
HAL Id: hal-00474328
https://hal.science/hal-00474328v1

Submitted on 4 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An L1 criterion for dictionary learning by subspace
identification

Florent Jaillet, Rémi Gribonval, Mark D. Plumbley, Hadi Zayyani

To cite this version:
Florent Jaillet, Rémi Gribonval, Mark D. Plumbley, Hadi Zayyani. An L1 criterion for dictionary
learning by subspace identification. Acoustics, Speech and Signal Processing, IEEE Conference on
(ICASSP’10), Mar 2010, Dallas, United States. pp.5482–5485. �hal-00474328�

https://hal.science/hal-00474328v1
https://hal.archives-ouvertes.fr


AN L1 CRITERION FOR DICTIONARY LEARNING BY SUBSPACE IDENTIF ICATION
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ABSTRACT

We propose anℓ1 criterion for dictionary learning for sparse
signal representation. Instead of directly searching for the
dictionary vectors, our dictionary learning approach identi-
fies vectors that are orthogonal to the subspaces in which the
training data concentrate. We study conditions on the coef-
ficients of training data that guarantee that ideal normal vec-
tors deduced from the dictionary are local optima of the cri-
terion. We illustrate the behavior of the criterion on a 2D
example, showing that the local minima correspond to ideal
normal vectors when the number of training data is sufficient.
We conclude by describing an algorithm that can be used to
optimize the criterion in higher dimension.

Index Terms— Sparse representation, dictionary learn-
ing, non-convex optimization

1. INTRODUCTION

The efficiency of sparse decompositions in applications
highly depends on the match between the dictionary used
for the decomposition and the class of processed or analyzed
data. Even if appropriate types of dictionaries are known for
certain classes of signals, it is often not possible to choose
a dictionary a priori, and choice of a good dictionary then
requires extensive study of the class of signal under examina-
tion. To overcome this difficulty, several methods have been
proposed to estimate an appropriate dictionary from a set of
training data, in a process commonly referred to asdictionary
learning (see e.g. [1], [2], [3]). In this paper, we propose
a new approach for dictionary learning. In our approach,
instead of seeking to model the data directly, the criterionis
designed to identify the vectors orthogonal to the subspaces
in which the data concentrate.
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number: 225913 (project SMALL). MDP is supported by an EPSRCLead-
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After specifying our notations for the dictionary learning
problem in Section 1.1, we define the proposed criterion in
Section 1.2. We study conditions under which the criterion
presents an optimum for ideal normal vectors derived from
dictionary in Section 2. We illustrate the behavior of the cri-
terion on some characteristics examples in Section 3, and fi-
nally describe the elementary tools that can be used to build
an optimization algorithm for the criterion in Section 4.

1.1. Problem setting

We consider a set of training data consisting ofN vectors
yn ∈ R

d, 1 ≤ n ≤ N . We suppose that these vectors admit
a sparsedecomposition using an unknown dictionary repre-
sented by thed × K matrix Φ0, each columnk of the ma-
trix being one vectorφk ∈ R

d of the dictionary. That is to
say, each data vectoryn can be written asyn = Φ0xn, with
xn ∈ R

K a sparse coefficient vector, i.e. having few non-zero
entries.

These relations can be summarized in convenient matrix
notation, by denotingY thed×N data matrix whose column
n is the vectoryn, andX0 theK×N matrix whose columnn
is the vectorxn. We then have the relationY = Φ0X0. The
problem is then to estimate the dictionaryΦ0 given the data
matrixY .

Just as in blind source separation and independent compo-
nent analysis, the problem intrinsically suffers from permuta-
tion and scaling ambiguities. While the permutation problem
is not an issue for us here, to solve the scaling ambiguity, we
fix by convention that the columns ofΦ0 must be normed,
that is to say that‖φk‖2 = 1 for 1 ≤ k ≤ K.

1.2. Criterion definition

With data satisfyingY = Φ0X0 with X0 sparse, many of
the data vectorsyn are a linear combination of a very limited
number of the dictionary vectors. This implies that the data
will be concentrated on subsets spanned by a limited num-
ber of dictionary vectors. In particular for sufficiently sparse
data, the vast majority of the data will be contained in the



union of all the hyperplanes (subspaces of dimensiond − 1)
spanned by the different possible combinations ofd−1 dictio-
nary vectors. Therefore, instead of directly searching forthe
dictionary vectors, we propose to design a criterion intended
to identify these subspaces, as a first step towards buildinga
new dictionary learning method. A second step would consist
in algebraically recovering the individual dictionary vectors
φk from the collection of hyperplanes they generate.

To identify a subspace in which most of the data are con-
centrated, we consider a vectorw ∈ R

d that we assume (with-
out loss of generality) to have unit norm:‖w‖

2
= 1. When

w is orthogonal to the searched subspace, we have, for most
n, yT

n w = 0. Therefore a natural way to identify such aw
would be to solve the problemminw

∥

∥Y Tw
∥

∥

0
, where‖x‖

0

is the number of nonzero entries in the vectorx, sometimes
referred to as theℓ0-norm. But this problem is nonconvex
and nonsmooth making it very hard to solve directly. So we
replace the precedingℓ0-norm by anℓ1-norm, defining the
criterionC by:

C(w) =
∥

∥Y Tw
∥

∥

1
, (1)

and consider the continuous and piecewise smooth problem
minw C(w). For sufficiently sparse data, we expect that the
ideal normal vectors, defined as the vectors normal to the hy-
perplanes generated by the dictionary vectors, will correspond
to local minima of the criterion. More precisely, the ideal nor-
mal vectors are vectorsw0 verifying w0 ⊥ φk for a given
combination ofd− 1 vectors taken from theK vectors of the
dictionary. The total number of normal ideal vectors is thus
2
(

K
d−1

)

.
To study the relevance of the criterionC in equation (1),

the following questions will be studied in the next sections:

(a) What is the characterization (necessary and sufficient
condition) of local minima ofC?

(b) Given training dataY = Φ0X0, are the ideal normal
vectors actually local minima ofC?

(c) Are there other local minima, which are not associated
with ideal normal vectors?

(d) How can one numerically perform the optimization?

2. ANALYSIS OF LOCAL MINIMA

In this section we investigate questions (a) and (b).

2.1. Characterization of local minima

For a givenw ∈ R
d, we defineΛ = {n|yT

n w 6= 0}. We use
this set to split the data matrix into two matrices:YΛ contain-
ing the data vectors nonorthogonal tow andY

Λ
containing

the data vectors orthogonal tow. So we defineYΛ andY
Λ

by
YΛ =

[

yn

]

, n ∈ Λ andY
Λ

=
[

yn

]

, n /∈ Λ.

Theorem 1. w is a local minimum ofC if and only if

∀w′ ⊥ w,
∣

∣

∣

(

YΛ sign
(

Y T

Λ w
))T

w′
∣

∣

∣
<

∥

∥Y T

Λ
w′

∥

∥

1
.

Proof. In the following, the notation< ., . >F denotes the
Frobenius inner product inducing the Frobenius matrix norm.

For two vectorsw and w′ of R
d such that‖w‖

2
=

‖w′‖
2

= 1 andwTw′ = 0, we have, ifǫ is sufficiently small,
sign

(

Y T
Λ

(w + ǫw′)
)

= sign
(

Y T
Λ

w
)

and we can write:

C(w + ǫw′)

=
∥

∥Y T(w + ǫw′)
∥

∥

1

=
〈

Y T(w + ǫw′), sign
(

Y T(w + ǫw′)
)〉

F

=
〈

Y T

Λ (w + ǫw′), sign
(

Y T

Λ (w + ǫw′)
)〉

F

+
〈

Y T

Λ
(w + ǫw′), sign

(

Y T

Λ
(w + ǫw′)

)〉

F

=
〈

Y T

Λ (w + ǫw′), sign
(

Y T

Λ w
)〉

F

+
〈

Y T

Λ
ǫw′, sign

(

Y T

Λ
ǫw′

)〉

F

= C(w) + ǫ
〈

Y T

Λ w′, sign
(

Y T

Λ w
)〉

F
+ |ǫ|

∥

∥Y T

Λ
w′

∥

∥

1

= C(w) + ǫ
〈

w′, YΛ sign
(

Y T

Λ w
)〉

F
+ |ǫ|

∥

∥Y T

Λ
w′

∥

∥

1
(2)

Sow is a local minimum if and only if

∀w′ ⊥ w,
∣

∣

〈

w′, YΛ sign
(

Y T

Λ w
)〉

F

∣

∣ <
∥

∥Y T

Λ
w′

∥

∥

1

Therefore we have our answer to question (a). Even if this
characterization may appear abstract, it will be useful in the
following sections. Further work is needed to understand its
geometric meaning.

2.2. Study of optimality of ideal normal vectors

To provide a partial answer to question (b), we consider the
case when the dictionary vectorsφk form abasisof R

d (i.e.
φk span the whole space and are linearly independent, soK =
d). Without loss of generality, up to matching row and column
permutations ofX0 andΦ0, we use the following block ma-

trix notation: Φ0 =
[

φk Φk

]

andX0 =

[

xk 0
Xk Xk

]

. The

matrixΦk is made of the columnsφℓ, ℓ 6= k, while xk is the
row vector containing all the non-zero entries of the rowk of
X0. The row permutation ofX0 is chosen such that the first
row of the new matrix is the rowk of the initial matrix, the
same permutation being applied to the column ofΦ0, and the
column permutation ofX0 is such that all the non-zero entries
of the rowk appear inxk on the left of the matrix (cf. [4] or
[5] for details of the notation).

We want to identify the conditions in which the criterion
C in Equation (1) presents local minima for the ideal normal
vectors verifying in the present case a relation of the form
w0 ⊥ φℓ, ℓ 6= k.

Lemma 1. w0 is a local minimum ofC if and only if

∃dk, ‖dk‖∞ < 1, Xk sign(xk)T +
∥

∥xk
∥

∥

1
Φ

†

kφk = Xkdk,

whereΦ
†

k is the pseudo-inverse ofΦk.



Proof. We noteu(w) = YΛ sign
(

Y T
Λ

w
)

. Observe that we
havew′ ⊥ w0 ⇔ ∃β, w′ = Φkβ. Thereforew0 is a local min-

imum if and only if∀β,
∣

∣

〈

Φkβ, u(w0)
〉

F

∣

∣−
∥

∥

∥
Y T

Λ
Φkβ

∥

∥

∥

1

< 0

which is equivalent to (cf. [4]):

∃d, ‖dk‖∞ < 1, Φ
T

k u(w0) = Φ
T

k Y
Λ
d. (3)

As Y = Φ0X0 =
[

φk Φk

]

[

xk 0
Xk Xk

]

, we haveYΛ =

φkxk+ΦkXk andY
Λ

= ΦkXk. ThenY T
Λ

w0 = 〈φk, w0〉x
kT

andsign
(

Y T
Λ

w0

)

= ± sign(xk)T. Thus

u(w0) = ±
(

φkxk + ΦkXk

)

sign(xk)T

= ±
(
∥

∥xk
∥

∥

1
φk + ΦkXk sign(xk)T

)

andΦ
T

k u(w0) = ±Φ
T

k Φk

(

Xk sign(xk)T +
∥

∥xk
∥

∥

1
Φ

†

kφk

)

.

Replacing expressions ofΦ
T

k u(w0) andY
Λ

in equation (3),
we obtain the result.

Even if it may appear abstract, Lemma 1 can be compared
with Theorem 5.1 of [5]. We observe that the two conditions
are exactly similar when the dictionary vectors inΦ0 form
an orthonormal basis. WhenΦ0 is not an orthonormal basis,
the two conditions are different but share a similar form. It
would be interesting to study if one of the conditions implies
the other. The similarity of the two expressions is of inter-
est, as it is also shown theoretically in [5] that ifX0 is drawn
according to a Bernoulli-Gaussian stochastic model, then the
condition in Theorem 5.1 of [5] is satisfied with high proba-
bility whenN ≥ Γ d log d, with Γ a constant. We conjecture
that this result extends to condition in Lemma 1, leading to
the following conjecture:

Conjecture 1. If X0 is drawn according to a Bernoulli-
Gaussian stochastic model, then, whenN ≥ Γ d log d, with
Γ a constant, ideal normal vectors are local minimum of the
criterion C with high probability.

Note that both Lemma 1 and Conjecture 1 are stated when
Φ0 is a basis,i.e., in a setting where standard Independent
Component Analysis (ICA, see e.g. [6]) could be applied to
learnΦ0. However, we foresee extensions of the above ap-
proach to deal with the case of overcompleteΦ0. Moreover
the proposed analysis gives an order of magnitude of the num-
ber of training samplesN ≥ Γ d log d needed to identifyΦ0.

3. EXPERIMENTS

We study numerically the behavior of criterionC in Equation
1 for 2D data in order to get some preliminary indications to
answer questions (b) and (c). Motivated by the theoretical re-
sults obtained in [5], we draw the coefficients inX0 according
to a Bernoulli-Gauss distribution, that is to say, by denoting

X0 = (xkn), that thexkn are independent and identically-
distributed random variables withxkn = ξkngkn , where the
ξkn are indicator variables taking the value1 with probabil-
ity p and0 with probability1 − p, i.e. ξ ∼ p δ1 + (1 − p)δ0.
The variablesgkn follow a standard Gaussian distribution, i.e.
centered with unit variance. We choosep = 0.4.

We fixΦ0 =

[

cos
(

π
2

+ 1
)

cos
(

π
2

+ 2
)

cos
(

π
2

+ 3
)

sin
(

π
2

+ 1
)

sin
(

π
2

+ 2
)

sin
(

π
2

+ 3
)

]

,

which is overcomplete, and consider the value of the criterion

C for a vectorwα =

[

cosα
sin α

]

, with α ∈ [0, π]. GivenΦ0, the

ideal normal vectors are obtained forα equal to1, 2 and3.
The corresponding results are shown in Figure 1.

For both configurations (N = 1000 andN = 10000), we
observe that the criterionC (wα) exhibits clear local minima
corresponding to normal ideal vectors. On the one hand, when
the number of data vectors is not sufficiently large (caseN =
1000), we observe that other local minima are found for other
values ofα. On the other hand, this does not occur when the
number of data becomes sufficiently large (caseN = 10000).
These preliminary results reinforce the idea that the criterion
can be a valuable tool for subspace identification.

−2 0 2

−3

−2

−1

0

1

2

3

N=1000

0 1 2 3
440

460

480

500

520

540

α

C
(w

α
)

−2 0 2

−3

−2

−1

0

1

2

3

N=10000

0 1 2 3
4600

4800

5000

5200

5400

5600

α

C
(w

α
)

Fig. 1. Examples of synthetic 2D training data and corre-
sponding values of criterionC for a low (N=1000) number of
data vectors (left) and for a higher (N=10000) number of data
vectors (right). Top: Cloud plot of datayn. Bottom: plot of
the criterion valueC (curve) and its local minima (circles).

4. OPTIMIZATION ALGORITHM

We now investigate the numerical optimization ofC to an-
swer question (d). We propose an iterative algorithm which
alternates between finding the steepest descent direction and
using a line search.

Steepest descent: For a fixedw ∈ R
d, we define the

column vectora = (ai) by a = YΛ sign
(

Y T
Λ

w
)

, the matrix



B = (bij) by B = Y T

Λ
, and the functionf onR

d by f(w′) =
∣

∣aTw′
∣

∣− ‖Bw′‖
1
.

Considering equation (2), starting from the vectorw, the
direction of the steepest descent of the criterion will be given
by the vectorw′

opt maximizing the functionf . So we want to
solve the following optimization problem:

P1: maxw′ f(w′)

Subject to ‖w′‖
2

= 1; wTw′ = 0.

Two cases should be considered: Iff(w′
opt) ≤ 0, then by

Theorem 1,w is a local minimum and the descent algorithm
must stop. So in this case the value ofw′

opt is of no inter-
est, and it is only necessary to identify thatf(w′

opt) ≤ 0. If
f(w′

opt) > 0 then the value of the criterion can be reduced
by following the direction ofw′

opt, and the knowledge of the
exact value ofw′

opt is needed.

Observation.To find the solution of problem P1, we solve the
following quadratic problem with linear constraints:

P2: minw′,tj
‖w′‖

2

Subject to wTw′ = 0; t0 −
∑

j tj = 1

t0 ≤
∑

i w′
iai;

∑

i w′
iai ≥ 0

∀j ∈ {1, . . . , N − cardΛ}, tj ≥
∑

i w′
ibij

∀j ∈ {1, . . . , N − cardΛ}, tj ≥ −
∑

i w′
ibij .

The problem P2 is such that: if P2 as no solution, then
f(w′

opt) ≤ 0, indicating thatw is optimum; if P2 has a so-

lution for w′ = w′′
opt, thenw′

opt =
w′′

opt

‖w′′

opt‖2

is solution of P1

andf(w′
opt) > 0.

Optimization of descent step: We parametrizewθ =
cos θ w + sin θ w′

opt and search the minimumminθ C(wθ).

Lemma 2. For n ∈ {1, . . . , N}, let ρn ≥ 0 andθn be such
that 〈w, yn〉 = −ρn sin θn and

〈

w′
opt, yn

〉

= ρn cos θn, then
the minimum ofC(wθ) is reached forθ ∈ {θ1, . . . , θN} and
minθ C(wθ) = minn C(wθn

).

Proof. We can writeC(wθ) =
∑

n ρn |sin(θ − θn)|. We de-
fine the functionh(θ) = |sin θ|. For θ 6= 0 mod π, h is a
smooth function twice differentiable and its second derivative
satisfiesh′′(x) < 0. So forx 6= θn mod π, the functionl
defined byl(θ) =

∑

n ρn |sin(θ − θn)| is twice differentiable
and its second derivative satisfiesl′′(x) < 0, so it cannot have
a minimum forθ 6= θn mod π, and its minimum value is nec-
essarily obtained for a value satisfyingθ = θn mod π. As l
is π-periodic, we deduce the result.

Lemma 2 turns the continuous minimization problem into
a finite discrete one.

The complete descent process is summarized in Algo-
rithm 1. Informal experiments indicate that the algorithm
performs successfully. We are currently carrying out further
experiments to confirm its effectiveness and limitations.

Algorithm 1 Descent algorithm
Initialize w
loop

try to find a solution to problem P2
if there is a solutionw′

opt then
compute optimal descent stepθopt (cf. Lemma 2)
updatew: w ← cos θopt w + sin θopt w′

opt

else{w is optimum}
return w

end if
end loop

5. CONCLUSION

We proposed a new criterion for dictionary learning by sub-
space identification. We characterized its local minima, and
empirically demonstrated on a simple example that it enabled
ideal normal vectors to be found. We further proposed an al-
gorithm to numerically find local minima of the criterion.

Future work will focus on evaluating the performance of
this algorithm for data in higher dimension, and theoretically
studying the influence of the number of training data on crite-
rion properties. The use of the proposed approach for greedy
dictionary learning using iterative, successive, hierarchic sub-
space identification will also be investigated.
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