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PILING OF MULTISCALE RANDOM MODELS

YANN DEMICHEL

Abstract. This paper considers random balls in a D-dimensional Euclidean space whose
centers are prescribed by a homogeneous Poisson point process and whose radii are forced
to be in a finite interval with a power-law distribution. Random fields are constructed
by counting the number of covering balls at each point. We are mainly interested in the
simulation of these fields and in the empirical estimation of its index H. Finally simulations
are given.

Introduction

Various random fields are obtained by summing elementary patterns properly rescaled and
normalized. A pioneer work in this area is due to Cioczek-Georges and Mandelbrot [5] where
a sum of random micropulses in dimension one, or generalizations in higher dimensions,
are rescaled and normalized in order to get a fractional Brownian field of index H < 1/2
(antipersistent fBf). In that paper, it is emphasized that the power law distribution prescribed
for the length of the micropulses makes it impossible to get H > 1/2. Using similar models
in dimension one, recent works ([6, 7]) have examined the internet traffic modeling. The
resulting signal is proved to exhibit a long range dependence (H > 1/2), in accordance with
observations. Such a range for index H is made possible either by prescribing the connection
lengths with heavy tails, or by forcing the number of long connections.

In the present paper, we build elementary fields by counting the number of balls whose cen-
ters and radii are distributed according a Poisson point process. If the centers are uniformly
distributed in the space, we force the radii to be in each given slice (αj+1, αj ] (α ∈ (0, 1) is
fixed and j ranges in Z). Moreover their distribution has a power-law density of the type
r−D−1+2H , H ∈ R. Next we build a piling field Fjmin,jmax summing all the slices from jmin to
jmax.

We are mainly interested in the simulation of fields obtained by piling elementary slices
and in the estimation of its index H. Let us note that simulating such fields appears as very
tractable since the basic objects are balls and the basic operation consists in counting. We
first simulate each slice and then proceed to the piling of the slices. This procedure is similar
to the construction of the ”general multitype Boolean model” in [10].

Concerning the index estimation, we use the structure functions as introduced in [17].
Roughly speaking, the q-structure function of a given function f is equal to the Lq-norm
of the ε-increments of f . We use these tools to provide two different empirical estimators
of the H index: The first one takes into account the small scales and the second one the
intermediate scales.

Outline of the paper
The random fields we deal with are introduced in Section 1. First the piling field is

obtained by summing the elementary slices between a lower and an upper scale. In Section 2,
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we introduce a notion of D-dimensional q-structure functions. They are used to estimate the
H index of the piling field. Two cases are presented: working at small scales (i.e. working
with small balls) in dimension D = 1 and working at intermediate scales for any D. Section
3 is devoted to the simulation procedure of the fields on a cube as well as the numerical
computation of the structure functions. We conclude this section by numerical examples.

1. Some multiscale random models

1.1. Elementary slices.

Let H ∈ R. For α ∈ (0, 1) and j ∈ Z we consider Φj =
{

(Xn
j , R

n
j )n

}
a Poisson point process

in RD × R+ of intensity

νj(dx, dr) = dx⊗ r−D−1+2H1I(αj+1, αj ](r)dr . (1)

Note that Φj is well-defined since νj is a nonnegative measure on RD×R+. We write B(x, r)
for the closed ball of center x and radius r > 0 with respect to the Euclidean norm ‖·‖. We
consider the associated so called ”random balls field” Tj as defined in [3] that provides, at
each point y ∈ RD, the number of balls B(Xn

j , R
n
j ) that contain the point y, namely

Tj(y) =
∑

(Xn
j ,R

n
j )∈Φj

1IB(Xn
j ,R

n
j )(y) . (2)

Equivalently, we can represent the field Tj through a stochastic integral

Tj(y) =

∫
RD×R+

1IB(x,r)(y)Nj(dx, dr), (3)

where Nj is a Poisson random measure on RD × R+ of intensity νj .
In order to ensure that the right hand side of (3) is well defined, it is sufficient to remark
that, by Fubini’s theorem,∫

RD×R+

1IB(x,r)(y) νj(dx, dr) = VD

∫ αj

αj+1

r−1+2Hdr = VD

(
1− α2H

2H

)
α2Hj < +∞ ,

where VD is the Lebesgue measure of B(0, 1).
Let us remark that due to the translation invariance of the Lebesgue measure, the random
field Tj is stationary. Moreover Tj admits moments of any order and according to [1], for
n > 1, the n-th moment of Tj(y) is given by

E(Tj(y)n) =
∑

(r1,...,rn)∈I(n)

Kn(r1, . . . , rn)

n∏
k=1

(∫
RD×R+

1IB(x,r)(y)k νj(dx, dr)

)rk

=
∑

(r1,...,rn)∈I(n)

Kn(r1, . . . , rn)

(
VD

(
1− α2H

2H

)
α2Hj

) n∑
k=1

rk

,

where I(n) =

{
(r1, . . . , rn) ∈ Nn ;

n∑
k=1

krk = n

}
and Kn(r1, . . . , rn) = n!

(
n∏
k=1

rk!(k!)rk
)−1

.

Finally let us mention that the covariance of Tj is simply given by

Cov(Tj(y), Tj(y
′)) =

∫ αj

αj+1

∣∣B(y, r) ∩B(y′, r)
∣∣ r−D−1+2Hdr ,
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where |A| denotes the Lebesgue measure of a set A.

Notice that the covariance function of the field
(
Tj(α

ly)
)
y∈RD is obtained by considering the

field (Tj−l(y))y∈RD according to the following scale invariance

Cov(Tj(α
ly), Tj(α

ly′)) = α2Hl Cov(Tj−l(y), Tj−l(y
′)).

It yields a kind of aggregate similarity property as defined in [2]:

Proposition 1.1. Let α ∈ (0, 1) and j ∈ Z. Then, for any l ∈ Z such that m = α2Hl ∈ N,{
Tj+l(α

ly) ; y ∈ RD
}
fdd
=

{
m∑
k=1

T
(k)
j (y) ; y ∈ RD

}
,

where
(
T

(k)
j

)
k>1

are iid copies of Tj.

Proof. Let us assume that there exists l ∈ Z such that m = α2Hl ∈ N. Let p > 1 and
y1, . . . , yp ∈ RD, u1, . . . , up ∈ R. Then

logE exp

(
i

p∑
n=1

unTj+l(α
lyn)

)
=

∫
RD×R+

(
e
i

p∑
n=1

1IB(x,r)(α
lyn)
− 1

)
νj+l(dx, dr)

= α2Hl

∫
RD×R+

(
e
i

p∑
n=1

un1IB(x,r)(yn)
− 1

)
νj(dx, dr) =

m∑
k=1

logE exp

(
i

p∑
n=1

unTj(yn)

)
,

where the second line is obtained by a change of variables. Hence the result follows. �

1.2. Piling of the elementary slices.
Now let us consider the associated piling random field. Let (Φj)j∈Z be independent Poisson

point processes in RD×R+, with each Φj of intensity νj(dx, dr) given by (1). For jmin, jmax ∈
Z with jmin 6 jmax the piling random field

Fjmin,jmax(y) =

jmax∑
j=jmin

Tj(y) , y ∈ RD (4)

can be considered as the random balls field associated with a Poisson random measure
Njmin,jmax of intensity

νjmin,jmax(dx, dr) = dx⊗ r−D−1+2H1I(αjmax+1, αjmin ](r)dr . (5)

Increments.
Let us mention some facts about the regularity of Fjmin,jmax . Since Fjmin,jmax is discrete valued,
it is not continuous. However one can look at the second order regularity. The increments of
Fjmin,jmax are clearly centered. Let us compute their variance.
For all y, y′ ∈ RD one has, using (4) and (3) :

Fjmin,jmax(y)− Fjmin,jmax(y′) =

∫
RD×R+

(1IB(x,r)(y)− 1IB(x,r)(y
′))Njmin,jmax(dx, dr)

=

∫
RD×R+

(1IB(y−y′,r)(x− y′)− 1IB(0,r)(x− y′))Njmin,jmax(dx, dr) .
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Therefore, using the translation invariance of the Lebesgue measure :

Var(Fjmin,jmax(y)−Fjmin,jmax(y′)) =

∫
RD

∫ αjmin

αjmax+1

(1IB(y−y′,r)(u)− 1IB(0,r)(u))2r−D−1+2Hdu dr .

Since the increments are centered, using Fubini’s theorem, we deduce the exact expression :

E(Fjmin,jmax(y)− Fjmin,jmax(y′))2 =

∫ αjmin

αjmax+1

∣∣B(y − y′, r)4B(0, r)
∣∣ r−D−1+2Hdr , (6)

where A4B is the symmetrical difference between two subsets of RD.

Moreover one has the bound

E
(
Fjmin,jmax(y)− Fjmin,jmax(y′)

)2
6
∫
RD×R+

∣∣B(y − y′, r)4B(0, r)
∣∣ r−D−1+2Hdu dr .

Therefore, using now the rotation invariance of the Lebesgue measure :

E(Fjmin,jmax(y)− Fjmin,jmax(y′))2 6 CD,H
∥∥y − y′∥∥2H

(7)

with

CD,H =

∫
R+

|B(e1, r)4B(0, r)| r−D−1+2H dr and e1 = (1, 0, . . . , 0) ∈ RD. (8)

Finally, notice that for any u ∈ RD and r ∈ R+, one can find a constant C(u) ∈ (0,+∞)
such that

|B(u, r)4B(0, r)| 6 C(u) min
(
rD, rD−1

)
.

Thus CD,H is a finite constant for all H ∈ (0, 1/2). In these cases Inequality (7) appears as
an Holder condition as the second order.

Convergence of the piling.
When jmin → −∞ and jmax → +∞, Equality (5) invites us to consider a Poisson random
measure N of intensity

ν(dx, dr) = dx⊗ r−D−1+2H1I(0,+∞)(r)dr .

Note that ν satisfies

∀ y ∈ RD
∫
RD×R+

1IB(x,r)(y) ν(dx, dr) = +∞

so that the stochastic integral (3) is not well-defined. However, in view of (7), when H ∈
(0, 1/2), one can consider the random field FH defined as

FH(y) =

∫
RD×R+

(1IB(x,r)(y)− 1IB(x,r)(0))N(dx, dr) , y ∈ RD. (9)

We obtain a random balls field known as fractional Poisson field (fPf) (see [2, 14]). The
fPf is a centered process with stationary increments. Even though the fPf is not Gaussian,
it shares the same covariance function as the fractional Brownian field BH of index H (see
[15]):

Cov(FH(y), FH(y′)) =
CD,H

2

(
‖y‖2H +

∥∥y′∥∥2H −
∥∥y − y′∥∥2H

)
(10)

where CD,H is given by (8). Similar random fields are obtained in [9, 8] where Poisson random
measures are also used but yield a different model.
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We can easily link the limit behaviour of the piling field Fjmin,jmax when jmin → −∞ and
jmax → +∞ to FH .

Proposition 1.2. Let H ∈ (0, 1/2). Then, for all p > 1, y1, . . . , yp ∈ RD, the sequence

(Fjmin,jmax(y1)− Fjmin,jmax(0), . . . , Fjmin,jmax(yp)− Fjmin,jmax(0))

converges almost surely as jmin → −∞ and jmax → +∞ to (FH(y1), . . . , FH(yp)) where FH
is a fPf.

Proof. Let us fix y ∈ RD and write Mn = F0,n(y) − F0,n(0), n > 0. The sequence (Mn)n>0

is a martingale with respect to its natural filtration σ(Mn′ , 0 6 n′ 6 n). Thus in order to
prove that (Mn)n>0 converges almost surely it is enough to prove that it is bounded in L2(Ω).
Since H ∈ (0, 1/2), (7) yields :

E(M2
n) 6 CD,H ‖y‖2H , CD,H <∞ ,

which proves the required condition. Hence (Mn)n>0 converges almost surely to a limit M+
∞

as n→ +∞.
Similarly, we prove that the sequence

(
F−n,0(y)− F−n,0(0)

)
n>0

converges almost surely to a

limit M−∞ as n→∞.
Thus, the sequence

(
Fjmin,jmax(y) − Fjmin,jmax(0)

)
jmin,jmax

converges almost surely to M∞ =

M−∞ + M+
∞ as jmin → −∞ and jmax → +∞. Finally it remains to check that the limit M∞

is a fPf. This may be simply done computing the limit of the characteristic function of

(Fjmin,jmax(y1)− Fjmin,jmax(0), . . . , Fjmin,jmax(yp)− Fjmin,jmax(0))

as jmin → −∞ and jmax → +∞. �

Normal convergence.
A classical normal convergence is obtained for shot noise fields when the number of shots tends

to +∞ (see [11] for instance). Here we can obtain such a convergence. Let
(
F

(k)
jmin,jmax

)
k>1

be

iid copies of Fjmin,jmax . According to the Central Limit Theorem :{
1√
K

K∑
k=1

(
F

(k)
jmin,jmax

(y)− F (k)
jmin,jmax

(0)
)

; y ∈ RD
}

fdd−→
K→+∞

{
Wjmin,jmax(y) ; y ∈ RD

}
(11)

where Wjmin,jmax is a centered Gaussian process with stationary increments, Wjmin,jmax(0) = 0
and a variance given by

Var(Wjmin,jmax(y)) =

∫ αjmin

αjmax+1

|B(y, r)4B(0, r)| r−D−1+2H dr. (12)

Looking at Figure 2 one can observe that the limit field seems more regular than the original
piling Fjmin,jmax . This is due to the fact that second order regularity implies almost surely
regularity for a Gaussian field.

2. Empirical estimation of the H index

According to (4) and (5), H appears as the important parameter of the field Fjmin,jmax . This
section is devoted to its estimation. Our method is inspired by the inequality (7). One can
think of the quadratic variation method (see [12]) but here, in practice, it is very difficult
to get arbitrary small increments. Thus we present an alternative method using simulated
samples of the field Fjmin,jmax .
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2.1. General tools.
If f : RD → R is a continuous function then one can consider, for q > 0, the functional

Sq(f, ε) =
1

D

D∑
i=1

∫
[0,1]D

|f(t+ εei)− f(t− εei)|q dt , ε > 0 , (13)

where {e1, . . . , eD} denoted the canonical basis of RD. Such quantity, called the q-structure
function of f , has been used to study the fractal behaviour of various functions f (see [17, 13]).

Here Fjmin,jmax is not continuous but E |Fjmin,jmax(εei)− Fjmin,jmax(−εei)|q < ∞. Thus, by
Fubini’s theorem and stationarity, we can consider

E (Sq(Fjmin,jmax , ε)) =
1

D

D∑
i=1

∫
[0,1]D

E |Fjmin,jmax(t+ εei)− Fjmin,jmax(t− εei)|q dt. (14)

The value q = 2 allows us to give exact and explicit formulas especially in dimension D = 1.

The D = 1 case.

Proposition 2.1. Assume that D = 1. Then one has E (S2(Fjmin,jmax , ε)) =

4

1− 2H

(
α(2H−1)(jmax+1) − α(2H−1)jmin

)
ε if ε ∈ [0, αjmax+1) ,

4

1− 2H
ε
(
ε2H−1 − α(2H−1)jmin

)
+

2

H

(
ε2H − α2H(jmax+1)

)
if ε ∈ [αjmax+1, αjmin ] ,

2

H

(
α2Hjmin − α2H(jmax+1)

)
if ε > αjmin .

(15)

Proof. When D = 1, Equation (6) gives

E (Fjmin,jmax(t+ ε)− Fjmin,jmax(t− ε))2 =

∫ αjmin

αjmax+1

∣∣[2ε− r, 2ε+ r]4[−r, r]
∣∣r−2+2Hdr

One checks that

[2ε− r, 2ε+ r]4[−r, r] =

{
[2ε− r, 2ε+ r] ∪ [−r, r] if r 6 ε ,

[−r, 2ε− r] ∪ [r, 2ε+ r] if r > ε ,

where the two unions are disjoined. Therefore

E (Fjmin,jmax(t+ ε)− Fjmin,jmax(t− ε))2 = 4

∫ αjmin

αjmax+1

min{r, ε}r−2+2Hdr .

To conclude we just have to consider the position of ε and the fact that the latter quantity
does not depend on t. �

The D > 1 case. For general D the volume of the set B(2εei, r)∆B(0, r) is not given by
tractable formulas. Thus it seems quite difficult to expand the previous calculus to higher
dimensions. However it is possible to obtain an exact expression for the expectation of
S2(Fjmin,jmax , ε) by looking at the large ε.
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Proposition 2.2. For all ε > αjmin, one has :

E (S2(Fjmin,jmax , ε)) =
πD/2

Γ(1 +D/2)H

(
α2Hjmin − α2H(jmax+1)

)
.

Proof. If ε > r then

∀ i ∈ {1, . . . , D}
∣∣B(2εei, r)∆B(0, r)

∣∣= 2VD r
D

since the two balls are disjoined.
Thus (6) gives

E(Fjmin,jmax(t+ εei)− Fjmin,jmax(t− εei))2 =
VD
H

(
α2Hjmin − α2H(jmax+1)

)
.

Hence the result follows, since the latter quantity does not depend on t nor on i, and VD is
expressed using the Gamma Euler’s function. �

2.2. Empirical estimators.
Now we show how to derive several estimators of the H index from Propositions 2.1 and 2.2.
We assume that we have independent realizations of Fjmin,jmax . Moreover we fix an integer
N > 1 such that αjmax+1 = N−1. In practice it will be linked to the resolution δ of the grid
by δ = N−1.

The D = 1 case. First we assume that D = 1 and jmin > 0. We focus on the small balls or
equivalently on the small scales and use S2(Fjmin,jmax , ε) for small ε.

Proposition 2.3. Assume that D = 1. Let 0 6 jmin < jmax and let
(
F

(k)
jmin,jmax

)
k>1

be iid

copies of Fjmin,jmax of index H. Finally, let us define for all K > 1 :

γ̂K =
1

2 log 2
log

K∑
k=1

S2

(
F

(k)
jmin,jmax

, 2N−1
)

K∑
k=1

S2

(
F

(k)
jmin,jmax

, N−1
) . (16)

Then, when K goes to +∞, γ̂K converges almost surely to h1(H) where

h1(H) = H +
1

2 log 2
log

(
1− (2α−jminN−1)1−2H + (1− 2H)(1− 2−2H)/(2H)

1− (α−jminN−1)1−2H

)
. (17)

Proof. Since αjmax+1 = N−1, Proposition 2.1 implies that for all ε ∈ [N−1, αjmin ] :

E (S2 (Fjmin,jmax , ε)) =
4

1− 2H
ε2H − 4

1− 2H
εα(1−2H)jmin +

2

H

(
ε2H −N−2H

)
.

Therefore we obtain :

E
(
S2

(
Fjmin,jmax , 2N

−1
))

E (S2 (Fjmin,jmax , N
−1))

= 22H

(
1− (2α−jminN−1)1−2H + (1− 2H)(1− 2−2H)/(2H)

1− (α−jminN−1)1−2H

)
.

Thus :

1

2 log 2
log

E
(
S2

(
Fjmin,jmax , 2N

−1
))

E (S2 (Fjmin,jmax , N
−1))

= H +
1

2 log 2
log

(
1− (2α−jminN−1)1−2H + (1− 2H)(1− 2−2H)/(2H)

1− (α−jminN−1)1−2H

)
.

(18)
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But one has, by the law of large numbers :

E (S2 (Fjmin,jmax , ·)) = lim
K→+∞

1

K

K∑
k=1

S2

(
F

(k)
jmin,jmax

, ·
)
.

So γ̂K −→
K→+∞

h1(H) almost surely and the result follows from (18). �

From this result, we deduce a first estimator ĤK for index H setting ĤK = h−1
1 (γ̂K).

The D > 1 and jmin > 0 case. Since jmin > 0 it is possible to see all balls whatever their
radii are. This allows us to propose an estimator for H in the general multidimensional case
D > 1. We will focus on the large scales ie use S2(Fjmin,jmax , ε) for ε near 1.

Under the assumption jmin > 0 the interval (αjmin , 1] is not empty. Let M∗ be the smallest
integer such that εM∗ = nM∗N

−1 > αjmin . Then for all m ∈ {M∗, . . . ,M}, εm ∈ (αjmin , 1]
(note that the larger jmin is the more points we have).

Proposition 2.4. Let 0 < jmin < jmax and let
(
F

(k)
jmin,jmax

)
k>1

be iid copies of Fjmin,jmax of

index H. Finally, let us define for all K > 1 :

π̂K =
1

K

K∑
k=1

(
1

M −M∗ + 1

M∑
m=M∗

S2

(
F

(k)
jmin,jmax

, εm

))
. (19)

Then, when K goes to +∞, π̂K converges almost surely to h2(H) where

h2(H) =
πD/2

Γ(1 +D/2)H

(
α2Hjmin −N−2H

)
. (20)

Proof. Proposition 2.2 implies :

∀ m ∈ {M∗, . . . ,M} E (S2 (Fjmin,jmax , εm)) =
πD/2

Γ(1 +D/2)H

(
α2Hjmin −N−2H

)
.

Thus:

1

M −M∗ + 1

M∑
m=M∗

E (S2 (Fjmin,jmax , εm)) =
πD/2

Γ(1 +D/2)H

(
α2Hjmin −N−2H

)
. (21)

Now, by the law of large numbers, one has:

E (S2 (Fjmin,jmax , ·)) = lim
K→+∞

1

K

K∑
k=1

S2

(
F

(k)
jmin,jmax

, ·
)
.

So π̂K −→
K→+∞

h2(H) almost surely and the result follows from (21). �

As previously, we deduce a second estimator Ĥ ′K for index H considering Ĥ ′K = h−1
2 (π̂K).

3. Simulations and numerical examples

All the Matlab codes are available at http://www.math-info.univ-paris5.fr/∼demichel
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3.1. Simulation of the piling field on a cube.
We focus here on the simulation of the piling field Fjmin,jmax for H ∈ (0, 1/2). We generate
exact simulations of the fields Tj and Fjmin,jmax (see (2) and (4)) on the cube [c, c+ d]D with
c ∈ R and d > 1. Let us recall that Tj may be written as the sum

Tj =
∑

(Xn
j ,R

n
j )∈Φj

1IB(Xn
j ,R

n
j ) .

If Xn
j is at a distance of the cube larger than Rnj then no point of the cube is covered by

B(Xn
j , R

n
j ). Since Rnj 6 αj , when simulating the slice number j, it is enough to pick up

centers of balls randomly in the enlarged cube [c− αj , c+ d+ αj ]D.

Let us denote cα,H = (α−D+2H − 1)/(D − 2H) and consider the measure on RD × R+

ν̃j(dx, dr) = cα,H(d+ 2αj)Dα−j(D−2H) µj(dx)⊗ ρj(dr) (22)

where 
µj(dx) =

1

(d+ 2αj)D
1I[c−αj , c+d+αj ]D(x) dx

ρj(dr) = c−1
α,H α

j(D−2H)r−D−1+2H1I(αj+1, αj ](r) dr

(23)

are respectively two probability measures for centers and radii of random balls.

We simulate Tj considering

Tj(y) =

Λj∑
n=1

1IB(Xn
j ,R

n
j )(y) , y ∈ [c, c+ d]D , (24)

where

− (Xn
j )n is a family of iid random variables with law µj(dx)

− (Rnj )n is a family of iid random variables with law ρj(dr)

− Λj is a Poisson random variable with parameter cα,H(d+ 2αj)Dα−j(D−2H).

Let us recall that a simple way to generate the sequence (Rnj )n is to use the pseudo-inverse

method : we get Rnj = αj(α−D+2H − (α−D+2H − 1)V n
j )−1/(D−2H) with V n

j a uniform random

variable on [0, 1].

Consequently, considering independent realizations of (Tj)jmin6j6jmax
one simulate Fjmin,jmax

using (4) and

jmax∑
j=jmin

Tj(y) =

jmax∑
j=jmin

( Λj∑
n=1

1IB(Xn
j ,R

n
j )(y)

)
, y ∈ [c, c+ d]D . (25)

In practice Fjmin,jmax is only obtained on a discrete subset of [c, c + d]D, say a grid with a
step of size δ ∈ (0, 1). Thus it no longer makes sense to consider balls with radii smaller
than δ. Since the smallest radius is greater than αjmax+1, one will assume that αjmax+1 > δ.
On the other hand, to get the most precise details, it seems natural to assume exactly
that αjmax+1 = δ. Consequently, given the resolution δ, the slice factor α will be fixed by
αjmax+1 = δ. Finally, one is often interested in the small scales behaviour of the field and not
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in the general ”look-like” geometry. Thus, in order to not see the large balls, one may take
jmin > 0.

We have simulated, in dimension D = 2, the piling field F0,15 on the cube [0, 1]2 with δ =
0.005. Figure 1 shows the construction at different steps, precisely the three slices T5, T10,
T15, and the corresponding pilings F0,5, F0,10 and F0,15. Figure 2 illustrates the Central Limit
Theorem of Section 1.2 for the same field F0,15.

(a) T5 (b) T10 (c) T15

(d) F0,5 (e) F0,10 (f) F0,15

Figure 1. Step by step piling.

(a) K = 1 (b) K = 5 (c) K = 10

Figure 2. Normal convergence when K → +∞.
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3.2. Simulation of Sq(f, ε).
We explain now how to use the q−structure functions in a practical way. To simplify we only
deal with the case D = 1 and [c, c+ d]D = [0, 1]. Let us consider a function f : R → R. We
suppose that we can simulate f on a regular subdivision τ = { τi = iN−1 } of [−1, 2] with
step δ = N−1 (where N > 2). We consider Sq(f, ε) given by (13) for ε ∈ [N−1, 1] ∩ τ . More
precisely, we choose a finite sequence of M > 2 integers nm (with n1 = 1 and nM = N) and
put

εm = τnm = nmN
−1 . (26)

Let us note that the smallest ε considered corresponds to the resolution of the grid N−1.
Then, for 1 6 m 6M , we approximate the integral defining Sq(f, εm) by its Riemann sum :

Sq(f, εm) =

∫ 1

0
|f(t+ εm)− f(t− εm)|q dt ≈ 1

N

N∑
i=1

|f(τi+nm)− f(τi−nm)|q . (27)

Let us emphasize that Propositions 2.1 and 2.2 still hold when replacing S2(f, εm) by the
discrete sum (27).

Now we focus on the behaviour of Sq(f, εm) with respect to εm. In general, the ε−increments
of f behave like a power of ε as ε goes to 0. Thus this invites us to use log-log plots. Notice
that at the resolution of the grid, it is what happens for the variance of the increments of
Fjmin,jmax (see formulas (15)).

For 1 6 m 6M , let us write ηm = log nm = log(Nεm) and

Lq(f, ηm) =
1

q
logSq(f, εm) =

1

q
logSq

(
f,N−110ηm

)
and consider the log-log plot {(ηm, Lq(f, ηm)) ; 1 6 m 6M}, which is called the q−structure
curve of f . In order to obtain the ηm approximately equally spaced, one usually assumes
that the εms have an arithmetic progression (but nm should be an integer). However since
n1 = 1 and n2 > 2, we always have η2 − η1 > log 2. In order to get the minimal lag η2 − η1

we set n2 = 2.

3.3. Numerical examples of estimation in dimension D = 1.

We focus here on the empirical estimation of the H index. In practice the F
(k)
jmin,jmax

are

simulated on a regular grid with step δ = N−1 using the results of Section 3.1. We com-

pute S2
2

(
F

(k)
jmin,jmax

, N−1
)

and S2
2

(
F

(k)
jmin,jmax

, 2N−1
)

for each F
(k)
jmin,jmax

using the discrete sums

(27). This gives γ̂K and we find ĤK by solving the equation h1(h) = γ̂K with a numerical
approximation procedure (e.g. the standard Newton method).

Let us give a first example. We consider Fjmin,jmax for different values of H. The processes
are simulated on a regular grid of [−1, 2] with step δ = 5.10−4 (so N = 2000). We chose
jmin = 0 and jmax = 15. Table 1 shows the results for K = 500.

We see that H is well approximated by ĤK whatever H is.

Let us give a second example. We look again at Fjmin,jmax , for different values of H. We
assume D = 1. The processes are again simulated on a regular grid of [−1, 2] with step
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H h1(H) γ̂K ĤK

0.45 0.47399 0.47425 0.45159

0.40 0.46519 0.46553 0.40182

0.35 0.45531 0.45589 0.35282

0.30 0.44473 0.44452 0.29906

0.25 0.43375 0.43492 0.25528

0.20 0.42265 0.42196 0.19688

0.15 0.41161 0.41051 0.14496

0.10 0.40075 0.40111 0.10169

0.05 0.39013 0.39028 0.05074

Table 1. Estimation of H with (jmin, jmax) = (0, 15) and K = 500.

δ = 5.10−4 (so N = 2000). We chose jmin = 5 and jmax = 15. We use the two estimators ĤK

and Ĥ ′K with K = 500. Table 2 reports the different results.

(a) Using ĤK

H h1(H) γ̂K ĤK

0.45 0.46579 0.46579 0.45001

0.40 0.45784 0.45853 0.40415

0.35 0.44910 0.44847 0.34656

0.30 0.43974 0.43863 0.29427

0.25 0.42993 0.42895 0.24513

0.20 0.41983 0.41942 0.19800

0.15 0.40959 0.41122 0.15795

0.10 0.39934 0.39921 0.09937

0.05 0.38917 0.38904 0.04938

(b) Using Ĥ ′K

H h2(H) π̂K Ĥ ′K

0.45 0.51932 0.52374 0.44877

0.40 0.73624 0.74679 0.39800

0.35 1.05565 1.05701 0.34982

0.30 1.53341 1.52188 0.30099

0.25 2.26068 2.27908 0.24897

0.20 3.38875 3.41444 0.19909

0.15 5.17488 5.20930 0.14924

0.10 8.06343 8.05267 0.10015

0.05 12.83808 12.87241 0.04971

Table 2. Estimation of H with (jmin, jmax) = (5, 15) and K = 500.

We see that in both cases jmin = 0 and jmin = 5, the estimates given by ĤK are with the same
precision. When jmin = 5, π̂K is far from h2(H) whereas γ̂K is close to h1(H). However the

estimator Ĥ ′K is better than ĤK as H decreases. Actually the function h2 is more convenient
for a numerical inversion since its derivative is larger than the h1 one (see Figure 3).

Finally, Figure 4 shows the 2-structure curves of Fjmin,jmax for H = 0.25 (see (3.2)) where

S2(Fjmin,jmax , εm) is replaced by its empirical mean 1
K

K∑
k=1

S2(F
(k)
jmin,jmax

, εm) with K = 500.
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(a) H 7→ h1(H) (b) H 7→ h2(H)

Figure 3. Functions h1 et h2 with (jmin, jmax) = (5, 15) and N = 2000.

Near 0 one cannot distinguish the curve from its tangent: it is the principe of the estimation
based on γ̂K . For η > ηM∗ = 2.2695 the curve is near a constant: it is the principe of the
estimation based on π̂K .

Figure 4. The 2-structure curve of Fjmin,jmax for (jmin, jmax) = (5, 15), H =
0.25 and K = 500.

Conclusion

The several random models presented in this paper are easy to simulate and it is possible
to estimate their main parameter H. Thus they will be very useful in practice to modelize
D−dimensional signals involving a parameter which may be related to the H index.
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Moreover, whenH ∈ (0, 1/2) and (jmin, jmax)→ (−∞,+∞), we note that Var(Wjmin,jmax)→
CD,H ‖y‖2H (see (12) and (8)), so that Wjmin,jmax converges to BH when (jmin, jmax) →
(−∞,+∞). Thus it seems quite natural to use the piling fields Fjmin,jmax as a microscopic
description of a fractional brownian field BH .
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