;(2)R).(2)E(z)v microlocally near Aj(2).
Thus, we can solve (B.34) by taking
I = RL(2)E(z)v, u' =0, (+£].

The propagation of wavefront sets given in (BIf) shows that v/ € H (ij(z)), and that

WEF),(u) C j\?l;_ does not intersect the “step up” region of the forward cutoffs X?, so that
Ri(z)Ju=0forall{=1,... N.

If v is microlocally concentrated in Vi N U‘t|§€<1>t(f)k), we can replace the cutoff x} in

(B-34) by
X5+ D X
teJ_ (k)
and apply the same construction. The onlyAnotable difference is the fact that Ri(z)u may
be a nontrivial state concentrated in Ujy<cDy.

In both cases, we see that ||ul| + ||u_|] < ||v|], so [|[Riu|| < [|v||. By linearity, the above
procedure allows to solve (B.34)) for any v microlocalized inside the neighbourhood V4.

We summarize the construction of our microlocal Grushin problem in the following
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Proposition 3.1. For d > 0 small enough, there exist neighbourhoods oflA( = I?g T X,
Vi and V_, and neighbourhoods of %;1(7;) inX;, Vi, and V2, j =1,--- N, such that for
any

(v,vy) € HV,.) x H(VY) x -~ H(VY),
we can find

(w,u_) € HV_) x H(VY) x ---HVYN),
satisfying
%(P —z2)u+ R_(2)u- =0, Ri(2)u=wvy microlocally in Vi x V] x - V.
Here Ri(z) are given by (B:20) and (B21)). Furthermore, the solutions satisfy the mnorm
estimates

Jull + flu-]l < floll + ol
One possible choice for the above sets is
def

Vi=Vi, V.SV, Vi=Dy, VF=D,u |J Aux).
Rez<4d

Proof. Take v € H(V1), and call (@, u_) the solution for the inhomogeneous problem (B-37).
Then the propagation estimate (B-I0) implies that u is concentrated inside the larger neigh-

bourhood Vj C Ujvkj;;,rj (see (B24)), while & € H(A,(2)).
We have RE(2)u € H(Dy) so, provided the data satisfies b € Dy, the computations

of §B.2.9 show how to solve the homogeneous problem with data (v, — R, (z)u). That
solves the full problem. The expressions (B.33) show that the solutions to the homogeneous

problem (@, @" ) are microlocalized, respectively, in V; and in Dy, U gk(z) O

Remark. The proof of the proposition shows that the neighbourhoods Vf and V* are
different. For given data (v,v™), the solutions (u, u_) will not in general be concentrated in
the same small set as the initial data. This, of course, reflects the fact that a neighbourhood
V of Ky is not invariant under the forward flow, but escapes along the unstable direction.
In order to transform the microlocal Grushin problem described in this proposition into a
well-posed problem, we need to take care of this escape phenomenon. This will be done
using escape functions in order to deform the norms on the spaces L*(X) (as described in
§2.7), but also on the auxiliary spaces L*(R"™1).

4. A WELL POSED GRUSHIN PROBLEM

The difficulty described in the remark at the end of §f will be resolved by modifying the
norms on the space L*(X) x L*(R" 1) through the use of exponential weight functions
as described in §R.5. These weight functions will be based on the construction described in

§e.0.
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In most of this section we will consider the scaled operator Py r globally, so we cannot
replace it by P any longer. To alleviate notation, we will write this operator

(41) P:P97R, H:Mohlog(l/h), R>>Co,
where Cj is the constant appearing in ([[.L3), and My > 0 is some constant (which will be
required to satisfy (B.2§) once we fix the weight G).

We will first discuss the local behaviour construction each ¥, and then, as in the previous
section, adapt it to construct a global Grushin problem.

Our first task is still microlocal: we explain how a deformation of the norm on L?(X) by
a suitable weight function G can be used to deform the norms on the N auxiliary spaces
L*(R™ 1), microlocally near Y.

4.1. Exponential weights near ;. As in §B.]], in this subsection we work microlocally
in the neighbourhood €, of one component Xy, (€2 is the neighbourhood described in §B1]);
we drop the index k in our notations. Notice that the complex scaling has no effect in this
region, so P = Py r. We will impose a constraint on the weight function G near X, and

construct a weight functions g on ¥. The construction of the local solution performed in
§B.1 will then be studied in these deformed spaces.

Take a function ¢° € C>°(R"™1), and use it to define Gy € C*°(T*R"), so that
Gola', 70, €,6) = ¢°(2', &) in .

Then, using the Fourier Integral Operator U given in (B-J), one can construct a weight
function Gy € S(T*X) such that

Y =0 (Gp)*U* microlocally near €.
Notice that Gg now depends on A through an asymptotic expansion

(4.2) Go(h) ~ Z W Goj, Goj €CP(T*X) independent of h.

J=0

This weight satisfies G = éo o % 1in Q, and the invariance property

(4.3) [P(h), Gy (x,hD)] =0 microlocally in 2.
As in §2.3, we rescale these weight functions by
(4.4) G Y Mhlog(1/h) Gy, g Mhlog(1/h)¢°.

Still using the model hD,, , one can easily check the intertwining property

G"(x,hDgy;h) K(z) = K(2) g* (', hDy; h) : HX) — H(Q'),

(4.5) G (e hDah) /b _ —g®(a/\hDrsh) /h . py (3 /
e K(iz)=K(2)e tH(X) — H(Y).
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Using the weights G' and g we define the microlocal Hilbert spaces Hg(€)') and H, g(i) by the
method of §£.J. We need to check that the construction of a microlocal solution performed
in §B.1.9 remains under control with respect to these new norms.

Lemma 4.1. The operators
K(z) : Hy(X) = Ha(Y), zeR(5,Ch)
satisfy the analogue of (@) Namely, taking a cutoff x jumping from 0 to 1 near ¥ as in
§F1.3, then any vy € Hy(X) will satisfy
(4.6) ([i/h) P, X" ) K (2) vy, K (2) vi) g = [|vll7, -
Proof. From the cutoff y we define the deformed symbol x5 through
X@é(x’ hD) def oG (x.hD)/h Xw@’ hD) oG (x,hD)/h

The symbol calculus of §2.] shows that x¢ also jumps from 0 to 1 near ¥, so that (returning
to the convention of using x for x*)

([(i/R)P XK (2)vy, K(Z)v)me = (e 9M(i/h) P, XK (2)vy, e " K(2)vy) 12
(K(2)*[(i/h)Pa, xa) K(2) e vy e 9y ) s
(K(2)*[(i/h)P,xc] K(2) e " vy e M)
le/" v, || =

1

oI, -

In the second line we used ([£F]), the third line results from P = Py, due to (), and the
last one from (B.7) applied to xg- O

Equation ([..H) shows that, for z € R(4, Ch), the operator
(4.7) K(z): Hg(i) — Hg(§2)  is asymptotically uniformly bounded .

The above Lemma implies that the operators R, (z), R_(z) defined respectively in (B.9)
and (B.13), are also asymptotically uniformly bounded with respect to the new norms:

(4.8) HR+<2)"H@(Q)~>H§(§) =0(1), HR*<2>HHg(f])%Hg(Q) =0(1).

The arguments presented in §B.1] carry over to the weighted spaces, and the microlocal
solution to the problem (B.14)) constructed in §B.1.3 satisfies the norm estimates

(4.9) [llsig + Nlulla, S lvllae + sl -

Given a function Go(x, &) satisfying H,Goo = 0 in €2, one can iteratively construct a full
symbol Gy of the form (f.3), such that (f-J) holds. Now, the lower order terms in Gy may
change the norms only by factors (1 + O(hM log(1/h))), so the same norm estimates hold

if we replace G by its principal symbol Gy in the definition of the new norms. As a result,
we get the following
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Proposition 4.2. Tuke G, € CX(T*R™), Gy € C°(X) satisfying Gy = GooF inQ, and
G = Mhlog(1/h) Gy,  g= Mhlog(1/h)Gy.
Then, the estimates ([ ]-4-9) hold in the spaces Ha(S2), Hg(i).

4.2. Globally defined operators and finite rank weighted spaces. In this section
we transform our microlocal Grushin problem into a globally defined one. This will require
transforming all the microlocally defined operators (Ry(z), Mji(2)) into globally defined
operators acting on L?(X) or L?(R"!). Because our analysis took place near the trapped
set Ky, we will need to restrict our auxiliary operators to some subspaces of L?(R""1) ob-
tained as images of some finite rank projectors. These subspaces are composed of functions
microlocalized near Kj. To show that the resulting Grushin problem is well-posed (invert-
ible), the above construction must be performed using appropriately deformed norms on
the spaces L?(X), L*(R™!), obtained by using globally defined weight functions G, g;.
Our first task is thus to complete the constructions of these global weights, building on

#20 and §L1.

4.2.1. Global weight functions. We will now construct global weight functions G € C(X),
g; € C(T*R™!) (one for each section X;). For this, we will use the construction of an
escape function away from K presented in §P.6, and modify it near the Poincaré section so
that it takes the form required in Proposition [£.9, and allows us to define auxiliary escape
functions g;. These weight functions will allow us to to define finite rank realizations of the
microlocally defined operators R.(z) and M(z).

Our escape function Gy € S(T*X) is obtained through a slight modification of the weight

Go(x, &) described in (R.26). The modification only takes place near the trapped set K,
and in particular near the sections ¥;. The following lemma is easy to verify.

-----

be small neighbourhoods of €5, 2 € ) € O, and let V' be a small neighbourhood of K
(see (.24)). Then there exists Gy € C°(T*X) such that

N
H,Go>1 on ThoanX Np t([=6.a)\W, W=Evul]oy,
j=1
(4.10) H,Go=0 on €,
HpGO > —50 on T*X.

Besides, using the coordinate charts K; : Q; — Q) (see §3.1.1), we can construct Gy such
that Gy o K| ?2; is independent of the energy variable &, € [0, d].
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The last assumption (local independence on &,) is not strictly necessary, but it sim-
plifies our construction below, making the auxiliary functions g; independent of z — see
Proposition .3

For the set V' we assume that V € V/ € Vi (here V; is the set defined in (B.33)), and
satisfies the following property. Consider the time 7" > 0 used to define the parametrix
E(z) inB.I3. Then there exists t; > 0 such that, for any p € p~1([-6,]) \ V/, the trajectory
segment {®'(p), 0 <t < T} spends a time ¢t > ¢, outside of W. The main consequence of
this property is that
(4.11) ¥p € Tpoom NP~ ([=6,0) \ Vi, Go(®"(p)) — Golp) = 1.

(Here we use the fact that 7" is small enough, so that a particle of energy z ~ 0 starting
inside T'g o) at ¢ = 0 will remain inside T35 55 up to ¢ = T.) The set V will be further
characterized in the next subsection.

From now on, we will take for weight function G = Mhlog h G with such a function Gy,
and use it to define a global Hilbert norm || @ || ¢ (x) as in (B20). As in Proposition .2,
we define, for each j = 1,..., N, the auxiliary weight

(4.12) 9,2, &) < Mhlog(1/h) Gy o 7(2!,0,€,0), (2/,&) €S,

and extend it to an element of C°(T*R" V), so that the deformed Hilbert norm

—g¥ (a/,hD}) /h

||’U||qu = ||e UHLQ(Rn—l)

is globally well-defined. Proposition .4 shows that our microlocal construction near X;

satisfies nice norm estimates with respect to the spaces Hg(X), Hy,.

To see the advantages of having weights which are escape function we state the following
lemma which results from applying Lemma P.2 to the case T' = exp(—itP/h):

Lemma 4.4. Suppose that p; = ®*(pg) for some t > 0, and that

Go(p1) > Golpo) -

Suppose also that x; € C(T*X), j = 0,1, have their supports in small neighbourhoods of
p;’s. Then

(4'13> Heiitp XE]UHHG‘)HG < hM/© ) Hleu eiitPHHG%HG < hM/© )
for some C' > 0 independent of M.
4.2.2. Finite dimensional projections. We want to construct a finite dimensional subspace

of the Hilbert space Hy, (R"!), such that the microlocal spaces H gj(Vi) are both approxi-
mated by it modulo O(h™).

For each j =1,..., N, let S}, S; be two families of open sets with smooth boundaries in
T*R™ 1 satisfying

(4.14) FNT)eS eS;cDy, j=1,...,N.
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FIGURE 6. Schematic representation (inside some energy layer p~!(z)) of
the neighbourhood V. The departure/arrival sets Dy;, Ay; are similar to the
ones appearing in figure f. The sets Sy, S; are represented through their
images in ¥y, X; through sy ., ;.

In particular, each S;, S} splits into disjoint components S} ; € Sk; C l~)kj.

Once these sets are chosen, we need to choose the set V' in Lemma [[.3 to be thin enough:
Lemma 4.5. For § > 0 small enough, there exists V = neigh(Ks, T*X) and ty > 0 such
that the following property holds.

For any indices j = 1,...,N, k € J.(j), any z € [=4,d] and any point p € ijj n.S;
such that its successor Fy; .(p) does not belong to S;., then the trajectory between r;.(p)
and Fyj.(k;.(p)) spends a time t > ty outside of W =V U Ujvzl Q7.

Notice that such a set V' is necessarily contained in the union of the tubes fkj connecting
the Dy;(z) with the Ay;(2) (see figure fi) for a sketch). Now, let

Q; = Q;(', & h) € S(T'R")

with leading symbol ¢; independent of h (the leading symbol is meant in the sense of
(B:23)). We choose that leading symbol to be real and have the following properties:

qi(p) <0, pes;,

(4.15) gi(p) >0, peTR"\'S;, liminfg(p) > 0.
p—00
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Lemma P.1] shows that one can choose @); so that
QY (z',hDy) : Hy (R"') — Hy (R"') s self-adjoint.
Under the assumptions (fI7), we know that (); has discrete spectrum in a fixed neigh-

bourhood of R_ when h > 0 is small enough. Let

(4.16) H; C 1 (H,, (R™Y), where I; € Ta_ (Q¥(a/,hD,))

that is, II; is the spectral projection corresponding to the negative spectrum of Q7. In
particular,

(417) ”H]’”ng%ng = 1, dlm(?’[]) ~ Cj hlin, cj > 0.

The space H,; will be equipped with the norm || e || H,,- For future reference we record
the following lemma based on functional calculus of pseudodifferential operators (see for

instance [[[J, Chapter 7]):
Lemma 4.6. For any uniformly bounded family of states u = (u(h) € L*(R"™1))s_0,
WFy(0) € 8; = llu— Tulln, = OE™)|ulln,,

In §f.T we used the microlocally defined operators
R (2) : Ho(Qy) = Hy, (%)),
Renaming them Rﬁrm(z) (where m stands for microlocal) we now define

def

(4.18) R.(2) ST R, : Ho(X) — H;.
The estimate () together with the above Lemma shows that
(4.19) IR a0, = (1), = € R(8,Ch)

The operators Ri(z) are globally well-defined once we choose a specific realization of

Ri’m(z), which gives a unique definition mod O(h>). We have thus obtained a family
of uniformly bounded operators

Ro(2) € (RY,...,RN) : Ho(X) — Hy x---Hy.

In turn, the operators
(4.20) R (2)
are obtained by selecting a realization of the microlocally defined operator R’ m(z) on

Hy (%), and restricting that realization to #,;:

R(z) =R, (:)1; : H; — He(X).

Again, these operators are well defined mod O(h*). Putting together (L.§) with (E.I7)
ensures that

1B (2) 34,110 = O(L) -
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We group these operators into
R_(z) : Hyx - Hy — He(X)

(4.21) R (2)u_ — ZR{(Z) o, ul = (. uY).

4.3. A well posed Grushin problem. With these definitions we consider the following
Grushin problem:

def

P(Z)ZHéXH—)HG'XH, H:Hlx---HN,
(4.22) of [ (2 () -z _(z
ey (M0 =) RO s cn,

Since Py p(h) — z (which we will denote by P — z for short) is a Fredholm operator, so is
P(z), as we have only added finite dimensional spaces. For Im z > 0 the operator (P — z)
is invertible, so Lemma P.3 shows that the index of P(z) is 0. Hence, in order to prove
that P(z) is bijective it suffices to to construct an approximate right inverse and then use a
Neumann series. The rest of this section will be devoted to the proof of this (approximate)
right invertibility of P(z).

4.3.1. A well-posed homogeneous problem. As before we first consider the homogeneous
problem
(4.23) (i/h)(P —2)u+ R_(z)u_ =0, Ry (2)u=wvy,

where only one component v* is nonzero (we may assume that |[v¥[|3;, = 1). For that we
adapt the methods of §8.2.9. We construct an approximate solution using the extended

Poisson operator K, (z) (that operator acts on the microlocal space H,, (), so its action
on Hy, is well-defined modulo O(h>)), and take

u=xy K (2) v},
where ¥ is the backwards cutoff function with properties given in (§13),([23) and (B:29).

The microlocally defined operator satisfies

RE () u=h + O, (), R, ()u=0y, (h), j#k.

As a result, projecting the left hand side onto H* has a negligible effect:
RE(2)u = T,(v5 + O(h™®)) = 0% + O (™) .

Following (B-27) we write

(4.24) (i/h)(P = 2)u = [(i/R)P, XE] K (2)us € Ho(X).

As noticed in §B.2.7, the transport properties of K, (z) show that u is microlocalized inside
the union of tubes Ujeh(kﬂ?,j(z), so the right hand side in ([.29) splits into a component
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concentrated near Dy, and other components concentrated near the arrival sets A;x(z),
J € Ji(k). We rewrite (B-33) for the present data:

(4.25) (i/h)(P —z)u=RE | (2)ok — > R (2)Mu(2)0h .

Jj€J+(k)
Each state M ;(2)v" is microlocalized inside the arrival set ij(z) C ij, which is not
contained in S; in general — see the remark at the end of §f.

Consequently one could fear that replacing the operators R’ .m(2) by the truncated oper-

ators R?. (z) would drastically modify the above right hand side. The microlocally weighted
spaces Hg, Hy, have been constructed precisely to avoid this problem. The mechanism is a
direct consequence of the relative properties of the sets S; and V explained in Lemma [L.5.
Namely, a point p, € Sj; is either “good”, if its image p; = Fji.(px) € S, or “bad”, in
which case

(4.26) Go(pj) — Golpr) > 1o,
Let us choose a cutoff
(4.27) X; € CE(S)), x;=1 onS;, x;=0 outside neigh(Sj},S;).

Since the Fourier integral operator M i (z) : H(Dy) — H(ij(z)) is uniformly bounded,
(E29) implies the norm estimate (see Lemma [I.9)

Vol € M, 11— x5 Myn(2) v L, S BMY o] s,

On the other hand, x¥ M;y(2)v% is microlocalized inside neigh(S},S;), so Lemma [[G
implies that (IT; — 1)xY Mx(z) v} = Op,, (h>). Putting these estimates altogether, we
find that

(4.28) Vot € Hy, Mr(2) vF =TI Mj(2) % + O(RM™) 0]

This crucial estimate shows that the projection of M (z) v* on H; has a negligible effect.
We now define the finite rank operators

(4.29) Mp(z) <

—~ det J I My (2) 1Ly« Hyy — H;,  j € Jo(k),
0 otherwise.

Using these operators, and remembering that the operators R’ : H;, = Hg(X) are uni-
formly bounded, we rewrite ([.25)) as

(i/h)(P — z)u= RE (2)0f — > R (2)Mjy(2)vf + O(hM) ok .
JEJ+ (k)

Generalizing the initial data to arbitrary v, € H; X --- X Hy, we obtain the
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Proposition 4.7. Assume z € R(J,Ch). Let v, € H. Then there exists (u,u_) €
HZ(X) x H such that

(4.30) (/)P — 2Ju+ R (2)u = Oh™M)velly  in Ho(X),
(4.31) Ri(z)u=vi + OF) [lvglln inH,
(4.32) [ull ey = O vl Nu-lln = OW)]Jvg [l

The second part of the solution, u_, is of the form

us = (M(z) = Idjvy,  |M(2)|pm = O(1),
where M (z) = (]\fzjk(z))m:l,__,]v is the matriz of operators defined in (L29).

We collect some properties of the operators Z\A/[/jk(z), J € Ji(k):

[ ]k(Z) = O(l) : Hk — Hj and WFIh(Mjk(Z’)) C gj X gk
o take pp € Sy, p; = jhz(pk) € Sj:

(1) if the trajectory segment connecting the points k. (pk), kj2(p;) is contained
in W, then microlocally near (p;, pr), M;i(2) is an h-Fourier integral operator
of order zero with associated canonical transformation ﬁ’jk,z = /1]’; o Fji . 0Kk

(2) if furthermore the above segment is disjoint from the support of G, then ]\Zk(z)
is microlocally unitary near (p;, pi).

(3) if, on the opposite, this segment contains a part outside W, then there exist
X; € C®(neigh(p;)), xx € C°(neigh(py)), equal to 1 near p; and pj, respectively,
such that .

Xj Mj(2)xi = O(h*"*) : Hy, — Hy,
with ¢y > 0 independent of M.

4.3.2. A well-posed inhomogeneous problem. Let us now consider the inhomogeneous prob-
lem

(4.33) (i/h)(Pyr —2)u+ R_(2)u_ =v v € Hg(X).
We will use a partition of unity to decompose v to several component.

Take )5 € S(T*X), ¢5 = 1 near p~'([~0/2,0/2]), and ¢5 = 0 outside p~'([~0,d]). The
operator (Pyr — z) is elliptic outside p~'[—d/2,46/2]. Taking 15 similar with s but with
supp 15 C p~([—6/2,6/2]), the operator

LE (Pyg—2— i) : H: — Hg

is invertible, with uniformly bounded inverse L=! € U9. Hence, by taking
u=(h/i)L™ (1 -v7)v,
we find
(i/h)(Po.p — 2)u = (i/h)(Por — 2 — iy Ju+ O(h) ull = (1= ¢5) v+ O(h=)|v]|,
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which solves our problem for the data (1 —§)v. The first equality uses pseudodifferential
calculus and the fact that ¢5s = 1 on the support of ;:

VYL - ¢Y) = Osss(h™).

Let us now consider the data 1¥v microlocalized in p~'([—4, d]). We split this state using
a cutoff ¢p € C(X), such that ¥gr =1 in B(0, R), ¥r = 0 outside B(0,2R). To solve the
equation

(434) /R (Por— 2yu =7, = (1—pm) ¥

we take the Ansatz

(4.35) u=E(2)v,

with E(z) the parametrix of (B.I7) (with P replaced by Py ). It satisfies
(4.36) (i/h)(Py.g — 2)u =0 — e THor=2)/h 7

The time T is chosen small enough, so that
o (p ([=6,0) \ T"B(0, R)) N T*B(0, R/2) =0, 0<1

Hence, the states

A
.

() é —it(Py p— z)/h~

are all microlocalized outside T*B(0, R/2) for t € [0,T]. The estimate (2.27) (adapted to
the weight Gy) then implies that [P§, Lemma 6.4]

~ 2 o~
OO e = - TPy ad(0), T(1)m, < —c M log(1/h), ¥t € [0,7],
where ¢ > 0 is independent of the choice of M. This shows that
le=Eor=2 5]y < C RN 1

so the problem ([:39) is solved modulo a remainder O(hM?2).

We now consider the component ¢ zt§'v microlocalized in T, 5 N p ([0, 0]). We split
it again using a cutoff ¢y, € C(V1), ¢y, = 1 in the set V] € V; (see the discussion after
Lemma [[3). To solve the problem for the inhomogeneous data

’17 = (]‘ - ¢$1)wR¢3UU7
we use the Ansatz (.37), resulting in ({.30). The microlocalization of v outside of V/,

together with the assumption (f.11), implies the norm estimate (see Lemma [.4))
le™ o= 5] 1, < C R[] 11
We finally consider the data v = 9} ¥ r9§’v microlocalized inside V;. For this data, we

can use the microlocal analysis of §8.2.3. If WF, () is contained inside V; N fﬁ;, then
WE,(xF E(2)v) (see Ansatz (B-38)) will intersect X; inside the arrival set ij(z), but not
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necessarily inside S;. However, the same phenomenon as in Lemma [I.] occurs: there exists
a time #3 > 0 such that, for any 2 € [-4,0] and any p € Vi N T}, 7,

(4.37) p+(p) € 55\ 1,2(S)) = Golp(p)) — Golp) > 5.

If we decompose Rim(z)E(z)ﬁ using the cutoff x; of ([.27), the property (f.37) implies
that
(1= X7) B (2) E(2)0]l 1, = O [[0]] -
Hence, if we set
ul = Ry ()X E(2)0 = R, (2)xf E(2)T + O(h™) = R, (2) E(2)T + O(hM"),
we end up with a solution of ([E33) modulo a remainder O(hM)||v]| g,

We have thus shown that the problem (f.33) admits a solution for any v € Hg, up
to some remainder O(h“™). We may then apply Proposition [[7 to solve the resulting
homogeneous problem, and get an approximate solution for the full problem (f:23). We
summarize this solution in the following

Proposition 4.8. Assume z € R(0,Ch). Let (v,v,) € HgXxH. Then there exists (u,u_) €
HZ x H such that

(4.38) {(i/h)(P—Z)U+R—U— =v+ O™ ([vllng + lolln)  in He(X),
Ri(2)u = vy + Oh®) ([[vllag + lvelle)  inH,
(4.39) Ml + llu-ll = O) (vl g + [lo4ll2) -

4.4. Invertibility of the Grushin problem. We can transform this approximate solution
into an exact one. The system ([.3§) can be expressed as an approximate inverse of P(z):

(4.40) <uu) =& (vi)

P(2)E(z) =T +R(h): Ho x H — Hg x H, ||[R(h)|| = Oh™M).

For h small enough the operator I + R(h) can be inverted by a Neumann series, so we
obtain an exact right inverse of P(z),

E(z)=E(x) (I +R(2))"".

Since P(z) is of index zero, £(z) is also a left inverse, which proves the well-posedness of
our Grushin problem (f.29).

Theorem 2. We consider h > 0 small enough, and z € R(d,Ch). For every (v,vy) €
Hg x H, there exists a unique (u,u_) € HE x H such that

{(z’/h)(Pe,R —2u+ R_(2u- =v

(4.41) E (3 .
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where Ry(z) are defined by (E.1§) and ([E20). The estimates (.39) hold, so if we write

()=o) mo=(2 2

then the following operator norms (between the appropriate Hilbert spaces) are uniformly
bounded:

(4.42) LET, B, IE-N [E— ]l = O).

Moreover, we have a precise expression for the effective Hamiltonian:

(4.43) E_(2) = =T+ M(2) + Opyp (h™M) & —1 + M(z, h) ,

where M(z) is the matriz of “open quantum maps” defined in (E29) and described after
Proposition [[.]

Theorem [[] and the formula ([[.3) follow from this more precise result. In fact, the equality

(B-12) shows that

1
(4.44) rank%xR(w)X dw = rank%xﬂ’gﬂ(w)x dw = 3T tr%RQ,R(w) dw,
z ™ z

z

and the well-posedness of our Grushin problem implies [B9, Proposition 4.1] that the above
right hand side is equal to

—i. trj{E+(w)1E’+(w) dw,

which in view of (.43) gives ([.3).
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