Quentin Avril
email: quentin.avril@irisa.fr

Valérie Gouranton
email: valerie.gouranton@irisa.fr

Bruno Arnaldi
email: bruno.arnaldi@irisa.fr

A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures

Keywords: Collision Detection, Broad Phase, Multicores Architecture

Recent years have seen the impressive evolution of graphics hardware and processors architecture from single core to multi and many-core architectures. Confronted to this evolution, new trends in collision detection optimisation consist in proposing a solution that maps on the runtime architecture. We present, in this paper, two contributions in the field of collision detection in large-scale environments. We present a first way to parallelise, on a multi-core architecture, the initial step of the collision detection pipeline: the broad-phase. Then, we describe a new formalism of the collision detection pipeline that takes into account runtime architecture. The well-known broadphase algorithm used is the "Sweep and Prune" and it has been adapted to a multi-threading use. To handle one or more thread per core, critical writing sections and threads idling must be minimised. Our model is able to work on a n-core architecture reducing computation time to detect collision between 3D objects in a large-scale environment.

I. INTRODUCTION

Digital mock-up and industrial applications of virtual reality (VR) become more and more sized. The performance level for a real-time interaction of users into a large-scale environment is no longer satisfying. Collision detection is one of the important bottleneck of real-time VR applications from more than thirty years. Recently, researchers's interest focuses on the evolution of hardware architecture and its friendly use in order to increase computation power of collision detection algorithms. Recent papers appear dealing with a new type of problem: speeding up the detection using specificities of new hardware architectures (Multi-cores and GPU) [START_REF] Kim | Pccd: Parallel continuous collision detection[END_REF], [START_REF] Tang | Multi-core collision detection between deformable models[END_REF], [START_REF] Hermann | Interactive physical simulation on multicore architectures[END_REF]. In the wide range of collision detection algorithms, we can notice that recent articles have a low computational complexity and provide an efficient collision detection. But used with million of objects in a large-scale environment, they are inefficient for a real-time interaction. Today, taking the most efficient and fast collision detection algorithm and running it on a parallel architecture will definitely not insure the best performance, algorithms have to be adapted. Few years ago it was possible to lean on Gordon Moore's law that predicts multiplication of transistors number each two years. Now, we know that this multiplication is prevented by physical limits (power and heat). Trend is now in the multi-cores architecture and many-cores. Hardware architects strategy is to increase number of cores and to reduce their frequency to have a low energy consumption and heat emission. Consequently, without worrying about it, a virtual reality application that only uses one core to work will probably be slower in few years. We also know that 3D objects and virtual environments will still grew up in size and complexity, so non-parallelised applications will be less and less efficient. Hardware graphics is also subjected to an impressive power evolution. So it appears that having a different approach on the real-time collision detection problem centered on hardware performance can not be ignored. This is the reason of our revisited collision detection pipeline and, as broad-phase is in charge of breaking down the pairwise checks complexity, we have decided to focus on it for a parallelisation. In the following, section 2 deals with related works on collision detection, the architecture evolution is presented in section 3 and section 4 presents the new link-up between these two fields of study. In section 5 we present our revisited Sweep and Prune algorithm following by the novel view of the collision detection pipeline. In section 6 we present results of the parallelisation, then we conclude and open on future works.

II. COLLISION DETECTION

Last decade have seen an impressive evolution of virtual reality applications and more precisely of collision detection algorithms in term of computational bottleneck. Collision detection is a wide field dealing with, apparently, an easy problem: determine if two (or several) objects collide. It is used in several domains namely physically-based simulation, computer animation, robotics, mechanical simulations (medical, biology, cars industry), haptics applications and video games. All these applications have different constraints (real-time performance, efficiency and robustness) so it has generated a wide range of problems: convex or non-convex objects, 2-Body or N-Body simulations, rigid or deformable objects, continual or discrete methods. Algorithms are also dependent of the geometric model formalism (polygonal, Constructive Solid Geometry (CSG), implicit or parametric functions). All of these problems reveal the diversity of this field of study. For more details we refer to excellent surveys on the topic [START_REF] Lin | Collision detection between geometric models: a survey[END_REF], [START_REF] Jimnez | 3d collision detection: a survey[END_REF], [START_REF] Teschner | Collision detection for deformable objects[END_REF], [START_REF] Kockara | Collision detection: A survey[END_REF].

Given n moving objects in a virtual environment, testing all objects pairs tend to perform n 2 pairwise checks. When n is large it becomes a computational bottleneck. Collision detection is represented and built as a pipeline (cf Figure 1) [START_REF] Hubbard | Collision detection for interactive graphics applications[END_REF]. This one is composed by two main parts: broad-phase and narrow-phase. The goal of this pipeline is to apply successive filters in order to break down the O(n 2) complexity. These filters provide an increasing efficiency and robustness during the pipeline traversal. In the following, we present two main parts of the pipeline, broad-phase in section 2.1 and narrowphase in section 2.2.

A. Broad-phase

The first part of the pipeline, called the broad-phase, is in charge of a quick and efficient removal of the objects pairs that are not in collision. Broad-phase algorithms are classified into four main families [START_REF] Kockara | Collision detection: A survey[END_REF]: Brute force approach is based on the comparison of the overall bounding volumes of objects to determine if they are in collision or not. This test is very exhaustive because of its n 2 pairwise checks. A lot of bounding volume have been proposed such as sphere, Axis-Aligned-Bounding-Box (AABB) [START_REF] Van Den Bergen | Efficient collision detection of complex deformable models using aabb trees[END_REF], Oriented-Bounding-Box (OBB) [START_REF] Gottschalk | Obbtree: A hierarchical structure for rapid interference detection[END_REF] and many others. Spatial partitioning method is based on the principle that if two objects are situated in distant space sides, they have no chance to collide during next time step. Several methods have been proposed to divide space into unit cells: regular grid, octree [START_REF] Bandi | An adaptive spatial subdivision of the object space for fast collision detection of animated rigid bodies[END_REF], quad-tree, Binary Space Partitioning (BSP), k-d tree structure [START_REF] Bentley | Data structures for range searching[END_REF] or voxels. Topological methods are based on the positions of objects in relation to others. A couple of objects that are too far one to the other is deleted. One of the most famous methods is called the Sweep and Prune [START_REF] Cohen | I-collide: An interactive and exact collision detection system for large-scale environments[END_REF] approach that consists in projecting objects coordinates on axis. An overlapping of objects coordinates on the three axis (x,y,z) means that their bounding volumes collide. Kinematic approach takes care of the objects movement, if objects are moving away, they can not collide. Vanecek [START_REF] Vaněček | Back-face culling applied to collision detection of polyhedra[END_REF] used kinematic of objects and back-face culling technique to speed up collision detection.

B. Narrow-phase

Colliding objects pairs are then given to the narrow-phase that perform an exact collision detection. We can classify narrow-phase's algorithms into four main families [START_REF] Kockara | Collision detection: A survey[END_REF]: Feature-based algorithms work on objects primitives: faces, edges and vertices. This family appears in 1991 with the Lin-Canny approach [START_REF] Lin | A fast algorithm for incremental distance calculation[END_REF] or Voronoï Marching that proposed to divide space around objects in Voronoï regions that allows detecting closest features pairs between polyhedrons. Simplex-based algorithms of whom the most famous one is the GJK algorithm [START_REF] Gilbert | A fast procedure for computing the distance between complex objects in three-dimensional space[END_REF] that uses Minkowski difference on polyhedrons. Two convex objects collide if and only if their Minkowski difference contains the origin. Image space-based algorithms work using image-space occlusions queries that are suitable to be used on graphics hardware (GPU). They rasterise objects to perform either 2D or 2.5D overlap test in screen space [START_REF] Baciu | Image-based collision detection for deformable cloth models[END_REF]. Bounding volume-based algorithms are used in most of strategies to perform collision tests and it highly improves performances. Bounding volume hierarchies (BVH) allow arranging bounding volume into a tree hierarchy (binary tree, quad tree...) in order to reduce the number of tests to perform. A description on these BVH and a comparison between their performance can be found in [START_REF] Kockara | Collision detection: A survey[END_REF]. Deformable objects are very challenging for BVH because hierarchy structures have to be updated when an object deforms itself [START_REF] Van Den Bergen | Efficient collision detection of complex deformable models using aabb trees[END_REF], [START_REF] Teschner | Collision detection for deformable objects[END_REF].

III. PARALLEL COLLISION DETECTION

The parallel solution of collision detection algorithms is a well explored but still active field in high performance computing. Zachmann [START_REF] Gabriel Zachmann | Optimizing the collision detection pipeline[END_REF] made an evaluation of the performance of a parallelized back-end of the pipeline and showed that if the environment density is large compared to the number of processors, then good speed-ups can be noticed. Several algorithms have been proposed working on multi-processors machines [START_REF] Kitamura | Parallel algorithms for realtime colliding face detection[END_REF], [START_REF] Shuming | A parallel collision detection algorithm based on hybrid bounding volume hierarchy[END_REF], [START_REF] Lario | Rapid parallelization of a multilevel cloth simulator using openmp[END_REF], [START_REF] Assarsson | A case study of load distribution in parallel view frustum culling and collision detection[END_REF]. Depth-first traversal of bounding volumes tree traversal (BVTT) [START_REF] Smith | A simple and efficient method for accurate collision detection among deformable polyhedral objects in arbitrary motion[END_REF], [START_REF] Reinefeld | Work-load balancing in highly parallel depth-first search[END_REF] and parallel cloth simulation [START_REF] Thomaszewski | Physically based simulation of cloth on distributed memory architectures[END_REF], [START_REF] Selle | Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction[END_REF] are good instances of this kind of work. Few papers also presented multi-threading use on single processor (Lewis et al. [START_REF] Lewis | Multithreaded collision detection in java[END_REF] propose a multithreaded algorithm to simulate planetary rings).

Very recently, few papers appeared dealing with new parallel collision detection algorithms using multi-cores. Thomaszewsk et al. [START_REF] Thomaszewski | Parallel techniques for physically based simulation on multi-core processor architectures[END_REF] propose a new task splitting approach for implicit time integration and collision handling on multi-cores architecture. Tang et al. [START_REF] Tang | Multi-core collision detection between deformable models[END_REF] propose to use a hierarchical representation to accelerate collision detection queries and an incremental algorithm exploiting temporal coherence, the overall is distributed among multiple cores. They obtained a 4X-6X speed-up on a 8-cores based on several deformable models. Kim et al [START_REF] Kim | Pccd: Parallel continuous collision detection[END_REF] propose to use a feature-based bounding volume hierarchy (BVH) to improve the performance of continuous collision detection. They also propose novel task decomposition methods for their BVH-based collision detection and dynamic task assignment methods. They obtained a 7X-8X speed-up using a 8-cores compared to a single-core. Hermann et al. [START_REF] Hermann | Interactive physical simulation on multicore architectures[END_REF] propose a parallelization of interactive physical simulations. They obtain a 14X-16X speed-up on a 16-cores compared to a single-core.

IV. BROAD PHASE ADAPTATION

We present here two contributions on the collision detection optimisation, the first one concerns the parallelisation of the "Sweep and Prune" algorithm and the second one describes a new way to represent the collision pipeline .

A. Parallel Algorithm

Related works let appear that the architecture of collision detection algorithms needs to be improved to face realtime interaction. In this way, we focus on an essential step of the collision detection pipeline: the broad-phase. More precisely, our algorithm is an implementation of the "Sweep and Prune" [START_REF] Cohen | I-collide: An interactive and exact collision detection system for large-scale environments[END_REF] on a multi-cores architecture.

Sweep and prune is also known as sort and sweep [START_REF] Ericson | Real-time Collision Detection[END_REF] being called that way at David Baraff Ph. D thesis in 1992 [START_REF] Baraff | Dynamic Simulation of Non-Penetrating Rigid Bodies[END_REF]. Later works like the 1995 paper about I-COLLIDE by Cohen et al. [START_REF] Cohen | I-collide: An interactive and exact collision detection system for large-scale environments[END_REF] refer to this algorithm. It is one of the most used methods in the broad-phase algorithms because it provides an efficient and quick pairs removal and it does not depend on the objects complexity. The sequential algorithm of "Sweep and Prune" takes in input the overall objects of the environment and feeds in output a collided objects pairs list. The algorithm is divided in two principal parts. The first one is in charge of the bounding volume update of each active virtual objects. Bounding volumes used are AABBs that are aligned on the environment axis (cf. Figure 2). The second part is in charge of the detection of overlapping between objects. To do that a projection of higher and upper bounds on the three axis of coordinates of each AABBs is made. Then, we obtain three lists with overlapping pairs on each axis (x, y and z). We can notice two related but different concepts on the way the Sweep and Prune operates internally: by starting from scratch each time or by updating internal structures. To differentiate them a name was given to each method, the first type is called brute-force and the second type persistent. We work with the brute force one and after projection on axis there are (n 2 -n) 2 objects pairs to test. Pair that is still alive before this test mean that its objects are considered as in potential collision. This pair is then given to the narrow-phase.

Multi-core architecture allows us to separate collision detection computations on available cores. But computations can not be separated on the way without a special data structure. To fully exploit multi-cores architecture, critical sections, threads idling and cores synchronisation have to be taken account and minimised or avoided. To parallelise the algorithm we have decided to use OpenMP because of the directives that allow to keep the same code (with few algorithmic modifications on the data structure) and to focus on the directives. Even if IntelTBB provides better performances, it is more complex to program with and it generates specific code, enable to work without IntelTBB libraries.

A simplified scheme of our model is in Figure 3. We can notice parallelisation of the two principal parts of the algorithm with a synchronisation between both. Number of threads that are created depends on the number of available cores. As a thread is only in charge of geometric computations and does not wait for anything, create more than one thread per core will increase computation time. In the first step of the algorithm, each thread works on n c objects where n is the number of objects in the environment and c the number of cores. It is possible to divide objects per threads because AABB update computation does not depend of the object complexity, time spent per object by a thread is almost homogeneous. Compared to the sequential algorithm where new computed bounding volume is written on the way in a data structure, we can not use the same scheme without avoiding critical writing section between threads. That is why we introduce a new smallest data storage used by each thread to put new computed bounding volume. This new structure is an array dynamically allocated in relation to the number of cores and objects. Synchronisation between this two steps is compulsory to merge all the new bounding volumes in the same data structure. We only merge threads array pointers to reduce synchronisation time.

In the second part of the algorithm, each thread works on

(n 2 -n) 2
/c pairs of objects where c is still the number of cores. Like in the first part, each computation made by a thread is an overlapping test between objects coordinates so it does not depend on the object complexity. To avoid critical section between threads we use a similar technique where each thread is fitted with its own data storage to put objects pairs with overlapped coordinates. All pairs of objects in collision are merged at the end of the overall computation to create the pair list of objects in collision. Then, this new pairs list is given to the narrow-phase that performs an exact collision detection test.

B. Revisited Pipeline

We use new 3D formalism of the collision detection pipeline [START_REF] Avril | New trends in collision detection performance[END_REF] to represent our new parallel algorithm. We can see it on the Figure 4. This formalism allows to represent in same time the type of algorithms used and hardware mapping techniques performed. We have developed a parallel broadphase algorithm separated in two main parts using multithreading techniques on a multi-cores architecture. People who want to develop real-time algorithms for large-scale virtual environment have to take into account the runtime architecture. This formalism recalls us that architecture must be an essential point for the development of one block of this 3D pipeline.

In the near future, we want to focus on each block and propose a generic mapping model for each of them on several architecture components.

V. RESULTS

In this section we present main results of computation time speed-up. Those tests were performed through several benchmark models (cf Figure . 7). We only performed test on n-body simulation of rigid bodies using AABB as bounding Cubes Balls Skittles 1 core 8,89ms 4,45ms 1,6ms 2 cores 4,96ms 2,48ms 0,9ms 4 cores 2,76ms 1,4ms 0,5ms 8 cores 1,52ms 0,74ms 0,27ms We present here time results for all used benchmark models (Cubes, Balls and Skittles). Numerical results for the first part of the algorithm is presented in tab 5. The reduction of the overall running time is shown on the graphic in Figure 8. We can see a percentage of time reduction for the first part of the algorithm concerning the AABB update. For one scenario four blocks show time spent from 1 to 8 cores and we can notice that time decreases when the number of cores goes up. The overall running time is reduced by 56.04% by using 2 cores, 31.49% for 4 cores and 17,03% for 8-cores. Numerical results for the second part of the algorithm is presented in tab 6. This second part of the algorithm is shown in the graphic Figure 9 and we notice the same gain of time than the first part. The overall running time is reduced by 59.2% by using 2 cores, 35.34% for 4 cores and 21.56% for 8-cores.

The general speed-up of our parallel algorithm is shown in Figure 10, on this graphics our work is represented by the pink line bounded by the blue one which is the optimal speedup for a parallel execution whose we wanted to get closer. We have also performed measures on the computation time spent by t threads shared on c cores and the assumption made at the beginning on using more than one thread per core seems to be exact. Time spent by 3 threads on 2 cores is slower than 2 threads but better than 1. So using more than one thread per core is not justified and appears to be less efficient.

VI. CONCLUSION & FUTURE WORKS

We have presented a contribution on the collision detection optimisation centered on hardware performance. The revisited collision pipeline, presented with a new third dimension allows to merge hardware components with collision detection pipeline. Starting with this new pipeline, we focus on the first Fig. 7.

Benchmarks: We used several benchmark models to measure collision detection time: 10K balls of 2K polygons each falling in simple environment of 600 polygons (= 1.1M polygons), 20K cubes of 12 polygons each fallen on complex environment of 300K (= 420K polygons) and 3.5K concave shapes (skittles of 20K each) falling on a plan. We only performed test on n-body simulation of rigid bodies using AABB as bounding volume. Results show that it is not easy to pretend obtaining optimal speed-up on a multi-cores architectures. We are also focusing on a coupling of our multi-cores model with graphics hardware in order to speed-up again collision detection algorithms and it seems to be an efficient way of optimisation. Indeed, to work on a GPU introduces several points that are interesting to focus on, like working on several memory hierarchical levels (registers, caches...). Others blocks of our revisited pipeline have also to be optimised through the use of multi or many cores architecture and GPGPU. Having a reflexion on technical characteristics and time constraints of each pipeline blocks in order to speed-up algorithms is one of our principal goal. We also imagine some parts of the pipeline working on a cluster or a grid environment taking into account particularities of each architecture. Future algorithms providing a real-time interaction have to be implemented through the use of GPGPU, multithreads, multi or many-cores architecture with memory and cache handling and maybe on cluster or grid architecture.

Fig. 1 .

 1 Fig. 1. Collision detection pipeline.

Fig. 2 .

 2 Fig. 2. "Sweep and Prune" algorithm on x and y axis with a non-overlapping condition (left) and an overlapping one (right).

Fig. 3 .

 3 Fig. 3. Our parallel broad-phase algorithm. Parallelisation of the update AABB part and the calculate overlapping pair one with a synchronisation point between them.

Fig. 4 .

 4 Fig. 4. The new 3D formalism of the collision detection pipeline.

Fig. 5 .

 5 Fig. 5. Time spent for updating AABB for each benchmark model from 1 core to 8 cores.

Fig. 8 .

 8 Fig. 8. The AABB update execution time in relation to the number of cores. The overall computation time is reduced by 17.03% by using 8 cores on this benchmark.

Fig. 9 .

 9 Fig. 9. The execution time of the overlapping pairs checks in relation to the number of cores. The overall computation time is reduced by 21.56% by using 8 cores on this benchmark.

Fig. 10 .

 10 Fig. 10. The overall gain of the execution. A speed-up of 5,1 is obtained on a 8-cores computer.

VII. ACKNOWLEDGMENTS

This research is supported by the Bretagne Region under project GriRV N4295. Authors want also to thanks M. Florian Nouviale for his great help in engineering and debugging.