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ABSTRACT After specifying our notations for the dictionary learning
problem in Section 1.1, we define the proposed criterion in
We propose ar’ criterion for dictionary learning for sparse section 1.2. We study conditions under which the criterion
signal representation. Instead of directly searching fier t resents an optimum for ideal normal vectors derived from
dictionary vectors, our dictionary learning approach téen gictionary in Section 2. We illustrate the behavior of thi cr
fies vectors that are orthogonal to the subspaces in which thgrion on some characteristics examples in Section 3, and fi-

training data concentrate. We study conditions on the coefgly describe the elementary tools that can be used to build
ficients of training data that guarantee that ideal normet ve 4 gptimization algorithm for the criterion in Section 4.

tors deduced from the dictionary are local optima of the cri-
terion. We illustrate the behavior of the criterion on a 2D
example, showing that the local minima correspond to idea]"

normal vectors when the number of training data is sufficientwe consider a set of training data consistingMfvectors
We conclude by describing an algorithm that can be used tg, ¢ R4, 1 < n < N. We suppose that these vectors admit
optimize the criterion in higher dimension. a sparsedecomposition using an unknown dictionary repre-
sented by thel x K matrix ®,, each columrk of the ma-
trix being one vector, € R? of the dictionary. That is to
say, each data vectgy, can be written ag,, = ®gx,,, with
r, € RX asparse coefficient vector, i.e. having few non-zero

1. INTRODUCTION entries.

These relations can be summarized in convenient matrix

The efficiency of sparse decompositions in applicationgiotation, by denotind” thed x N data matrix whose column
highly depends on the match between the dictionary used is the vecto,,, andX, the K x N matrix whose colummn
for the decomposition and the class of processed or analyzégithe vectorr,,. We then have the relatioi = ®,.X,. The
data. Even if appropriate types of dictionaries are known foproblem is then to estimate the dictionaby given the data
certain classes of signals, it is often not possible to choosmatrixy’.
a dictionary a priori, and choice of a good dictionary then  Just as in blind source separation and independent compo-
requires extensive study of the class of signal under examin nent analysis, the problem intrinsically suffers from petaa
tion. To overcome this difficulty, several methods have beetion and scaling ambiguities. While the permutation prable
proposed to estimate an appropriate dictionary from a set ¢$ not an issue for us here, to solve the scaling ambiguity, we
training data, in a process commonly referred tdiaionary ~ fix by convention that the columns @f, must be normed,
learning (see e.g. [1], [2], [3]). In this paper, we propose thatis to say thaf¢y||, = 1for1 < k < K.
a new approach for dictionary learning. In our approach,
instead of seeking to model the data directly, the criteison 1 2. Criterion definition
designed to identify the vectors orthogonal to the subspace
in which the data concentrate. With data satisfying” = ®¢X, with X, sparse, many of
the data vectorg,, are a linear combination of a very limited
The authors acknowledge the financial support of the FutulEanerg-  number of the dictionary vectors. This implies that the data

ing Technologies (FET) programme within the Seventh FraonkewPro- ; . _
gramme for Research of the European Commission, under FEERQrant will be concentrated on subsets spanned by a limited num

number: 225913 (project SMALL). MDP is supported by an EPSRad-  Der of dictionary vectors. In particular_for SUﬁiCier_]tlya’?e
ership Fellowship (EP/G007177/1). data, the vast majority of the data will be contained in the

1. Problem setting

Index Terms— Sparse representation, dictionary learn-
ing, non-convex optimization




union of all the hyperplanes (subspaces of dimendien1)
spanned by the different possible combinationg-ei dictio-
nary vectors. Therefore, instead of directly searchingtier
dictionary vectors, we propose to design a criterion inéehd
to identify these subspaces, as a first step towards building
new dictionary learning method. A second step would con3|su
in algebraically recovering the individual dictionary tecs
¢ from the collection of hyperplanes they generate. C(w+ ew')

To identify a subspace in which most of the data are con-  _ HYT (w + ew’)||
centrated, we consider a vectorc R? that we assume (with-
out loss of generality) to have unit norrfiw||, = 1. When = (YT(w+ew'),sign (YT (w + ew')))

Proof. In the following, the notation< .,. > denotes the
Frobenius inner product inducing the Frobenius matrix norm
For two vectorsw and w’ of R? such that|w|, =
’||2 = 1 andw™w’ = 0, we have, ife is sufficiently small,

n (Y (w+ ew')) = sign (Y, w) and we can write:

1

w is orthogonal to the searched subspace_, We_have, for most (Y (w + ew'), sign (Y (w + ew')))
n, yrw = 0. Therefore a natural way to identify suchua . T ,
would be to solve the problemin,, ||Yw||,, where| z|, +(¥g (w + ew’), sign (Y (w + ew’))) ,
is the number of nonzero entries in the vectoisometimes = (Vi (w+ ew’),sign (Y) w)) .
referred to as thé-norm. But this problem is nonconvex +< . sion (Y—Tew’)>
and nonsmooth making it very hard to solve directly. So we A e sei iy F
replace the preceding’-norm by an/*-norm, defining the = C(w)+e(Yyw'sign (Y w)), + e [|Yg '],
criterionC' by: / . T T,
= C(w)+e(w,Ypsign (Y w + |e| || Y7 w'|].(2
Cw) =¥ ul],. ® () e Yasn (Yiw) )+ 1 e Ih@)
and consider the continuous and piecewise smooth probleﬁﬁow is a local minimum if and only if
.min“’ C(w). For sufficien.tly sparse data, we expect that the v,/ | w, |<w/, Y, sign (YATw)>F| < Hy,Tw/H 0
ideal normal vectors, defined as the vectors normal to the hy-
perplanes generated by the dictionary vectors, will cpoad Therefore we have our answer to question (a). Even if this

to local minima of the criterion. More precisely, the ideatn — characterization may appear abstract, it will be usefuhi t
mal vectors are vectors, verifying wy L ¢, for a given following sections. Further work is needed to understasd it
combination ofl — 1 vectors taken from th& vectors of the geometric meaning.
dictionary. The total number of normal ideal vectors is thus
2 K 2.2. Study of optimality of ideal normal vectors

T0 study the relevance of the criterighin equation (1),

the following questions will be studied in the next sections To provide a partial answer to question (b), we consider the

case when the dictionary vectasg form abasisof R? (i.e.

(@) What is the characterization (necessary and sufficiens,, span the whole space and are linearly independerif, so
condition) of local minima ot”? d). Without loss of generality, up to matching row and column

(b) Given training dat&” = ®,.X,, are the ideal normal permutations ofX, and®,, we use the following block ma-
vectors actually local minima af'? ko

(c) Are there other local minima, which are not assomateé”x notation: o = [¢ @] and Xo = [X XJ The
with ideal normal vectors? matrix @, is made of the columng,, ¢ # k, while z* is the

(d) How can one numerically perform the optimization? row vector containing all the non-zero entries of the rfoaf

Xo. The row permutation oK is chosen such that the first

2. ANALYSIS OF LOCAL MINIMA row of the new matrix is the row of the initial matrix, the
same permutation being applied to the colum®gfand the
In this section we investigate questions (a) and (b). column permutation ok, is such that all the non-zero entries

of the rowk appear inz* on the left of the matrix (cf. [4] or
[5] for details of the notation).

We want to identify the conditions in which the criterion
For a givenw € R?, we defineA = {n|yTw # 0}. We use ¢ in Equation (1) presents local minima for the ideal normal
this set to split the data matrix into two matric&$; contain-  vectors verifying in the present case a relation of the form
ing the data vectors nonorthogonaltoand Y containing — w, 1L ¢, ¢ # k.

the data vectors orthogonalta So we defing’y andY5 by ) o ) .
Yy = [yn} n e AandYs — [ n} n¢ A Lemma 1. wy is a local minimum o if and only if

2.1. Characterization of local minima

Theorem 1. w is a local minimum o€ if and only if 3dy, ||dy| o, < 1, Xgsign(z®)T + H:c"’HIEquk = X}dy,

Vu' L w, ‘ (Yasign (Y w))" o' SRt | where®]. is the pseudo-inverse &,




Proof. We noteu(w) = Y, sign (Y w) . Observe that we X, = (zx,), that thezy,, are independent and identically-
havew 1 wy < 36, w’ = ®,6. Thereforay, is alocalmin-  distributed random variables witty,, = & gxn » Where the
imum if and only ifv3, <5kﬁ7u(wo)> ’ _ "YEEkﬁ" <0 g;m are indic_:ator variaples taking the valtewith probabil-
hich walent to (of. [41): E A 1 ity p and0 with probabilityl — p, i.e. & ~ p d; + (1 — p)do.
which is equivalent to (cf. [4]): The variablegy,, follow a standard Gaussian distribution, i.e.

—T —T centered with unit variance. We chogse- 0.4.
3d, ||dill o <1, @ u(wo) = P Yid. (3) We e _ [cos(5+1) cos(5+2) cos(F+3)
k € hx O_Lin(g—i—l) sin(g—l—Q) sin (£ +3)]’
AsY = ©oXo = [¢r Du) B{ < } , we haveYy, =  whichis overcomplete, and consider the value of the cateri
k k COS & . :
b Ty X andys = 3, X ThenYTwo = (¢x, wo) T C for avectorw, = o , with a € [0, 7r]. Given®y, the
andsign (YATwO) = +sign(z*)T. Thus ideal normal vectors are obtained ferequal tol, 2 and3.
The corresponding results are shown in Figure 1.
w(we) = £ (¢pa® + D Xy) sign(z*)" For both configurationsY = 1000 andN' = 10000), we
- 4 (||17kH1 &1 + T Xy, sign(z*)T) observe that the criterioff (w,, ) exhibits clear local minima

corresponding to normal ideal vectors. On the one hand, when
—T —T— ) —t the number of data vectors is not sufficiently large (c&se
and @, u(wo) = £y s (Xk sign(a®)™ + ("], ¢k¢k) " 1000), we observe that other local minima a)r/e fo%nfj for other
Replacing expressions Ef;fu(wo) and Yy in equation (3), values ofa.. On the other hand, this does not occur when the
we obtain the result. O number of data becomes sufficiently large (cAse- 10000).
These preliminary results reinforce the idea that the rioite
Evenif it may appear abstract, Lemma 1 can be compareghn be a valuable tool for subspace identification.
with Theorem 5.1 of [5]. We observe that the two conditions
are exactly similar when the dictionary vectorsdig form N-1000 N=10000
an orthonormal basis. Wheby, is not an orthonormal basis, ’ :
the two conditions are different but share a similar form. It
would be interesting to study if one of the conditions imglie )
the other. The similarity of the two expressions is of inter- ap
est, as it is also shown theoretically in [5] thatkf, is drawn
according to a Bernoulli-Gaussian stochastic model, then t
condition in Theorem 5.1 of [5] is satisfied with high proba-
bility when N > T" dlog d, with T" a constant. We conjecture sa0 5600
that this result extends to condition in Lemma 1, leading to
the following conjecture:

-2 ] 2

520 5400

~ 500 ~ 5200

Conjecture 1. If X, is drawn according to a Bernoulli- © 480 © 5000
Gaussian stochastic model, then, whg€n> T" d log d, with 460 4800
I" a constant, ideal normal vectors are local minimum of the o] - . . 00, - : :

criterion C' with high probability.

Note that both Lemma 1 and Conjecture 1 are stated whelig. 1. Examples of synthetic 2D training data and corre-
d( is a basisj.e, in a setting where standard Independentsponding values of criteriofi for a low (N=1000) number of
Component Analysis (ICA, see e.g. [6]) could be applied todata vectors (left) and for a higher (N=10000) number of data
learn®,. However, we foresee extensions of the above apvectors (right). Top: Cloud plot of datg,. Bottom: plot of
proach to deal with the case of overcompléte Moreover the criterion value” (curve) and its local minima (circles).
the proposed analysis gives an order of magnitude of the num-
ber of training sampled’ > T" dlog d needed to identifyb,.

4. OPTIMIZATION ALGORITHM
3. EXPERIMENTS

We now investigate the numerical optimization @fto an-
We study numerically the behavior of criterighin Equation  swer question (d). We propose an iterative algorithm which
1 for 2D data in order to get some preliminary indications toalternates between finding the steepest descent directibn a
answer questions (b) and (c). Motivated by the theoret&al r using a line search.
sults obtained in [5], we draw the coefficientsXig according Steepest descentFor a fixedw € R?, we define the
to a Bernoulli-Gauss distribution, that is to say, by dempti column vector = (a;) by a = Y, sign (YATw) the matrix



B = (b;) by B =YX, and the functiorf onRR¢ by f(w’) =
|aTw!| — |[Bu;.

Considering equation (2), starting from the vecigrthe
direction of the steepest descent of the criterion will hegi
by the vectorv! , maximizing the functiory. So we want to

opt
solve the following optimization problem:

)

Algorithm 1 Descent algorithm
Initialize w
loop
try to find a solution to problem P2
if there is a solutiony,,, then
compute optimal descent stép,; (cf. Lemma 2)
updatew: w < cos Oopt w + sin Oopr Wy
else{w is optimumn

P1:

max,, f(w

Subjectto |w'|, = 1;wTw’ = 0. return w
_ end if
Two cases should be considered: flfw;,,) < 0, then by end loop

Theorem 1w is a local minimum and the descent algorithm
must stop. So in this case the valuewdf,, is of no inter-
est, and it is only necessary to identify thdto;,,,) < 0. If
f(wg,:) > 0then the value of the criterion can be reduced
by following the direction ofw;,,,, and the knowledge of the We proposed a new criterion for dictionary learning by sub-
exact value ofuy,, is needed. space identification. We characterized its local minimal an
Observation.To find the solution of problem P1, we solve the €mpirically demonstrated on a simple example that it erhble
following quadratic problem with linear constraints: ideal normal vectors to be found. We further proposed an al-
gorithm to numerically find local minima of the criterion.
Future work will focus on evaluating the performance of
this algorithm for data in higher dimension, and theordijca
studying the influence of the number of training data on €rite
rion properties. The use of the proposed approach for greedy
dictionary learning using iterative, successive, higrarsub-

5. CONCLUSION

P2:
Subject to

it 0]

wTw =0tg— > ;tj=1

to < >, wiag; Yy, wia; >0
Vje{l,...,N —cardA},t; > > wibs;

Vje{l,...,N —cardA},t; > — > wib;;. sp

The problem P2 is such that: if P2 as no solution, then

f(w;,,,) < 0, indicating thatw is optimum; if P2 has a so-
, wl!, .
lution for w’ = wy,,, thenwy,,, = m is solution of P1  [1]

and f (wy,,;) > 0.

Optimization of descent step We parametrizauy
cos@ w +sinf w;pt and search the minimuming C'(wp).

(2]
Lemma 2. Forn € {1,...,N}, letp, > 0 andé,, be such
that (w, y,,) = —pn sin6,, and <w’0pt,yn> = py, cosb,, then
the minimum o€ (wy) is reached fo® < {6,,...,0y5} and
ming C(wp) = min,, C(wy,, ).

(3]
Proof. We can writeC'(wg) = >, pn |sin(é — 6,,)|. We de-
fine the functionh(f) = [sinf|. For® # 0 mod m, his a
smooth function twice differentiable and its second déirea
satisfiesh”(z) < 0. So forz # 6,, mod =, the function!
defined byi(0) = ", pn [sin(é — 6,,)] is twice differentiable
and its second derivative satisfié$x) < 0, so it cannot have
a minimum for # 6,, mod =, and its minimum value is nec-
essarily obtained for a value satisfyifig= 0,, mod «. As!

is m-periodic, we deduce the result. O

(4]

(5]

Lemma 2 turns the continuous minimization problem into
a finite discrete one. [6]
The complete descent process is summarized in Algo-
rithm 1. Informal experiments indicate that the algorithm
performs successfully. We are currently carrying out ferth
experiments to confirm its effectiveness and limitations.

ace identification will also be investigated.
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