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), (2008), 1557-1573.] to problems of the form div(γ∇u) + k 2 qu = 0 in Ω,

and to reconstruct by a perturbation method both γ and q, provided that γ is coercive and k is not a resonant frequency.

Introduction and Notations

In the recent years, a lot of attention has been devoted to the reconstruction of physical parameters of partial differential equations from electromagnetic measurements. In the case of electrical impedance tomography (EIT) it is well known that the detection of the conductivity from boundary measurements is a very illconditioned problem. This drawback has limited its use so far to anomaly detection. In a recent work, Ammari et al. have shown that combining these measurements with simultaneous localized ultrasonic perturbations allows to recover the conductivity with great precision. The purpose of this work is to show that such an approach can be generalized successfully to the study of Helmholtz type problems.

In what follows we use the following notations:

• Ω is a smooth domain in Ê n with a regular boundary denoted by ∂Ω,

• x is a point in Ω,

• Ω ′ = {x ∈ Ω| dist(x, ∂Ω) ≥ d 0 > 0} represents the interior points of Ω,

• w ⊂ Ω ′ is the region of the localization of the ultrasound perturbations, which is supposed to be small compared to the size of Ω ′ , • |w| is the volume of w,

• 1 w denotes the characteristic function corresponding to the set w, i.e., the function which takes the value 1 on the set and the value 0 outside, • z ∈ w is the centre point of the region of the ultrasound perturbation, • k i > 0 is a frequency, • γ(x) is the conductivity and is a scalar real-valued function such that 0 < c 0 < γ(x) < C 0 for all x ∈ Ω, • q(x) is the permittivity and is a scalar real-valued function such that 0 < c 0 < q(x) < C 0 for all x ∈ Ω, • u(x) is the potential induced on the boundary by the electromagnetic field ϕ in the absence of ultrasonic perturbations (u(x) and ϕ(x) are complex-valued functions), • u w is the perturbed potential field induced on the boundary by the electromagnetic field ϕ in the presence of ultrasonic perturbations localized in the domain w (u w is a complex-valued function), • λ is the amplitude of the ultrasonic perturbation, • γ w (x) is the perturbed conductivity (real-valued positive bounded function),

• γ is the value of the perturbed conductivity γ w in the area w of the perturbation (real-valued positive bounded function), • q w (x) is the perturbed permittivity (real-valued positive bounded function),

• q is the value of the perturbed permittivity q w in the area w of the perturbation (real-valued positive bounded function), • M w and m w are the polarization tensors,

• N γ,q (x, z) is the Neumann function for the operator div(γ(x)∇ x ) + q(x) in Ω corresponding to a Dirac mass at z, • W 1 ∞ (Ω) is the Sobolev space of the functions u(x) such that u ∈ L ∞ (Ω) and ∇u ∈ L ∞ (Ω),

• for the complex-valued function u, the function u denotes its complexconjugated.

The problem we consider is the following. Let γ ∈ C 1 (Ω) and q ∈ C 0 (Ω) be bounded scalar real-valued functions (see the list of notations). For i = 1, 2, let u i ∈ H 1 (Ω) be such that div(γ∇u i ) + k 2 i qu i = 0 in Ω,

γ ∂u i ∂ν = ϕ i on ∂Ω. (1) 
The well-posedness of this problem requires that k 2 i is not an eigenvalue of the generalized eigenvalue problem

-div(γ∇u) = λqu in Ω, (3) 
γ ∂u ∂ν = 0 on ∂Ω.
It is well known that this problem admits a countable number of eigenmodes, with no accumulation point, and that each eigenvalue as a finite multiplicity. We will assume that k 1 and k 2 do not correspond to eigenvalues of problem [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]. The generalization of the method introduced in [1] is the following. For frequency k i being fixed, we measure the potential u i , solution of problem (1)-( 2), on ∂Ω. Assume now that ultrasonic waves are localized around a point z ∈ Ω, creating a local change in the physical parameters of the medium. Further, we suppose that q and γ are known close to the boundary of the domain, so that ultrasonic probing is limited to interior points x in Ω ′ (see the list of notations), where d 0 is very large compared to the radius of the spot of the ultrasonic perturbation.

We suppose that this deformation affects γ and q linearly with respect to the amplitude of the ultrasonic signal. Such an assumption is reasonable if the amplitude is not too large. Thus, when the electric potential is measured while the ultrasonic perturbation is enforced, the equation for the potential is div(γ w ∇u i,w ) + k 2 i q w u i,w = 0 in Ω, (4)

γ ∂u i,w ∂ν = ϕ i on ∂Ω. (5) 
with

γ w = γ + 1 w (γλ -γ), (6) 
q w = q + 1 w (qλ -q), (7) 
where λ is the amplitude of the ultrasonic perturbation given by the ratio of the perturbed volume V p w of w over the unperturbed one V w (see [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF]). In other words

γ w (x) = γ(x), x ∈ Ω \ w, λ(x)γ(x), x ∈ w q w (x) = q(x), x ∈ Ω \ w, λ(x)q(x), x ∈ w where λ(x) = V p
w /V w is a known function. The analysis of the change of the Neumann-to-Dirichlet map as a result of electromagnetic perturbation of small volume follows [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF]. The main differences between the case of the conductivity equation considered in [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF] and our case of the Helmholtz equation are the following: this time the boundary data ϕ and the solutions u i are complex-valued functions in our case while they are real in [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF]) and in our case we need to reconstruct simultaneous two coupled real-valued parameters γ and q. Therefore we expand the main ideas of [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF] to our case (see Section 2). The choice of real γ and q implies the existence of eigenfrequencies (see problem [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]) and this gives an additional difficulty in numeric reconstruction. The case of complex γ and q which allows to avoid the resonances, will be considered in [START_REF] Ammari | Microwave imaging by elastic perturbations[END_REF].

The signature of the perturbations on boundary measurements can be measured by the change of energy on the boundary, namely

∂Ω (u w -u)ϕdσ = |w| M w γλ γ (γλ -γ)∇u(z) • ∇u(z) -k 2 (qλ -q)u(z) • u(z) .
(8) Assuming the perturbed region is a ball, the polarization tensor M w γλ γ is a scalar,

M w = (γλ -γ)/(γλ + γ).
Therefore, for a localized perturbation focused at a point z, we read the following data (rescaled by the volume)

D z (λ) = γ|∇u(z)| 2 ( γ γ λ -1) 2 γ γ λ + 1 -k 2 q|u(z)| 2 ( q q λ -1). ( 9 
)
We notice that the data D z (λ) from (9) can be measured for given λ and k thanks to the identity:

D z (λ) = 1 |w| ∂Ω (u w -u)ϕdσ.
The parameters γ γ (z) and q q (z) are unknown, but the amplitude λ is known. Varying the position of localization, we are able to recover this localized internal data everywhere inside the domain. Thanks to the following lemma [4,[START_REF] Ammari | Microwave imaging by elastic perturbations[END_REF], Lemma 1.1: If the data D z is known for four distinct values of λ, chosen independently of γ and q, then one can recover γ(z)|∇u(z)| 2 and q(z)|u(z)| 2 .

we can find directly the functions J(z) = γ(z)|∇u(z)| 2 and j(z) = q(z)|u(z)| 2 for the unique solution u of problem (1)- [START_REF] Ammari | Layer Potential Techniques in Imaging[END_REF].

The proof of Lemma 1.1 is simply a study of functions of one variable, which is detailed in Appendix A.

The rest of the paper is organized as follows: in Section 2 we prove formula (8), in Section 3 we describe a reconstruction method by perturbations and in Section 4 we give and analyse our numeric results, obtained for two different frequencies and one boundary data in the form of a plane wave.

Proof of asymptotic expansion (8)

We suppose that k 2 do not correspond to eigenvalues of problem (3). To prove the asymptotic expansion (8), we first need the following Proposition:

Proposition 2.1: We have the following identities γ ∂(u w -u) ∂n = 0, (10) 
div(γ w ∇(u w -u)) + k 2 q w (u w -u)

= -div(1 w (γ w -γ)∇u) -k 2 1 w (q w -q)u, (11) 
div(γ∇(u w -u)) + k 2 q(u w -u)

= -div(1 w (γ w -γ)∇u w ) -k 2 1 w (q w -q)u w , (12) 
Thanks to Proposition 2.1, we can estimate the difference between the perturbed and unperturbed solutions u w -u in L 2 (Ω) by a norm of u in the perturbed region w and by a power of the small volume |w| bigger than 0.5.

Lemma 2.2:

Suppose that Ω ⊂ R n contains a subset of Ω ′ ⊂ Ω of class C 2 , such that dist(Ω ′ , ∂Ω) > d 0 > 0,
and such that w ⊂ Ω ′ . Let q, γ ∈ L ∞ (Ω) be positive functions, satisfying 0 < c 0 < q(x), γ(x) < C 0 < +∞ a. e. x ∈ Ω, and k 2 is not a Neumann eigenvalue for problem [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]. Then for the functions u w and u ∈ W 1 ∞ verifying Eq. (10) and Eq. (11) we have

u w -u H 1 (Ω) ≤ C|w| 1 2 |u| W 1 ∞ (w) . (13) 
Therefore, thanks to relation (12), for m = max{2, n} and all κ satisfying 0 < κ < 2 m there exists a positive constant C > 0 depending only on Ω ′ , d 0 , c 0 , and C 0 , such that

u w -u L2(Ω) ≤ C|w| 1 2 +κ |u| W 1 ∞ (w) . (14) 
Proof. The proof of estimate (13) follows the proofs of Lemma 15.1 and Proposition 15.2 from [START_REF] Ammari | Layer Potential Techniques in Imaging[END_REF]. Indeed, as soon as q(x)/γ(x)k 2 is not an eigenvalue for the operator -△ in L 2 (Ω) with the homogeneous Neumann boundary condition, in our case problem (1)-( 2) has a unique weak solution u in H 1 (Ω) (for every φ ∈ H -1/2 (∂Ω)). A δ is uniformly continuous and uniformly coercive on

H 1 × H 1 . The embedding H 1 (Ω) ⋐ L 2 (Ω) is still compact because ∂Ω ∈ C 2 and Ω is compact.
For passing to the perturbed problem, we change δ on w (repeat the procedure from [START_REF] Ammari | Layer Potential Techniques in Imaging[END_REF]) and obtain with the help of relation (11) the desired estimate (13).

Let us prove estimate (14). Select v as the solution to

div(γ∇v) + k 2 qv = u w -u γ ∂v ∂n | ∂Ω = 0.
For this v we have v H 2 (Ω) ≤ C u w -u L2(Ω) , and

Ω |u w -u| 2 dx = - Ω γ(x)∇(u w -u)∇vdx + Ω ω 2 q(x)(u w -u)vdx = Ω v div(γ(x)∇(u w -u)) + k 2 q(x)(u w -u) dx = - Ω v div(1 w (γ w -γ)∇u w ) + k 2 1 w (q w -q)u w dx ≤ Ω v div(1 w (γ w -γ)∇u w ) + k 2 1 w (q w -q)u w dx ≤ Ω 1 w (γ w -γ)∇v∇u w dx + Ω k 2 1 w (q w -q)vu w dx ≤ C w |∇u w | q dx 1 q Ω |∇v| p dx 1 p + w |u w | qdx 1 q Ω |v| pdx 1 p ≤ C p w |∇u w | q dx 1 q v H 2 (Ω) + w |u w | qdx 1 q v H 1 (Ω) ≤ C p w |∇u w | q dx 1 q + w |u w | qdx 1 q u w -u L2(Ω) (15) 
provided p, p and q, q are related by 1 q + 1 p = 1 and 1 q + 1 p = 1. We use Sobolev's Embedding Theorem to provide the inclusions H 2 ⊂ W 1 p and H 1 ⊂ L p. We require that q, q > 2m m+2 , so that 1 < p, p < 2m m-2 . For any 1 < q < 2 (see [3, p.164]) we have

u w Lq(w) ≤ u w -u Lq (w) + u Lq (w) ≤ ≤ w 1dx 1 q -1 2 u w -u L2(w) + |w| 1 q u L∞(w) ≤ C|w| 1 q u L∞(w) , ( 16 
)
Taylor & Francis and I.T. Consultant and for any 1 < q < 2 we obtain

∇u w Lq(w) ≤ C q |w| 1 q ∇u L∞ . (17) 
A combination of estimations ( 15), ( 17) and ( 16) yields

u w -u L2(Ω) ≤ C|w| 1 q (|u| L∞(w) + |∇u| L∞(w) )
for any 2m m+2 < q < 2. In other words, 1 2 < 1 q < m+2 2m = 1 2 + 2 m with m = max{2, n}, from where we can take q = 1 q = 1 2 + κ for 0 < κ < 2 m . In addition of estimates ( 13) and ( 14), let us show that the difference u -u w can be totally described by an integral expression over w.

Proposition 2.3: Suppose that k 2 is not the Neumann eigenvalue for div(γ(x)∇ x )+q(x) on w. Let N γq (x, z) be the Neumann function for div(γ(x)∇ x )+ q(x) in Ω corresponding to a Dirac mass at z. That is N γq is the solution to div(γ(x)∇ x N γq (x, z)) + k 2 q(x)N γq (x, z) = -δ z , in Ω, γ ∂Nγq ∂ν = 0 on ∂Ω. ( 18 
)
Then, by definition of N γq (which is a real function!), the function U defined by

U (x) = ∂Ω N γq (x, z)ϕ(z)dσ(z)
is the solution of system ( 1)-( 2). Therefore, the solutions u and u w of systems ( 1)-( 2) and ( 4)-( 25) satisfy

(u-u w )(z) = w (γ w -γ)(z)∇u w (z)∇ z N γq (z, x)dz+ w k 2 (q-q w )(z)u w (z)N γq (z, x)dz. (19) 
Proof. Note that the Neumann function N γq (x, z) is defined as a function of x ∈ Ω for each fixed z ∈ Ω. Since k 2 is not the Neumann eigenvalue for div(γ(x)∇ x ) + q(x) on w, the direct problem (1) admits a unique solution u (see [START_REF] Ammari | Layer Potential Techniques in Imaging[END_REF]). Thus, the solution u is represented by the formula

u(x) = ∂Ω N γq (x, z)ϕ(z)dσ(z). We notice that div(γ(x)∇u w ) + k 2 q(x)u w = -div(1 w (γ w -γ)(x)∇u w ) -k 2 1 w (q w -q)(x)u w , (20)
We multiply relation (20) by N γq and integrate over Ω:

∂Ω ϕ(z)N γq (x, z)dσ(z) - Ω γ(z)∇u w (z)∇N γq (x, z)dz + Ω k 2 q(z)u w (z)N γq (z, x)dz = = Ω 1 w (z)(γ w -γ)(z)∇u w (z)∇N γq (x, z)dz - Ω k 2 1 w (z)(q w -q)(z)u w (z)N γq (x, z)dz.
Therefore, using ∂Ω u w (z)γ(z)∇N q (x, z)dσ(z) = 0, from the following equality

u(z) + Ω u w (z) div(γ(z)∇N γq (x, z)) + k 2 q(z)N γq (z, x) dz = = Ω 1 w (z)(γ w -γ)(z)∇u w (z)∇N γq (x, z)dz + Ω k 2 1 w (z)(q -q w )(z)u w (z)N γq (x, z)dz,
we obtain Eq. ( 19).

Multiplying Eq. ( 19) by ϕ(x) and integrating over ∂Ω, we find

∂Ω (u -u w )ϕdσ(x) = w (γ w -γ)(z)∇u w (z)∇ z ∂Ω N γq (z, x)ϕ(x)dσ(x) dz + w k 2 (q -q w )(z)u w (z) ∂Ω N γq (z, x)ϕ(x)dσ(x) dz, which gives ∂Ω (u -u w )ϕdσ(x) = w (γ w -γ)(z)∇u w (z)∇udz + w k 2 (q -q w )(z) u w (z)udz. ( 21 
)
Remark 1 : [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF] Consider a sequence of sets w ǫ ⊂⊂ Ω. Since the family of functions

1 |wǫ| 1 wǫ is bounded in L 1 (Ω)
, it follows from a combination of the Banach-Alaoglu Theorem and Riesz Representation Theorem that we may find a regular, positive Borel measure µ, and a subsequence w ǫk , with |w ǫk | → 0, such that 1 |wǫ| 1 wǫ → dµ.

Finally, thanks to the a priori estimations (13), ( 14) and the representation formula (21), we establish the main result:

Lemma 2.4: Assume that u ∈ W 1 ∞ (w)
. Consider a sequence of sets w ⊂⊂ Ω such that 1 |w| 1 w converges in the sense of measures to a probability measure dµ as |w| tends to zero. Then,

∂Ω (u w -u)ϕdσ = w M w (γλ -γ)|∇u| 2 dx-k 2 |w| w m w (qλ -q)|u| 2 dx+O(|w| 1+κ ). (22) The exponent κ only depends on Ω 1 , sup Ω |q w |, sup Ω |γ w |, inf Ω |q w | and inf Ω |γ w |.
The remainder term has the form

|O(|w| 1+κ )| ≤ C|w| 1+κ u W 1 ∞ (w) ∇ψ L∞(Ω) ,
where C depends only on

Ω 1 , sup Ω |q w |, sup Ω |γ w |, inf Ω |q w | and inf Ω |γ w |.
Finally, with a hypothesis that w is a ball, the polarization tensors M w and m w become the scalar functions M w and m w , which are given by

M w = 1 |w| 1 w (x) γ γ λ(x) -1 γ γ λ(x) + 1 and m w = 1 |w| 1 w (x).
Proof. Suppose that k 2 is not a Neumann eigenvalue for problem [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]. We have relation (21). We are looking for an approximation of the terms of Eq. ( 21) depending on u w by a function depending on u. In the same way as in [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF], we introduce the solution ζ w of the following problem Proposition 2.5: Consider a sequence of sets w ⊂⊂ Ω, such that 1 |w| 1 w converges in the sense of measures to a probability measure dµ as |w| tends to zero. Then, the corrector 1 |w| 1 w ∂ζw ∂xj converges in the sense of measures to M j dµ (M j is a scalar function). Furthermore, it satisfies

div(γ w (x)∇ζ w ) + k 2 q w (x)ζ w = div(γ(x)∇ x ζ) + k 2 q(x)ζ in Ω, γ ∂ζw ∂n = γ ∂ζ
∇(ζ w -ζ) L2(Ω) ≤ C|w| 1 2 and ζ w -ζ L2(Ω) ≤ C|w| 1 2 +κ ,
where the constants κ > 0 and C > 0 depend only on

Ω 1 , sup Ω |q w |, sup Ω |γ w |, inf Ω |q w | and inf Ω |γ w |.
The rest of the proof follows the analogous one given in details in [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF]. This time the remaining term is bounded by

|O(|w| 1+κ )| ≤ C|w| 1+κ u W 1 ∞ (w) ψ W 1 ∞ (Ω) .
We also remark (see [START_REF] Ammari | Electrical Impedance Tomography by Elastic Deformation[END_REF] for the notations) that the choice of ψ i = ∂ ∂xi u ⋆ η (where η is the standard mollifier) determine the constants C = (C 1 , . . . , C d ) and C = ( C1 , . . . , Cd ) in the definition of the function ζ(z):

C j + i Cj = u(z 0 ) -z 0 ∂ ∂xi u(z 0 ) ∂ ∂xi u(z 0 ) for a z 0 ∈ w, which ensures that ζ(z)ψ ≈ u(z).
Finally, we deduce

∂Ω (u -u w )ϕdσ(x) = |w| w M w (γ w -γ)(z)|∇u(z)| 2 dz + |w| w k 2 1 w |w| (q -q w )(z)|u(z)| 2 dz + O(|w| 1+κ ), with M w = 1 |w| 1 w (x) γ γ λ(x)-1 γ γ λ(x)+1
if w is a sphere. This proves relation (8) and provide the existence of a known function D z (λ) from (9).

3. Reconstruction γ and q by a perturbative method. Numeric algorithm We consider the system of Helmholtz equations with different frequencies

k 1 = k 2 : div(γ(x)∇u k1 ) + k 2 1 q(x)u k1 = 0 in Ω, (23) div(γ(x)∇u k2 ) + k 2 2 q(x)u k2 = 0 in Ω, (24) 
u k1 = u k2 = ψ on ∂Ω. (25) 
The data ψ is the Dirichlet data measured as a response to the current ϕ in absence of elastic deformation. We take ψ = e i arctan y/x , which represents a plane wave. We use the following formulas γ(x)|∇u k1 | 2 = J k1 (x) and q(x)|u k2 | 2 = j k2 (x). Thus, we can approximate our problem by system (26) and ( 27)

div J k1 (x) |∇u k1 | 2 ∇u k1 + k 2 1 q(x)u k1 = 0 in Ω, ( 26 
) div(γ(x)∇u k2 ) + k 2 2 j k2 (x) |u k2 | 2 u k2 = 0 in Ω, ( 27 
)
where it is supposed that

|∇u k1 | 2 > 0 and |u k2 | 2 > 0 for all x ∈ Ω.
Let us explain the steps of the numeric algorithm. The method uses two subalgorithms to reconstruct γ for a fixed q (constant for the ultrasound perturbation) and to reconstruct q for a fixed γ (constant).

First we notice that we have two frequencies k 1 and k 2 .

Step 0. We construct the functions J k1 and j k2 .

Step 1. We take an initial guess q 0 and γ 0 .

Step 2. In the aim of updating first γ 0 we solve the linear system for chosen q 0 and γ 0 and the frequency k 1 :

div(γ 0 ∇u k1 ) + k 2 1 q 0 u k1 = 0 u k1 | ∂Ω = ψ
We obtain the solution of this system which we denote by u 0k 1 . Knowing the approximate solution u 0k 1 , we calculate the error on γ:

E 0k 1 = J k1 |∇u 0k 1 | 2 -γ 0 .
Step 3. We verify the condition |E 0k 1 | < ǫ precision for a given positive constant ǫ precision , which gives the desired order of the precision of the final result. If |E 0k 1 | is smaller than ǫ precision , we take γ ≡ γ 0 and go to Step 5 for the reconstruction of q, otherwise we go to Step 4.

Step 4. We apply the algorithm described in details in Subsection 3.1 to determine the correctors δγ 1 and δu 1k 1 for a fixed q 0 and to update γ 0 using formula (35).

Step 5. In the aim of updating q 0 , we solve the following linear system with the frequency k 2 for a chosen q 0 and γ 0 updated on Step 4:

div(γ 0 ∇u k2 ) + k 2 2 q 0 u k2 = 0 u k2 | ∂Ω = ψ Taylor & Francis and I.T. Consultant
We obtain the solution of this system which we denote by u 0k 2 . Knowing the approximate solution u 0k 2 , we calculate the error on q:

e 0k 2 = j k2 |u 0k 2 | 2 -q 0 .
Step 6. We verify the condition |e 0k 2 | < ǫ precision . If |e 0k 2 | is smaller than ǫ precision , we take q ≡ q 0 and finish the algorithm, otherwise we do Step 7.

Step 7. We apply the algorithm described in details in Subsection 3.2 to determinate the correctors δq 1 and δu 1k 2 for a fixed γ 0 and to update q 0 using formula (40). Next we go to Step 2.

Algorithm of reconstruction of γ for a constant q

Step 1. We start from an initial guess γ 0 , and solve the corresponding Dirichlet problem for the Helmholtz equation div(γ 0 (x)∇u 0 ) + k 2 qu 0 = 0,

u 0 | ∂Ω = ψ.
Solving the direct problem for ψ = e i arctan y/x , we obtain u 0 .

Step 2. We have seen that our inverse problem is asymptotically approached by the direct problem div( J(x)

|∇u| 2 ∇u) + ω 2 qu = 0, in Ω, u = ψ, on ∂Ω. (28) 
We compute the difference

E 0 := J(x) |∇u 0 | 2 -γ 0 ( 29 
)
and verify

|E 0 | < C prec , (30) 
where C prec is our wished order of the precision. If condition (30) holds, we finish our algorithm and set γ ≡ γ 0 . Otherwise we go to the next step.

Step 3. We use now the expression

(γ 0 + δγ 1 )|∇(u 0 + δu 1 )| 2 = J(x),
having the goal to approximate the known function J(x) with the help of the small correctors δu 1 and δγ 1 . We suppose that δ ≪ 1 and that δ max

x |γ 1 | and δ max x |u 1 |
are of the order of δ.

By expanding the expression, we obtain

δγ 1 1 + 2δ ∇(Re u 0 )∇(Re u 1 ) + ∇(Im u 0 )∇(Im u 1 ) |∇u 0 | 2 + δ 2 |∇u 1 | 2 |∇u 0 | 2 = J(x) |∇u 0 | 2 -γ 0 -2δ γ 0 (∇(Re u 0 )∇(Re u 1 ) + ∇(Im u 0 )∇(Im u 1 )) |∇u 0 | 2 -δ 2 γ 0 |∇u 1 | 2 |∇u 0 | 2 .
We consider only terms of order not smaller than δ:

δγ 1 = J(x) |∇u 0 | 2 -γ 0 -2δ γ 0 (∇(Re u 0 )∇(Re u 1 ) + ∇(Im u 0 )∇(Im u 1 )) |∇u 0 | 2 .
To find the corrector ũ1 = δu 1 , we expand the following equation div((γ 0 + δγ 1 )∇(u 0 + δu 1 )) + k 2 q(u 0 + δu 1 ) = 0.

By considering the terms of order not smaller than δ and by replacing δγ 1 by the approximated formula, we can find ũ1 as the solution of the following problem

div γ 0 ∇ũ 1 -2 ∇u 0 |∇u 0 | 2 (∇ Re u 0 ∇ Re ũ1 + ∇ Im u 0 ∇ Im ũ1 ) (31) + div(E 0 ∇ũ 1 ) + div(E 0 ∇u 0 ) + k 2 q ũ1 = 0, ũ1 | ∂Ω = 0. ( 32 
)
Let us define

GU 0 = ∇ Re u 0 ∇ Im u 0 and GU 1 = ∇ Re ũ1 ∇ Im ũ1 ,
and suppose that

U 0 = Re u 0 Im u 0 and U 1 = Re ũ1
Im ũ1 , thus we have

∇ Re u 0 ∇ Re ũ1 + ∇ Im u 0 ∇ Im ũ1 = GU 0 • GU T 1 .
We also use the relation

|∇u 0 | 2 = |GU 0 | 2 .
We solve problem (31)-(32) for the real and imaginary parts of 1 and using our notations we obtain the system

div γ 0 GU 1 -2 GU 0 |GU 0 | GU 0 |GU 0 | • GU 1 + div(E 0 GU 1 ) + div(E 0 GU 0 ) + k 2 qU 1 = 0, U 1 | ∂Ω = 0.
The vector θ 0 = GU 0 |GU 0| is a unit vector. We can rewrite our system in the form

div [γ 0 (Id -2θ 0 ⊗ θ 0 ) GU 1 ] + div(E 0 GU 1 ) + div(E 0 GU 0 ) + k 2 qU 1 = 0, or using eigenvectors div γ 0 θ ⊥ 0 ⊗ θ ⊥ 0 -θ 0 ⊗ θ 0 GU 1 + div(E 0 GU 1 ) + div(E 0 GU 0 ) + k 2 qU 1 = 0.
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We suppose that GU 1 θ 0 and obtain div (γ 0 ∇ Re ũ1 ) + div(E 0 ∇ Re ũ1 ) + div(E 0 ∇ Re u 0 ) + k 2 q Re ũ1 = 0, (33)

Re ũ1 | ∂Ω = 0; -div (γ 0 ∇ Im ũ1 ) + div(E 0 ∇ Im ũ1 ) + div(E 0 ∇ Im u 0 ) + k 2 q Im ũ1 = 0, (34) Im ũ1 | ∂Ω = 0.
This gives ũ1 .

Step 4. We calculate

γ = γ 0 + δγ 1 = 1 |∇u 0 | 2 (J(x) -2γ 0 (∇ Re u 0 ∇ Re ∇ũ 1 + ∇ Im u 0 ∇ Im ∇ũ 1 )) . (35)
We set now γ 0 ≡ γ, and return to the first step to find the corresponding u 0 and repeat the procedure.

Algorithm of reconstruction of q for a constant γ

Step 1. We start from an initial guess q 0 , and solve the corresponding Dirichlet problem for the Helmholtz equation

γ△u 0 + k 2 q 0 (x)u 0 = 0, u 0 | ∂Ω = ψ.
Solving the direct problem for ψ = e i arctan y/x , we obtain u 0 .

Step 2. We have seen that our inverse problem is asymptotically approached by the direct problem

γ△u + ω 2 j(x) |u| 2 u = 0, in Ω, u = ψ, on ∂Ω. ( 36 
)
We compute the difference

ǫ 0 := j(x) |u 0 | 2 -q 0 (37)
and verify

|ǫ 0 | < C prec , (38) 
where C prec is our wished order of precision. If condition (38) holds, we finish our algorithm and set q ≡ q 0 . Otherwise we go to the next step.

Step 3. We use now the expression

(q 0 + δq 1 )|u 0 + δu 1 | 2 = j(x),
having the goal to approximate the known function j(x) with the help of the small correctors δu 1 and δq 1 .

By expanding the expression, we obtain

δq 1 1 + 2δ Re u 0 Re u 1 + Im u 0 Im u 1 |u 0 | 2 + δ 2 |u 1 | 2 |u 0 | 2 = j(x) |u 0 | 2 -q 0 -2δ q 0 (Re u 0 Re u 1 + Im u 0 Im u 1 ) |u 0 | 2 -δ 2 q 0 |u 1 | 2 |u 0 | 2 .
As in Section 3.1, we suppose that δ ≪ 1 and that δ max the order of δ. Consequently, we consider only terms of order not smaller than δ:

δq 1 = j(x) |u 0 | 2 -q 0 -2δ q 0 (Re u 0 Re u 1 + Im u 0 Im u 1 ) |u 0 | 2 .
To find the corrector ũ1 = δu 1 , we expand the following equation

γ△(u 0 + δu 1 ) + k 2 (q 0 + δq 1 )(u 0 + δu 1 ) = 0.
Considering the terms of order no smaller than δ and replacing δq 1 by the approximated formula, we find ũ1 as a solution of the following problem

γ△ũ 1 + k 2 j(x) |u 0 | 2 ũ1 -2k 2 u 0 q 0 (Re u 0 Re ũ1 + Im u 0 Im ũ1 ) |u 0 | 2 = -ǫ 0 k 2 u 0 , ( 39 
) ũ1 | ∂Ω = 0.
We solve the problem and obtain ũ1 .

Step 4. We calculate

q = q 0 + δq 1 = 1 |u 0 | 2 (j(x) -2q 0 (Re u 0 Re ũ1 + Im u 0 Im ũ1 )) . (40) 
We set now q 0 ≡ q, and return to the first step to find the corresponding u 0 and repeat the procedure.

Numerical results

To study the efficiency of this approach, we have tested this method on various problems and domains, using the partial differential equation solver FreeFem++ [START_REF] Hecht | FreeFem++[END_REF]. We present here one such test. The domain Ω is a disk of radius 8 centred at the origin, which contains three inclusions: a triangle, an L-shaped domain and an ellipse, which represents a convex object, a non-convex object, and an object with a smooth boundary respectively. In Figure 1 (a) (respectively (b)) the background conductivity (respectively permittivity) is equal to 1 (respectively 3), the conductivity (respectively permittivity) takes the value 2.5 (respectively 2) in the triangle, 1.75 (respectively 1) in the ellipse and 3.05 (respectively 2.55) in the L-shaped domain for the two frequencies k 1 = π • 10 3 and k 2 = π • 10 -3 . We purposely choose values corresponding to small and large contrast with the background. The initial guess in Figure 1 (c) (respectively (d)) is equal to 3.5 (respectively 11.5) inside the disk of radius 6 centred at the origin, and equal to the supposedly known conductivity (permittivity) 1 (respectively 3) near the boundary (outside the disk of radius 6). Figure 2 shows the result of the reconstruction when perfect measures (with "infinite" precision) are available. For all presented numerical results Taylor & Francis and I.T. Consultant we use as boundary potential ψ = e i arctan(x/y) . Figure 2 (a) and (b) represents the collected data, J(x) and j(x). For known values of the contrast, we remark that through we can 'see' the structure of the permittivity. On Figures 2 (c) and (d), the reconstructed conductivity and permittivity are represented: they perfectly match the target. We have also considered imperfect data. We ran the reconstruction algorithm with the same conditions, but now assume that the data was measured at the nodes of a regular mesh on the disk, with 50, 100, 200 and 400 boundary points (see meshes on Figure 3). Figure 5 shows the obtained reconstructions, which still perfectly match the target. The convergence result for different number of boundary points is given on Figure 6 for the errors j/|u| 2 -q L∞ and J/|∇u| 2 -γ L∞ . We can observe that the convergence is exponential and that it is even more faster for meshes of 50 and 100 boundary points than for meshes of 200 or 400 boundary points.

This better convergence for meshes with 50 and 100 boundary points can be Helm.hyper1993
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Figure 5. Reconstruction tests for different "imperfect" meshes: (a) γ and (b) q using a regular mesh with 50 boundary points, (c) γ and (d) q using a regular mesh with 100 boundary points, (e) γ and (f) q using a regular mesh with 200 boundary points and (g) γ and (h) q using a regular mesh with 400 boundary points. illustrated by the following example. For all types of mesh we can perfectly reconstruct γ and q by the perturbative method if one of the chosen frequency (for the reconstruction of γ) is big enough and the second frequency (for the reconstruction of q) is small enough. In the previous examples, the frequencies were chosen equal to k 1 = π×10 3 and k 2 = π×10 -3 . During our numeric simulations, we have noticed that the smaller |k 1 -k 2 | becomes, less efficient the convergence. More precisely, the algorithm does not converge for |k 1 -k 2 | ≤ 10 for the case of meshes with 200 and 400 boundary points (see Figure [START_REF] Ammari | Kozhemyak Mathematical models and reconstruction methods in magneto-acoustic imaging[END_REF]).

Let us analyse the explanation of these results. We notice that there are two necessary conditions to be satisfied to ensure the convergence of the algorithm by perturbations:

(1) Using the approximation γ(x) = J(x) |∇u(x)| 2 and q(x) = j(x) |u(x)| 2 , we need to ensure that there exist δ 1 > 0 and δ 2 > 0 such that for each iteration step for l = 1, 2, . . ., |∇u l ki (x)| 2 > δ 1 and |u l ki (x)| 2 > δ 2 (where k i are the chosen frequencies). In other words, we need that the sequences {|∇u l ki (x)| 2 : l = 1, 2 . . .} and {|u l ki (x)| 2 : l = 1, 2 . . .} have some uniform positive lower algorithm has no any sense. In the second condition, the smallness of the correctors functions ũl 1 is the basic assumption for deriving the approximate systems (33)-(34) and (39) which avoid all the terms of the second order on δ. If |ũ l 1 | is not small enough, we cannot do it any more and the solutions of systems (33)-( 34) and (39) have no any sense. Moreover, the algorithm converges if and only if |ũ l 1 | → 0 for l → ∞.

Figure 8 shows the decay behaviour of the upper bound of |ũ l 1 | 2 for the corrector ũl 1 from the conductivity update algorithm (see system (33)-( 34)) for different frequencies and meshes. We observe that we have a good convergence corresponding to the logarithmic decay of |ũ l 1 | 2 for all frequencies and meshes with 50 and 100 boundary points, but we have a divergence result corresponding to the non-decay of |ũ l 1 | 2 for the frequency k 1 = 10π and for the mesh with 200 boundary points. The corrector function ũl 1 for the reconstruction of q in our numerical tests for k 2 = π × 10 -m , m = 1, 2, 3, 5, 7, is equal to zero. This means that at each iteration step we update q 0 by j(x)

|u l k i (x)| 2 .
To understand why for k 1 = 10π and k 2 = 0.1π the algorithm diverges for a mesh of 200 boundary points and converges for a mesh of 50 or 100 boundary points, let us verify the first condition of the convergence. Figure 9 (respectively Figure 10) shows the lower bounds of |∇u l ki (x)| 2 and |u l ki (x)| 2 for different k 1 (respectively k 2 ) and for different meshes. We notice that we have for all cases, except the case for k 1 = 10π, k 2 = 0.1π and for the mesh with 200 boundary points, that the sequences {min obtain a divergence of the quantities

J(x) |∇u l k i (x)| 2 and j(x) |u l k i (x)| 2 .
The divergence does not take place for a small number of boundary points because of a lower order of the precision. For example, we notice that with the growth of the number of boundary points (i.e. with the growth of the precision) the limits of the sequences {min which is also

d(x 1 , x 2 , x) = F (u) 4a 2 x(x -x 1 -x 2 ) + x 1 x 2 a 3 xx 1 x 2 + a 2 (x(x 1 + x 2 ) + x 1 x 2 ) + a(x 1 + x 2 + x) + 1 .
Let us define Q(x 1 , x 2 , x 3 , a) = 4a 2 x 3 (x 3 -x 1 -x 2 ) + x 1 x 2 a 3 x 3 x 1 x 2 + a 2 (x 3 (x 1 + x 2 ) + x 1 x 2 ) + a(x 1 + x 2 + x 3 ) + 1 .

We have obtained d(x i , x j , x k ) = F (u)Q(x i , x j , x k , a).

Note that Q(x i , x j , x k , a) = Q(x j , x i , x k , a), but other permutation do not in general yield the same values. As a consequence, from n distinct measurements, we obtain 3C 3 n identities, that is, 3C 3 n formulas of the form 1

F (u) = Q(x i , x j , x k , a) 1 d(x i , x j , x k ) . ( A1 
)
The value of a can thus be deducted by intersection. Note that Q, as a function of a, has only two roots equal to zero (for x 3 (x 3x 1 -x 2 ) + x 1 x 2 = 0). By an appropriate choice of x i , x j , x k , we can set a ∈ (0, ∞).

We see that the equation becomes

Q(x i , x j , x k , a) = d(x i , x j , x k ) d(x ′ 1 , x ′ j , x ′ k ) Q(x ′ 1 , x ′ j , x ′ k , a).
Provided that the function a → Q(xi,xj,xk,a)

Q(x ′ i ,x ′ j ,x ′ k ,a) is bijective, a is determined uniquely. By using relation (A1), this defines F , and therefore N and finally G.

Consequently, to determine a and b, it is sufficient to choose four different points x 1 , x 2 , x 3 and x 4 to obtain a bijective function on (0, ∞) of the form a → Q(x 1 , x 2 , x 3 , a) Q(x 1 , x 2 , x 4 , a) .

  ∂n on ∂Ω. Corresponding to ζ w , we define in the unperturbed case ζ = x+C +i(x+ C), where C and C are constants in Ê d for x ∈ Ê d . This time all functions ζ, ζ w , u and u w are complex. The choice of C ( C) will be discussed later. Thanks to Lemma 2.2, for ζ w -ζ we still have an analogue version of Proposition 3.1 of [1, p.6]:
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 12 Figure 1. (a) Distribution of the conductivity γ. (b) Distribution of the permittivity q. (c) Initial guess for γ. (d) Initial guess for q.
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 4 a) (respectively 4 (b)) presents different errors as functions of the iteration for γ (respectively q).

Figure 3 .

 3 Figure 3. "Imperfect" meshes for: (a) 50 boundary points; (b) 100 boundary points; (c) 200 boundary points; and (d) 400 boundary points.

Figure 4 .

 4 Figure 4. Convergence results for a "perfect" mesh on (a) γ and (b) q.

Figure 8 .

 8 Figure 8. Plot of max |ũ 1 | 2 versus the number of iterations for different values of k 1 = π × 10 m , where ũ1 is the corrector in the reconstruction of γ. (a) Case of 50 points on the boundary. (b) Case of 100 points on the boundary. (c) Case of 200 points on the boundary.

Figure 9 .

 9 Figure 9. Plot of min |∇u| 2 and min |u| 2 versus the number of iterations for different values of k 1 = π × 10 m , where u is the numeric solution of the Helmholtz problem. (a) and (b) Case of 50 points on the boundary. (c) and (d) Case of 100 points on the boundary. (e) and (f) Case of 200 points on the boundary.

  (x)| 2 : l = 1, 2 . . .} and {min x |u l ki (x)| 2 : l = 1, 2 . . .} becomes more and more smaller, as illustrated on Figure 11 for min x |u l k1 | 2 . In the case the mesh of 400 boundary points, the divergence stops the numeric test by the error of the division by zero.

Figure 10 .-x 1 x + x 2 N (x 1 ) -x 1 N (x 2 ) x 2 -x 1 =Figure 11 .

 1021122111 Figure 10. Plot of min |∇u| 2 and min |u| 2 versus the number of iterations for different values of k 2 = π × 10 -m , where u is the numeric solution of the Helmholtz problem. (a) and (b) Case of 50 points on the boundary. (c) and (d) Case of 100 points on the boundary. (e) and (f) Case of 200 points on the boundary.
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(c) bound.

(2) The corrector functions to update the initial guess for γ and q should be small enough (|ũ l 1 | = δ|u 1 | ≪ 1) and for l → ∞, |ũ l 1 | should tends to 0. Indeed, if the first condition does not hold, we have a division by zero and the