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Piling of multiscale random models

Introduction

Various random fields are obtained by summing elementary patterns properly rescaled and normalized. A pioneer work in this area is due to Cioczek-Georges and Mandelbrot [START_REF] Cioczek-Georges | A class of micropulses and antipersistent fractional Brownian motion[END_REF] where a sum of random micropulses in dimension one, or generalizations in higher dimensions, are rescaled and normalized in order to get a fractional Brownian field of index H < 1/2 (antipersistent fBf). In that paper, it is emphasized that the power law distribution prescribed for the length of the micropulses makes it impossible to get H > 1/2. Using similar models in dimension one, recent works ( [START_REF] Cohen | Small and large scale behavior of the Poissonized Telecom Process[END_REF][START_REF] Faÿ | Estimation of the memory parameter of the infinite Poisson process[END_REF]) have examined the internet traffic modeling. The resulting signal is proved to exhibit a long range dependence (H > 1/2), in accordance with observations. Such a range for index H is made possible either by prescribing the connection lengths with heavy tails, or by forcing the number of long connections.

In the present paper, we build elementary fields by counting the number of balls whose centers and radii are distributed according a Poisson point process. If the centers are uniformly distributed in the space, we force the radii to be in each given slice (α j+1 , α j ] (α ∈ (0, 1) is fixed and j ranges in Z). Moreover their distribution has a power-law density of the type r -D-1+2H , H ∈ R. Next we build a piling field F j min ,jmax summing all the slices from j min to j max .

We are mainly interested in the simulation of fields obtained by piling elementary slices and in the estimation of its index H. Let us note that simulating such fields appears as very tractable since the basic objects are balls and the basic operation consists in counting. We first simulate each slice and then proceed to the piling of the slices. This procedure is similar to the construction of the "general multitype Boolean model" in [START_REF] Hall | On the dimension of the boundary of clumps in a multi-type boolean model[END_REF].

Concerning the index estimation, we use the structure functions as introduced in [START_REF] Tricot | Function norms and fractal dimension[END_REF]. Roughly speaking, the q-structure function of a given function f is equal to the L q -norm of the ε-increments of f . We use these tools to provide two different empirical estimators of the H index: The first one takes into account the small scales and the second one the intermediate scales.

Outline of the paper

The random fields we deal with are introduced in Section 1. First the piling field is obtained by summing the elementary slices between a lower and an upper scale. In Section 2, we introduce a notion of D-dimensional q-structure functions. They are used to estimate the H index of the piling field. Two cases are presented: working at small scales (i.e. working with small balls) in dimension D = 1 and working at intermediate scales for any D. Section 3 is devoted to the simulation procedure of the fields on a cube as well as the numerical computation of the structure functions. We conclude this section by numerical examples.

1. Some multiscale random models

1.1. Elementary slices. Let H ∈ R. For α ∈ (0, 1) and j ∈ Z we consider Φ j = (X n j , R n j ) n a Poisson point process in R D × R + of intensity ν j (dx, dr) = dx ⊗ r -D-1+2H 1I (α j+1 , α j ] (r)dr . (1) 
Note that Φ j is well-defined since ν j is a nonnegative measure on R D × R + . We write B(x, r) for the closed ball of center x and radius r > 0 with respect to the Euclidean norm • . We consider the associated so called "random balls field" T j as defined in [START_REF] Biermé | Poisson random balls: self-similarity and X-ray images[END_REF] that provides, at each point y ∈ R D , the number of balls B(X n j , R n j ) that contain the point y, namely

T j (y) = (X n j ,R n j ) ∈ Φ j 1I B(X n j ,R n j ) (y) . (2) 
Equivalently, we can represent the field T j through a stochastic integral

T j (y) = R D ×R + 1I B(x,r) (y)N j (dx, dr), (3) 
where N j is a Poisson random measure on R D × R + of intensity ν j .

In order to ensure that the right hand side of (3) is well defined, it is sufficient to remark that, by Fubini's theorem,

R D ×R + 1I B(x,r) (y) ν j (dx, dr) = V D α j α j+1 r -1+2H dr = V D 1 -α 2H 2H α 2Hj < +∞ ,
where V D is the Lebesgue measure of B(0, 1). Let us remark that due to the translation invariance of the Lebesgue measure, the random field T j is stationary. Moreover T j admits moments of any order and according to [START_REF] Bassan | Moments of stochastic processes governed by Poisson random measures[END_REF], for n 1, the n-th moment of T j (y) is given by

E(T j (y) n ) = (r 1 ,...,rn)∈I(n) K n (r 1 , . . . , r n ) n k=1 R D ×R + 1I B(x,r) (y) k ν j (dx, dr) r k = (r 1 ,...,rn)∈I(n) K n (r 1 , . . . , r n ) V D 1 -α 2H 2H α 2Hj n k=1 r k ,
where

I(n) = (r 1 , . . . , r n ) ∈ N n ; n k=1 kr k = n and K n (r 1 , . . . , r n ) = n! n k=1 r k !(k!) r k -1
.

Finally let us mention that the covariance of T j is simply given by Cov(T j (y), T j (y )) =

α j α j+1 B(y, r) ∩ B(y , r) r -D-1+2H dr ,
where |A| denotes the Lebesgue measure of a set A.

Notice that the covariance function of the field T j (α l y) y∈R D is obtained by considering the field (T j-l (y)) y∈R D according to the following scale invariance Cov(T j (α l y), T j (α l y )) = α 2Hl Cov(T j-l (y), T j-l (y )).

It yields a kind of aggregate similarity property as defined in [START_REF] Biermé | Self-similar random fields and rescaled random balls model[END_REF]:

Proposition 1.1. Let α ∈ (0, 1) and j ∈ Z. Then, for any l ∈ Z such that m = α 2Hl ∈ N,

T j+l (α l y) ; y ∈ R D f dd = m k=1 T (k) j (y) ; y ∈ R D ,
where T (k) j k 1 are iid copies of T j .

Proof. Let us assume that there exists l ∈ Z such that m = α 2Hl ∈ N. Let p 1 and

y 1 , . . . , y p ∈ R D , u 1 , . . . , u p ∈ R. Then log E exp i p n=1 u n T j+l (α l y n ) = R D ×R + e i p n=1 1I B(x,r) (α l yn) -1 ν j+l (dx, dr) = α 2Hl R D ×R + e i p n=1 un1I B(x,r) (yn) -1 ν j (dx, dr) = m k=1 log E exp i p n=1 u n T j (y n ) ,
where the second line is obtained by a change of variables. Hence the result follows.

1.2. Piling of the elementary slices. Now let us consider the associated piling random field. Let (Φ j ) j∈Z be independent Poisson point processes in R D ×R + , with each Φ j of intensity ν j (dx, dr) given by (1). For j min , j max ∈ Z with j min j max the piling random field

F j min ,jmax (y) = jmax j=j min T j (y) , y ∈ R D (4) 
can be considered as the random balls field associated with a Poisson random measure N j min ,jmax of intensity

ν j min ,jmax (dx, dr) = dx ⊗ r -D-1+2H 1I (α jmax+1 , α j min ] (r)dr . (5) 
Increments.

Let us mention some facts about the regularity of F j min ,jmax . Since F j min ,jmax is discrete valued, it is not continuous. However one can look at the second order regularity. The increments of F j min ,jmax are clearly centered. Let us compute their variance. For all y, y ∈ R D one has, using ( 4) and ( 3) :

F j min ,jmax (y) -F j min ,jmax (y ) = R D ×R + (1I B(x,r) (y) -1I B(x,r) (y ))N j min ,jmax (dx, dr) = R D ×R + (1I B(y-y ,r) (x -y ) -1I B(0,r) (x -y ))N j min ,jmax (dx, dr) .
Therefore, using the translation invariance of the Lebesgue measure :

Var(F j min ,jmax (y) -F j min ,jmax (y )) = R D α j min α jmax+1 (1I B(y-y ,r) (u) -1I B(0,r) (u)) 2 r -D-1+2H du dr .
Since the increments are centered, using Fubini's theorem, we deduce the exact expression :

E(F j min ,jmax (y) -F j min ,jmax (y )) 2 = α j min α jmax+1 B(y -y , r) B(0, r) r -D-1+2H dr , (6) 
where A B is the symmetrical difference between two subsets of R D .

Moreover one has the bound

E F j min ,jmax (y) -F j min ,jmax (y ) 2 R D ×R + B(y -y , r) B(0, r) r -D-1+2H du dr .
Therefore, using now the rotation invariance of the Lebesgue measure :

E(F j min ,jmax (y) -F j min ,jmax (y )) 2 C D,H y -y 2H (7) 
with

C D,H = R + |B(e 1 , r) B(0, r)| r -D-1+2H dr and e 1 = (1, 0, . . . , 0) ∈ R D . (8) 
Finally, notice that for any u ∈ R D and r ∈ R + , one can find a constant

C(u) ∈ (0, +∞) such that |B(u, r) B(0, r)| C(u) min r D , r D-1 .
Thus C D,H is a finite constant for all H ∈ (0, 1/2). In these cases Inequality [START_REF] Faÿ | Estimation of the memory parameter of the infinite Poisson process[END_REF] appears as an Holder condition as the second order.

Convergence of the piling.

When j min → -∞ and j max → +∞, Equality (5) invites us to consider a Poisson random measure N of intensity

ν(dx, dr) = dx ⊗ r -D-1+2H 1I (0,+∞) (r)dr .
Note that ν satisfies

∀ y ∈ R D R D ×R + 1I B(x,r) (y) ν(dx, dr) = +∞
so that the stochastic integral (3) is not well-defined. However, in view of [START_REF] Faÿ | Estimation of the memory parameter of the infinite Poisson process[END_REF], when H ∈ (0, 1/2), one can consider the random field F H defined as

F H (y) = R D ×R + (1I B(x,r) (y) -1I B(x,r) (0))N (dx, dr) , y ∈ R D . (9) 
We obtain a random balls field known as fractional Poisson field (fPf) (see [START_REF] Biermé | Self-similar random fields and rescaled random balls model[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]). The fPf is a centered process with stationary increments. Even though the fPf is not Gaussian, it shares the same covariance function as the fractional Brownian field B H of index H (see [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]):

Cov(F H (y), F H (y )) = C D,H 2 y 2H + y 2H -y -y 2H (10) 
where C D,H is given by [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF]. Similar random fields are obtained in [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF] where Poisson random measures are also used but yield a different model.

We can easily link the limit behaviour of the piling field F j min ,jmax when j min → -∞ and j max → +∞ to F H .

Proposition 1.2. Let H ∈ (0, 1/2). Then, for all p 1, y 1 , . . . , y p ∈ R D , the sequence (F j min ,jmax (y 1 ) -F j min ,jmax (0), . . . , F j min ,jmax (y p ) -F j min ,jmax (0))

converges almost surely as j min → -∞ and j max → +∞ to (F H (y 1 ), . . . , F H (y p )) where F H is a fPf.

Proof. Let us fix y ∈ R D and write M n = F 0,n (y) -F 0,n (0), n 0. The sequence (M n ) n 0 is a martingale with respect to its natural filtration σ(M n , 0 n n). Thus in order to prove that (M n ) n 0 converges almost surely it is enough to prove that it is bounded in L 2 (Ω). Since H ∈ (0, 1/2), [START_REF] Faÿ | Estimation of the memory parameter of the infinite Poisson process[END_REF] yields :

E(M 2 n ) C D,H y 2H , C D,H < ∞ , which proves the required condition. Hence (M n ) n 0 converges almost surely to a limit M + ∞ as n → +∞.
Similarly, we prove that the sequence F -n,0 (y) -F -n,0 (0) n 0 converges almost surely to a limit M - ∞ as n → ∞. Thus, the sequence F j min ,jmax (y) -F j min ,jmax (0) j min ,jmax converges almost surely to M ∞ = M - ∞ + M + ∞ as j min → -∞ and j max → +∞. Finally it remains to check that the limit M ∞ is a fPf. This may be simply done computing the limit of the characteristic function of (F j min ,jmax (y 1 ) -F j min ,jmax (0), . . . , F j min ,jmax (y p ) -F j min ,jmax (0)) as j min → -∞ and j max → +∞.

Normal convergence.

A classical normal convergence is obtained for shot noise fields when the number of shots tends to +∞ (see [START_REF] Heinrich | Normal convergence of multidimensional shot noise and rates of this convergence[END_REF] for instance). Here we can obtain such a convergence. Let F (k) j min ,jmax k 1 be iid copies of F j min ,jmax . According to the Central Limit Theorem :

1 √ K K k=1 F (k) j min ,jmax (y) -F (k) j min ,jmax (0) ; y ∈ R D f dd -→ K→+∞ W j min ,jmax (y) ; y ∈ R D (11) 
where W j min ,jmax is a centered Gaussian process with stationary increments, W j min ,jmax (0) = 0 and a variance given by Var(W j min ,jmax (y)) =

α j min α jmax+1 |B(y, r) B(0, r)| r -D-1+2H dr. ( 12 
)
Looking at Figure 2 one can observe that the limit field seems more regular than the original piling F j min ,jmax . This is due to the fact that second order regularity implies almost surely regularity for a Gaussian field.

Empirical estimation of the H index

According to (4) and ( 5), H appears as the important parameter of the field F j min ,jmax . This section is devoted to its estimation. Our method is inspired by the inequality [START_REF] Faÿ | Estimation of the memory parameter of the infinite Poisson process[END_REF]. One can think of the quadratic variation method (see [START_REF] Istas | Quadratic variations and estimation of the local Holder index of a Gaussian process[END_REF]) but here, in practice, it is very difficult to get arbitrary small increments. Thus we present an alternative method using simulated samples of the field F j min ,jmax .

General tools.

If f : R D → R is a continuous function then one can consider, for q > 0, the functional

S q (f, ε) = 1 D D i=1 [0,1] D |f (t + εe i ) -f (t -εe i )| q dt , ε 0 , (13) 
where {e 1 , . . . , e D } denoted the canonical basis of R D . Such quantity, called the q-structure function of f , has been used to study the fractal behaviour of various functions f (see [START_REF] Tricot | Function norms and fractal dimension[END_REF][START_REF] Jaffard | Multifractal formalism for functions[END_REF]).

Here F j min ,jmax is not continuous but E |F j min ,jmax (εe i ) -F j min ,jmax (-εe i )| q < ∞. Thus, by Fubini's theorem and stationarity, we can consider

E (S q (F j min ,jmax , ε)) = 1 D D i=1 [0,1] D E |F j min ,jmax (t + εe i ) -F j min ,jmax (t -εe i )| q dt. ( 14 
)
The value q = 2 allows us to give exact and explicit formulas especially in dimension D = 1.

The D = 1 case. Proposition 2.1. Assume that D = 1. Then one has E (S 2 (F j min ,jmax , ε)) =                      4 1 -2H α (2H-1)(jmax+1) -α (2H-1)j min ε if ε ∈ [0, α jmax+1 ) , 4 1 -2H ε ε 2H-1 -α (2H-1)j min + 2 H ε 2H -α 2H(jmax+1) if ε ∈ [α jmax+1 , α j min ] , 2 H α 2Hj min -α 2H(jmax+1) if ε > α j min . (15) 
Proof. When D = 1, Equation ( 6) gives

E (F j min ,jmax (t + ε) -F j min ,jmax (t -ε)) 2 = α j min α jmax+1 [2ε -r, 2ε + r] [-r, r] r -2+2H dr One checks that [2ε -r, 2ε + r] [-r, r] = [2ε -r, 2ε + r] ∪ [-r, r] if r ε , [-r, 2ε -r] ∪ [r, 2ε + r] if r > ε ,
where the two unions are disjoined. Therefore

E (F j min ,jmax (t + ε) -F j min ,jmax (t -ε)) 2 = 4 α j min α jmax+1
min{r, ε}r -2+2H dr .

To conclude we just have to consider the position of ε and the fact that the latter quantity does not depend on t.

The D 1 case. For general D the volume of the set B(2εe i , r)∆B(0, r) is not given by tractable formulas. Thus it seems quite difficult to expand the previous calculus to higher dimensions. However it is possible to obtain an exact expression for the expectation of S 2 (F j min ,jmax , ε) by looking at the large ε. Proposition 2.2. For all ε > α j min , one has :

E (S 2 (F j min ,jmax , ε)) = π D/2 Γ(1 + D/2) H α 2Hj min -α 2H(jmax+1) . Proof. If ε > r then ∀ i ∈ {1, . . . , D} B(2εe i , r)∆B(0, r) = 2V D r D
since the two balls are disjoined. Thus [START_REF] Cohen | Small and large scale behavior of the Poissonized Telecom Process[END_REF] gives

E(F j min ,jmax (t + εe i ) -F j min ,jmax (t -εe i )) 2 = V D H α 2Hj min -α 2H(jmax+1) .
Hence the result follows, since the latter quantity does not depend on t nor on i, and V D is expressed using the Gamma Euler's function.

Empirical estimators.

Now we show how to derive several estimators of the H index from Propositions 2.1 and 2.2.

We assume that we have independent realizations of F j min ,jmax . Moreover we fix an integer N 1 such that α jmax+1 = N -1 . In practice it will be linked to the resolution δ of the grid by δ = N -1 .

The D = 1 case. First we assume that D = 1 and j min 0. We focus on the small balls or equivalently on the small scales and use S 2 (F j min ,jmax , ε) for small ε.

Proposition 2.3. Assume that D = 1. Let 0 j min < j max and let F (k) j min ,jmax k 1 be iid copies of F j min ,jmax of index H. Finally, let us define for all K 1 :

γ K = 1 2 log 2 log K k=1 S 2 F (k) j min ,jmax , 2N -1 K k=1 S 2 F (k) j min ,jmax , N -1 . ( 16 
)
Then, when K goes to +∞, γ K converges almost surely to h 1 (H) where

h 1 (H) = H + 1 2 log 2 log 1 -(2α -j min N -1 ) 1-2H + (1 -2H)(1 -2 -2H )/(2H) 1 -(α -j min N -1 ) 1-2H . ( 17 
)
Proof. Since α jmax+1 = N -1 , Proposition 2.1 implies that for all ε ∈ [N -1 , α j min ] :

E (S 2 (F j min ,jmax , ε)) = 4 1 -2H ε 2H - 4 1 -2H ε α (1-2H)j min + 2 H ε 2H -N -2H .
Therefore we obtain :

E S 2 F j min ,jmax , 2N -1 E (S 2 (F j min ,jmax , N -1 )) = 2 2H 1 -(2α -j min N -1 ) 1-2H + (1 -2H)(1 -2 -2H )/(2H) 1 -(α -j min N -1 ) 1-2H . Thus : 1 2 log 2 log E S 2 F j min ,jmax , 2N -1 E (S 2 (F j min ,jmax , N -1 )) = H + 1 2 log 2 log 1 -(2α -j min N -1 ) 1-2H + (1 -2H)(1 -2 -2H )/(2H) 1 -(α -j min N -1 ) 1-2H . ( 18 
)
But one has, by the law of large numbers :

E (S 2 (F j min ,jmax , •)) = lim K→+∞ 1 K K k=1 S 2 F (k) j min ,jmax , • . So γ K -→ K→+∞ h 1 (H)
almost surely and the result follows from (18).

From this result, we deduce a first estimator

H K for index H setting H K = h -1 1 ( γ K ).
The D 1 and j min > 0 case. Since j min > 0 it is possible to see all balls whatever their radii are. This allows us to propose an estimator for H in the general multidimensional case D 1. We will focus on the large scales ie use S 2 (F j min ,jmax , ε) for ε near 1.

Under the assumption j min > 0 the interval (α j min , 1] is not empty. Let M * be the smallest integer such that ε M * = n M * N -1 > α j min . Then for all m ∈ {M * , . . . , M }, ε m ∈ (α j min , 1] (note that the larger j min is the more points we have).

Proposition 2.4. Let 0 < j min < j max and let F (k) j min ,jmax k 1 be iid copies of F j min ,jmax of index H. Finally, let us define for all K 1 :

π K = 1 K K k=1 1 M -M * + 1 M m=M * S 2 F (k) j min ,jmax , ε m . ( 19 
)
Then, when K goes to +∞, π K converges almost surely to h 2 (H) where

h 2 (H) = π D/2 Γ(1 + D/2)H α 2Hj min -N -2H . ( 20 
)
Proof. Proposition 2.2 implies :

∀ m ∈ {M * , . . . , M } E (S 2 (F j min ,jmax , ε m )) = π D/2 Γ(1 + D/2)H α 2Hj min -N -2H .
Thus:

1 M -M * + 1 M m=M * E (S 2 (F j min ,jmax , ε m )) = π D/2 Γ(1 + D/2)H α 2Hj min -N -2H . ( 21 
)
Now, by the law of large numbers, one has: As previously, we deduce a second estimator

E (S 2 (F j min ,jmax , •)) = lim K→+∞ 1 K K k=1 S 2 F (k) j min ,jmax , • . So π K -→ K→+∞ h 2 ( 
H K for index H considering H K = h -1 2 ( π K ).

Simulations and numerical examples

All the Matlab codes are available at http://www.math-info.univ-paris5.fr/∼demichel 3.1. Simulation of the piling field on a cube.

We focus here on the simulation of the piling field F j min ,jmax for H ∈ (0, 1/2). We generate exact simulations of the fields T j and F j min ,jmax (see ( 2) and ( 4)) on the cube [c, c + d] D with c ∈ R and d 1. Let us recall that T j may be written as the sum

T j = (X n j ,R n j ) ∈ Φ j 1I B(X n j ,R n j ) .
If X n j is at a distance of the cube larger than R n j then no point of the cube is covered by B(X n j , R n j ). Since R n j α j , when simulating the slice number j, it is enough to pick up centers of balls randomly in the enlarged cube [c -α j , c

+ d + α j ] D .
Let us denote c α,H = (α -D+2H -1)/(D -2H) and consider the measure on

R D × R + ν j (dx, dr) = c α,H (d + 2α j ) D α -j(D-2H) µ j (dx) ⊗ ρ j (dr) (22) where        µ j (dx) = 1 (d + 2α j ) D 1I [c-α j , c+d+α j ] D (x) dx ρ j (dr) = c -1 α,H α j(D-2H) r -D-1+2H 1I (α j+1 , α j ] (r) dr (23) 
are respectively two probability measures for centers and radii of random balls.

We simulate T j considering

T j (y) = Λ j n=1 1I B(X n j ,R n j ) (y) , y ∈ [c, c + d] D , (24) 
where -(X n j ) n is a family of iid random variables with law µ j (dx) -(R n j ) n is a family of iid random variables with law ρ j (dr) -Λ j is a Poisson random variable with parameter c α,H (d + 2α j ) D α -j(D-2H) .

Let us recall that a simple way to generate the sequence (R n j ) n is to use the pseudo-inverse method : we get

R n j = α j (α -D+2H -(α -D+2H -1)V n j ) -1/(D-2H) with V n j a uniform random variable on [0, 1].
Consequently, considering independent realizations of (T j ) j min j jmax one simulate F j min ,jmax using (4) and jmax j=j min

T j (y) = jmax j=j min Λ j n=1 1I B(X n j ,R n j ) (y) , y ∈ [c, c + d] D . (25) 
In practice F j min ,jmax is only obtained on a discrete subset of [c, c + d] D , say a grid with a step of size δ ∈ (0, 1). Thus it no longer makes sense to consider balls with radii smaller than δ. Since the smallest radius is greater than α jmax+1 , one will assume that α jmax+1 δ.

On the other hand, to get the most precise details, it seems natural to assume exactly that α jmax+1 = δ. Consequently, given the resolution δ, the slice factor α will be fixed by α jmax+1 = δ. Finally, one is often interested in the small scales behaviour of the field and not in the general "look-like" geometry. Thus, in order to not see the large balls, one may take j min 0.

We have simulated, in dimension D = 2, the piling field F 0,15 on the cube [0, 1] 2 with δ = 0.005. Figure 1 shows the construction at different steps, precisely the three slices T 5 , T 10 , T 15 , and the corresponding pilings F 0,5 , F 0,10 and F 0,15 . Figure 2 illustrates the Central Limit Theorem of Section 1.2 for the same field F 0,15 . 3.2. Simulation of S q (f, ε).

We explain now how to use the q-structure functions in a practical way. To simplify we only deal with the case D = 1 and [c, c + d] D = [0, 1]. Let us consider a function f : R → R. We suppose that we can simulate f on a regular subdivision τ = { τ i = iN -1 } of [-1, 2] with step δ = N -1 (where N 2). We consider S q (f, ε) given by ( 13) for ε ∈ [N -1 , 1] ∩ τ . More precisely, we choose a finite sequence of M 2 integers n m (with n 1 = 1 and n M = N ) and put

ε m = τ nm = n m N -1 . ( 26 
)
Let us note that the smallest ε considered corresponds to the resolution of the grid N -1 . Then, for 1 m M , we approximate the integral defining S q (f, ε m ) by its Riemann sum :

S q (f, ε m ) = 1 0 |f (t + ε m ) -f (t -ε m )| q dt ≈ 1 N N i=1 |f (τ i+nm ) -f (τ i-nm )| q . ( 27 
)
Let us emphasize that Propositions 2.1 and 2.2 still hold when replacing S 2 (f, ε m ) by the discrete sum ( 27).

Now we focus on the behaviour of S q (f, ε m ) with respect to ε m . In general, the ε-increments of f behave like a power of ε as ε goes to 0. Thus this invites us to use log-log plots. Notice that at the resolution of the grid, it is what happens for the variance of the increments of F j min ,jmax (see formulas [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]).

For 1 m M , let us write η m = log n m = log(N ε m ) and

L q (f, η m ) = 1 q log S q (f, ε m ) = 1 q log S q f, N -1 10 ηm
and consider the log-log plot {(η m , L q (f, η m )) ; 1 m M }, which is called the q-structure curve of f . In order to obtain the η m approximately equally spaced, one usually assumes that the ε m s have an arithmetic progression (but n m should be an integer). However since n 1 = 1 and n 2 2, we always have η 2 -η 1 log 2. In order to get the minimal lag η 2 -η 1 we set n 2 = 2.

Numerical examples of estimation in dimension

D = 1.
We focus here on the empirical estimation of the H index. In practice the F (k) j min ,jmax are simulated on a regular grid with step δ = N -1 using the results of Section 3.1. We compute S 2 2 F

(k)

j min ,jmax , N -1 and S 2 2 F (k) j min ,jmax , 2N -1 for each F (k)
j min ,jmax using the discrete sums (27). This gives γ K and we find H K by solving the equation h 1 (h) = γ K with a numerical approximation procedure (e.g. the standard Newton method).

Let us give a first example. We consider F j min ,jmax for different values of H. The processes are simulated on a regular grid of [-1, 2] with step δ = 5.10 -4 (so N = 2000). We chose j min = 0 and j max = 15. Table 1 shows the results for K = 500.

We see that H is well approximated by H K whatever H is.

Let us give a second example. We look again at F j min ,jmax , for different values of H. We assume D = 1. The processes are again simulated on a regular grid of [- 1. Estimation of H with (j min , j max ) = (0, 15) and K = 500. δ = 5.10 -4 (so N = 2000). We chose j min = 5 and j max = 15. We use the two estimators H K and H K with K = 500. We see that in both cases j min = 0 and j min = 5, the estimates given by H K are with the same precision. When j min = 5, π K is far from h 2 (H) whereas γ K is close to h 1 (H). However the estimator H K is better than H K as H decreases. Actually the function h 2 is more convenient for a numerical inversion since its derivative is larger than the h 1 one (see Figure 3). 

Conclusion

The several random models presented in this paper are easy to simulate and it is possible to estimate their main parameter H. Thus they will be very useful in practice to modelize D-dimensional signals involving a parameter which may be related to the H index.

Moreover, when H ∈ (0, 1/2) and (j min , j max ) → (-∞, +∞), we note that Var(W j min ,jmax ) → C D,H y 2H (see [START_REF] Istas | Quadratic variations and estimation of the local Holder index of a Gaussian process[END_REF] and ( 8)), so that W j min ,jmax converges to B H when (j min , j max ) → (-∞, +∞). Thus it seems quite natural to use the piling fields F j min ,jmax as a microscopic description of a fractional brownian field B H .

  H) almost surely and the result follows from (21).
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 1 Figure 1. Step by step piling.

  (a) K = 1 (b) K = 5 (c) K = 10

Figure 2 .

 2 Figure 2. Normal convergence when K → +∞.

Finally, Figure 4 j

 4 shows the 2-structure curves of F j min ,jmax for H = 0.25 (see (3.2)) where S 2 (F j min ,jmax , ε m ) is replaced by its empirical mean 1 min ,jmax , ε m ) with K = 500.

Figure 3 .

 3 Figure 3. Functions h 1 et h 2 with (j min , j max ) = (5, 15) and N = 2000.

Figure 4 .

 4 Figure 4. The 2-structure curve of F j min ,jmax for (j min , j max ) = (5, 15), H = 0.25 and K = 500.

Table 2 .

 2 Table 2 reports the different results. Estimation of H with (j min , j max ) = (5, 15) and K = 500.

		(a) Using HK			(b) Using H K	
	H	h 1 (H)	γ K	H K	H	h 2 (H)	π K	H K
	0.45 0.46579 0.46579 0.45001	0.45 0.51932 0.52374 0.44877
	0.40 0.45784 0.45853 0.40415	0.40 0.73624 0.74679 0.39800
	0.35 0.44910 0.44847 0.34656	0.35 1.05565 1.05701 0.34982
	0.30 0.43974 0.43863 0.29427	0.30 1.53341 1.52188 0.30099
	0.25 0.42993 0.42895 0.24513	0.25 2.26068 2.27908 0.24897
	0.20 0.41983 0.41942 0.19800	0.20 3.38875 3.41444 0.19909
	0.15 0.40959 0.41122 0.15795	0.15 5.17488 5.20930 0.14924
	0.10 0.39934 0.39921 0.09937	0.10 8.06343 8.05267 0.10015
	0.05 0.38917 0.38904 0.04938	0.05 12.83808 12.87241 0.04971
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