
HAL Id: hal-00474171
https://hal.science/hal-00474171

Submitted on 19 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Broad Phase Collision Detection Algorithm Adapted
to Multi-cores Architectures

Quentin Avril, Valérie Gouranton, Bruno Arnaldi

To cite this version:
Quentin Avril, Valérie Gouranton, Bruno Arnaldi. A Broad Phase Collision Detection Algorithm
Adapted to Multi-cores Architectures. VRIC 2010 - 12th Virtual Reality International Conference,
Apr 2010, Laval, France. pp.95. �hal-00474171�

https://hal.science/hal-00474171
https://hal.archives-ouvertes.fr


Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

A Broad Phase Collision Detection Algorithm Adapted to
Multi-cores Architectures

Quentin AVRIL, Valérie GOURANTON and Bruno ARNALDI
Université Européenne de Bretagne, France

INSA, INRIA, IRISA, UMR 6074, F-35043 RENNES
Email: quentin.avril, valerie.gouranton, bruno.arnaldi @irisa.fr

Abstract—Recent years have seen the impressive evolution
of graphics hardware and processors architecture from single
core to multi and many-core architectures. Confronted to this
evolution, new trends in collision detection optimisation consist
in proposing a solution that maps on the runtime architecture.
We present, in this paper, two contributions in the field of
collision detection in large-scale environments. We present a first
way to parallelise, on a multi-core architecture, the initial step
of the collision detection pipeline: the broad-phase. Then, we
describe a new formalism of the collision detection pipeline that
takes into account runtime architecture. The well-known broad-
phase algorithm used is the ”Sweep and Prune” and it has been
adapted to a multi-threading use. To handle one or more thread
per core, critical writing sections and threads idling must be
minimised. Our model is able to work on a n-core architecture
reducing computation time to detect collision between 3D objects
in a large-scale environment.

Index Terms—Collision Detection, Broad Phase, Multicores
Architecture

I. INTRODUCTION

Digital mock-up and industrial applications of virtual re-
ality (VR) become more and more sized. The performance
level for a real-time interaction of users into a large-scale
environment is no longer satisfying. Collision detection is one
of the important bottleneck of real-time VR applications from
more than thirty years. Recently, researchers’s interest focuses
on the evolution of hardware architecture and its friendly use
in order to increase computation power of collision detection
algorithms. Recent papers appear dealing with a new type
of problem: speeding up the detection using specificities
of new hardware architectures (Multi-cores and GPU) [1],
[2], [3]. In the wide range of collision detection algorithms,
we can notice that recent articles have a low computational
complexity and provide an efficient collision detection. But
used with million of objects in a large-scale environment,
they are inefficient for a real-time interaction. Today, taking
the most efficient and fast collision detection algorithm and
running it on a parallel architecture will definitely not insure
the best performance, algorithms have to be adapted. Few
years ago it was possible to lean on Gordon Moore’s law
that predicts multiplication of transistors number each two
years. Now, we know that this multiplication is prevented
by physical limits (power and heat). Trend is now in the

Fig. 1. Collision detection pipeline.

multi-cores architecture and many-cores. Hardware architects
strategy is to increase number of cores and to reduce their
frequency to have a low energy consumption and heat emis-
sion. Consequently, without worrying about it, a virtual reality
application that only uses one core to work will probably be
slower in few years. We also know that 3D objects and virtual
environments will still grew up in size and complexity, so
non-parallelised applications will be less and less efficient.
Hardware graphics is also subjected to an impressive power
evolution. So it appears that having a different approach on the
real-time collision detection problem centered on hardware
performance can not be ignored. This is the reason of our
revisited collision detection pipeline and, as broad-phase is
in charge of breaking down the pairwise checks complexity,
we have decided to focus on it for a parallelisation. In the
following, section 2 deals with related works on collision
detection, the architecture evolution is presented in section
3 and section 4 presents the new link-up between these two
fields of study. In section 5 we present our revisited Sweep
and Prune algorithm following by the novel view of the
collision detection pipeline. In section 6 we present results
of the parallelisation, then we conclude and open on future
works.

II. COLLISION DETECTION

Last decade have seen an impressive evolution of virtual
reality applications and more precisely of collision detection
algorithms in term of computational bottleneck. Collision
detection is a wide field dealing with, apparently, an easy
problem: determine if two (or several) objects collide. It
is used in several domains namely physically-based simula-
tion, computer animation, robotics, mechanical simulations
(medical, biology, cars industry), haptics applications and



Quentin AVRIL & al., A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures VRIC 2010 proceedings

video games. All these applications have different constraints
(real-time performance, efficiency and robustness ) so it has
generated a wide range of problems: convex or non-convex
objects, 2-Body or N-Body simulations, rigid or deformable
objects, continual or discrete methods. Algorithms are also
dependent of the geometric model formalism (polygonal,
Constructive Solid Geometry (CSG), implicit or parametric
functions). All of these problems reveal the diversity of this
field of study. For more details we refer to excellent surveys
on the topic [4], [5], [6], [7].

Given n moving objects in a virtual environment, testing
all objects pairs tend to perform n2 pairwise checks. When
n is large it becomes a computational bottleneck. Collision
detection is represented and built as a pipeline (cf Figure 1)
[8]. This one is composed by two main parts: broad-phase and
narrow-phase. The goal of this pipeline is to apply successive
filters in order to break down the O(n2) complexity. These
filters provide an increasing efficiency and robustness during
the pipeline traversal. In the following, we present two main
parts of the pipeline, broad-phase in section 2.1 and narrow-
phase in section 2.2.

A. Broad-phase

The first part of the pipeline, called the broad-phase, is in
charge of a quick and efficient removal of the objects pairs
that are not in collision. Broad-phase algorithms are classified
into four main families [7]:
Brute force approach is based on the comparison of the
overall bounding volumes of objects to determine if they
are in collision or not. This test is very exhaustive because
of its n2 pairwise checks. A lot of bounding volume have
been proposed such as sphere, Axis-Aligned-Bounding-Box
(AABB) [9], Oriented-Bounding-Box (OBB) [10] and many
others.
Spatial partitioning method is based on the principle that
if two objects are situated in distant space sides, they have
no chance to collide during next time step. Several methods
have been proposed to divide space into unit cells: regular
grid, octree [11], quad-tree, Binary Space Partitioning (BSP),
k-d tree structure [12] or voxels.
Topological methods are based on the positions of objects
in relation to others. A couple of objects that are too far
one to the other is deleted. One of the most famous methods
is called the Sweep and Prune [13] approach that consists
in projecting objects coordinates on axis. An overlapping of
objects coordinates on the three axis (x,y,z) means that their
bounding volumes collide.
Kinematic approach takes care of the objects movement, if
objects are moving away, they can not collide. Vanecek [14]
used kinematic of objects and back-face culling technique to
speed up collision detection.

B. Narrow-phase

Colliding objects pairs are then given to the narrow-phase
that perform an exact collision detection. We can classify
narrow-phase’s algorithms into four main families [7]:
Feature-based algorithms work on objects primitives: faces,
edges and vertices. This family appears in 1991 with the Lin-
Canny approach [15] or Voronoı̈ Marching that proposed to
divide space around objects in Voronoı̈ regions that allows
detecting closest features pairs between polyhedrons.
Simplex-based algorithms of whom the most famous one is
the GJK algorithm [16] that uses Minkowski difference on
polyhedrons. Two convex objects collide if and only if their
Minkowski difference contains the origin.
Image space-based algorithms work using image-space
occlusions queries that are suitable to be used on graphics
hardware (GPU). They rasterise objects to perform either 2D
or 2.5D overlap test in screen space [17].
Bounding volume-based algorithms are used in most of
strategies to perform collision tests and it highly improves
performances. Bounding volume hierarchies (BVH) allow
arranging bounding volume into a tree hierarchy (binary tree,
quad tree...) in order to reduce the number of tests to perform.
A description on these BVH and a comparison between their
performance can be found in [7]. Deformable objects are very
challenging for BVH because hierarchy structures have to be
updated when an object deforms itself [9], [6].

III. PARALLEL COLLISION DETECTION

The parallel solution of collision detection algorithms is a
well explored but still active field in high performance com-
puting. Zachmann [18] made an evaluation of the performance
of a parallelized back-end of the pipeline and showed that
if the environment density is large compared to the number
of processors, then good speed-ups can be noticed. Several
algorithms have been proposed working on multi-processors
machines [19], [20], [21], [22]. Depth-first traversal of bound-
ing volumes tree traversal (BVTT) [23], [24] and parallel
cloth simulation [25], [26] are good instances of this kind
of work. Few papers also presented multi-threading use on
single processor (Lewis et al. [27] propose a multithreaded
algorithm to simulate planetary rings).

Very recently, few papers appeared dealing with new
parallel collision detection algorithms using multi-cores.
Thomaszewsk et al. [28] propose a new task splitting ap-
proach for implicit time integration and collision handling
on multi-cores architecture. Tang et al. [2] propose to use
a hierarchical representation to accelerate collision detection
queries and an incremental algorithm exploiting temporal
coherence, the overall is distributed among multiple cores.
They obtained a 4X-6X speed-up on a 8-cores based on
several deformable models. Kim et al [1] propose to use
a feature-based bounding volume hierarchy (BVH) to im-
prove the performance of continuous collision detection. They



Quentin AVRIL & al., A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures VRIC 2010 proceedings

also propose novel task decomposition methods for their
BVH-based collision detection and dynamic task assignment
methods. They obtained a 7X-8X speed-up using a 8-cores
compared to a single-core. Hermann et al. [3] propose a
parallelization of interactive physical simulations. They obtain
a 14X-16X speed-up on a 16-cores compared to a single-core.

IV. BROAD PHASE ADAPTATION

We present here two contributions on the collision detection
optimisation, the first one concerns the parallelisation of the
”Sweep and Prune” algorithm and the second one describes
a new way to represent the collision pipeline .

A. Parallel Algorithm

Related works let appear that the architecture of collision
detection algorithms needs to be improved to face real-
time interaction. In this way, we focus on an essential step
of the collision detection pipeline: the broad-phase. More
precisely, our algorithm is an implementation of the ”Sweep
and Prune”[13] on a multi-cores architecture.

Sweep and prune is also known as sort and sweep [29]
being called that way at David Baraff Ph. D thesis in 1992
[30]. Later works like the 1995 paper about I-COLLIDE by
Cohen et al. [13] refer to this algorithm. It is one of the
most used methods in the broad-phase algorithms because it
provides an efficient and quick pairs removal and it does not
depend on the objects complexity. The sequential algorithm
of ”Sweep and Prune” takes in input the overall objects of the
environment and feeds in output a collided objects pairs list.
The algorithm is divided in two principal parts. The first one is
in charge of the bounding volume update of each active virtual
objects. Bounding volumes used are AABBs that are aligned
on the environment axis (cf. Figure 2). The second part is in
charge of the detection of overlapping between objects. To
do that a projection of higher and upper bounds on the three
axis of coordinates of each AABBs is made. Then, we obtain
three lists with overlapping pairs on each axis (x, y and z). We
can notice two related but different concepts on the way the
Sweep and Prune operates internally: by starting from scratch
each time or by updating internal structures. To differentiate
them a name was given to each method, the first type is called
brute-force and the second type persistent. We work with the
brute force one and after projection on axis there are (n2−n)

2
objects pairs to test. Pair that is still alive before this test
mean that its objects are considered as in potential collision.
This pair is then given to the narrow-phase.

Multi-core architecture allows us to separate collision de-
tection computations on available cores. But computations
can not be separated on the way without a special data
structure. To fully exploit multi-cores architecture, critical
sections, threads idling and cores synchronisation have to
be taken account and minimised or avoided. To parallelise
the algorithm we have decided to use OpenMP because

Fig. 2. ”Sweep and Prune” algorithm on x and y axis with a non-overlapping
condition (left) and an overlapping one (right).

of the directives that allow to keep the same code (with
few algorithmic modifications on the data structure) and to
focus on the directives. Even if IntelTBB provides better
performances, it is more complex to program with and it
generates specific code, enable to work without IntelTBB
libraries.

A simplified scheme of our model is in Figure 3. We
can notice parallelisation of the two principal parts of the
algorithm with a synchronisation between both. Number of
threads that are created depends on the number of available
cores. As a thread is only in charge of geometric computations
and does not wait for anything, create more than one thread
per core will increase computation time. In the first step
of the algorithm, each thread works on n

c objects where
n is the number of objects in the environment and c the
number of cores. It is possible to divide objects per threads
because AABB update computation does not depend of the
object complexity, time spent per object by a thread is almost
homogeneous. Compared to the sequential algorithm where
new computed bounding volume is written on the way in
a data structure, we can not use the same scheme without
avoiding critical writing section between threads. That is why
we introduce a new smallest data storage used by each thread
to put new computed bounding volume. This new structure
is an array dynamically allocated in relation to the number
of cores and objects. Synchronisation between this two steps
is compulsory to merge all the new bounding volumes in the
same data structure. We only merge threads array pointers to
reduce synchronisation time.

In the second part of the algorithm, each thread works on
(n2−n)

2 /c pairs of objects where c is still the number of cores.
Like in the first part, each computation made by a thread is
an overlapping test between objects coordinates so it does
not depend on the object complexity. To avoid critical section
between threads we use a similar technique where each thread
is fitted with its own data storage to put objects pairs with
overlapped coordinates. All pairs of objects in collision are
merged at the end of the overall computation to create the
pair list of objects in collision. Then, this new pairs list is
given to the narrow-phase that performs an exact collision
detection test.



Quentin AVRIL & al., A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures VRIC 2010 proceedings

Fig. 3. Our parallel broad-phase algorithm. Parallelisation of the update
AABB part and the calculate overlapping pair one with a synchronisation
point between them.

Fig. 4. The new 3D formalism of the collision detection pipeline.

B. Revisited Pipeline

We use new 3D formalism of the collision detection
pipeline [31] to represent our new parallel algorithm. We can
see it on the Figure 4. This formalism allows to represent in
same time the type of algorithms used and hardware mapping
techniques performed. We have developed a parallel broad-
phase algorithm separated in two main parts using multi-
threading techniques on a multi-cores architecture. People
who want to develop real-time algorithms for large-scale
virtual environment have to take into account the runtime
architecture. This formalism recalls us that architecture must
be an essential point for the development of one block of this
3D pipeline.

In the near future, we want to focus on each block and
propose a generic mapping model for each of them on several
architecture components.

V. RESULTS

In this section we present main results of computation
time speed-up. Those tests were performed through several
benchmark models (cf Figure. 7). We only performed test on
n-body simulation of rigid bodies using AABB as bounding

Cubes Balls Skittles
1 core 8,89ms 4,45ms 1,6ms
2 cores 4,96ms 2,48ms 0,9ms
4 cores 2,76ms 1,4ms 0,5ms
8 cores 1,52ms 0,74ms 0,27ms

Fig. 5. Time spent for updating AABB for each benchmark model from 1
core to 8 cores.

Cubes Balls Skittles
1 core 53,339ms 26,7ms 10,71ms
2 cores 31,65ms 15,748ms 6,35ms
4 cores 18,76ms 9,51ms 3,742ms
8 cores 11,43ms 5,82ms 2,314ms

Fig. 6. Time spent to calculate overlapping pairs for each benchmark model
from 1 core to 8 cores.

volume. To obtain homogeneous results, we have only worked
on a 8-cores computer using 1, 2, 4 or 8 cores. We work
on Windows XP Professional x64 Edition Version 2003 with
Intel Xeon (2*Quad) CPU X5482 of 3.20 GHz and with 64
GB of RAM.

We present here time results for all used benchmark models
(Cubes, Balls and Skittles). Numerical results for the first part
of the algorithm is presented in tab 5. The reduction of the
overall running time is shown on the graphic in Figure 8. We
can see a percentage of time reduction for the first part of
the algorithm concerning the AABB update. For one scenario
four blocks show time spent from 1 to 8 cores and we can
notice that time decreases when the number of cores goes up.
The overall running time is reduced by 56.04% by using 2
cores, 31.49% for 4 cores and 17,03% for 8-cores. Numerical
results for the second part of the algorithm is presented in tab
6. This second part of the algorithm is shown in the graphic
Figure 9 and we notice the same gain of time than the first
part. The overall running time is reduced by 59.2% by using
2 cores, 35.34% for 4 cores and 21.56% for 8-cores.

The general speed-up of our parallel algorithm is shown
in Figure 10, on this graphics our work is represented by the
pink line bounded by the blue one which is the optimal speed-
up for a parallel execution whose we wanted to get closer. We
have also performed measures on the computation time spent
by t threads shared on c cores and the assumption made at
the beginning on using more than one thread per core seems
to be exact. Time spent by 3 threads on 2 cores is slower than
2 threads but better than 1. So using more than one thread
per core is not justified and appears to be less efficient.

VI. CONCLUSION & FUTURE WORKS

We have presented a contribution on the collision detection
optimisation centered on hardware performance. The revisited
collision pipeline, presented with a new third dimension
allows to merge hardware components with collision detection
pipeline. Starting with this new pipeline, we focus on the first



Quentin AVRIL & al., A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures VRIC 2010 proceedings

Fig. 7. Benchmarks: We used several benchmark models to measure
collision detection time: 10K balls of 2K polygons each falling in simple
environment of 600 polygons (= 1.1M polygons), 20K cubes of 12 polygons
each fallen on complex environment of 300K (= 420K polygons) and 3.5K
concave shapes (skittles of 20K each) falling on a plan. We only performed
test on n-body simulation of rigid bodies using AABB as bounding volume.

Fig. 8. The AABB update execution time in relation to the number of cores.
The overall computation time is reduced by 17.03% by using 8 cores on this
benchmark.

step (Broad-phase) and propose a new way of parallelisation
of the well-known Sweep and Prune algorithm. This model
takes into account run-time architecture and more precisely
the number of available cores. Multi-cores architecture allows
us to distribute geometric computations with use of multi-
threading. Critical writing section and threads idling have
been minimised by introducing new data structures for each
thread. Programming with directives, like OpenMP, appears
to be a good compromise for code portability.

Results show that it is not easy to pretend obtaining optimal
speed-up on a multi-cores architectures. We are also focusing
on a coupling of our multi-cores model with graphics hard-
ware in order to speed-up again collision detection algorithms

Fig. 9. The execution time of the overlapping pairs checks in relation to
the number of cores. The overall computation time is reduced by 21.56% by
using 8 cores on this benchmark.

Fig. 10. The overall gain of the execution. A speed-up of 5,1 is obtained
on a 8-cores computer.

and it seems to be an efficient way of optimisation. Indeed, to
work on a GPU introduces several points that are interesting
to focus on, like working on several memory hierarchical
levels (registers, caches...). Others blocks of our revisited
pipeline have also to be optimised through the use of multi or
many cores architecture and GPGPU. Having a reflexion on
technical characteristics and time constraints of each pipeline
blocks in order to speed-up algorithms is one of our principal
goal. We also imagine some parts of the pipeline working on
a cluster or a grid environment taking into account partic-
ularities of each architecture. Future algorithms providing a
real-time interaction have to be implemented through the use
of GPGPU, multithreads, multi or many-cores architecture
with memory and cache handling and maybe on cluster or
grid architecture.

VII. ACKNOWLEDGMENTS

This research is supported by the Bretagne Region under
project GriRV N4295. Authors want also to thanks M. Florian
Nouviale for his great help in engineering and debugging.



Quentin AVRIL & al., A Broad Phase Collision Detection Algorithm Adapted to Multi-cores Architectures VRIC 2010 proceedings

REFERENCES

[1] DukSu Kim, Jea-Pil Heo, and Sung eui Yoon. Pccd: Parallel continuous
collision detection. Technical report, Dept. of CS, KAIST, 2008.

[2] Min Tang, Dinesh Manocha, and Ruofeng Tong. Multi-core collision
detection between deformable models. In Computers & Graphics, 2008.

[3] Everton Hermann, Bruno Raffin, and François Faure. Interactive phys-
ical simulation on multicore architectures. In Eurographics Workshop
on Parallel and Graphics and Visualization, EGPGV’09, March, 2009,
Munich, Allemagne, 2009.

[4] M. C. Lin and S. Gottschalk. Collision detection between geometric
models: a survey. In Robert Cripps, editor, Proceedings of the 8th IMA
Conference on the Mathematics of Surfaces (IMA-98), volume VIII
of Mathematics of Surfaces, pages 37–56, Winchester, UK, September
1998. Information Geometers.

[5] Pablo Jimnez, Federico Thomas, and Carme Torras. 3d collision
detection: a survey. Computers & Graphics, 25(2):269–285, 2001.

[6] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel
Zachmann, Laks Raghupathi, Arnulph Fuhrmann, Marie-Paule Cani,
François Faure, Nadia Magnenat-Thalmann, Wolfgang Straßer, and
Pascal Volino. Collision detection for deformable objects. Comput.
Graph. Forum, 24(1):61–81, 2005.

[7] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and Richard Rowe. Collision
detection: A survey. Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on, pages 4046–4051, Oct. 2007.

[8] P. M. Hubbard. Collision detection for interactive graphics applications.
IEEE Transactions on Visualization and Computer Graphics, 1(3):218–
230, September 1995. ISSN 1077-2626.

[9] Gino Van Den Bergen. Efficient collision detection of complex
deformable models using aabb trees. J. Graph. Tools, 2(4):1–13, 1997.

[10] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. Obbtree: A
hierarchical structure for rapid interference detection. In Proceedings
of the ACM Conference on Computer Graphics, pages 171–180, New
York, August 4–9 1996. ACM.

[11] Srikanth Bandi and Daniel Thalmann. An adaptive spatial subdivision
of the object space for fast collision detection of animated rigid bodies.
Comput. Graph. Forum, 14(3):259–270, 1995.

[12] Jon Louis Bentley and Jerome H. Friedman. Data structures for range
searching. ACMCS, 11(4):397–409, 1979.

[13] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav K.
Ponamgi. I-collide: An interactive and exact collision detection system
for large-scale environments. In SI3D, pages 189–196, 218, 1995.

[14] G. Vaněček, Jr. Back-face culling applied to collision detection of
polyhedra. The Journal of Visualization and Computer Animation, 5(1),
January–March 1994.

[15] Ming C. Lin and John F. Canny. A fast algorithm for incremental dis-
tance calculation. Technical report, University of Berkeley, California,
March 19 1991.

[16] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE Journal of Robotics and Automation, 4:193–203, 1988.

[17] George Baciu and Wingo Sai-Keung Wong. Image-based collision
detection for deformable cloth models. IEEE Trans. Vis. Comput.
Graph, 10(6):649–663, 2004.

[18] Gabriel Zachmann. Optimizing the collision detection pipeline. In
Proc. of the First International Game Technology Conference (GTEC),
January 2001.

[19] Yoshifumi Kitamura and Andrew Smith. Parallel algorithms for real-
time colliding face detection. Robot and Human Communication, pages
211–218, November 07 1995.

[20] Gao Shuming Wan Huagen, Fan Zhaowei and Peng Qunsheng. A
parallel collision detection algorithm based on hybrid bounding volume
hierarchy. CAD/Graphics2001, August 2001.

[21] R. Lario, C. Garcia, M. Prieto, and F. Tirado. Rapid parallelization of
a multilevel cloth simulator using openmp. In Proceedings of the 3rd
European workshop on OpenMP., pages 21–9, 2001.

[22] Ulf Assarsson and Per Stenstrom. A case study of load distribution in
parallel view frustum culling and collision detection. In Rizos Sakel-
lariou, John Keane, John R. Gurd, and Len Freeman, editors, Euro-
Par 2001: Parallel Processing, 7th International Euro-Par Conference
(7th Euro-Par’01), volume 2150 of Lecture Notes in Computer Science

(LNCS), pages 663–673, Manchester, UK, August 2001. Springer-
Verlag (New York).

[23] Andrew Smith, Yoshifumi Kitamura, Haruo Takemura, and Fumio
Kishino. A simple and efficient method for accurate collision detection
among deformable polyhedral objects in arbitrary motion. Proc. IEEE
Virtual Reality Annual International Symposium, pages 136–145, March
1995.

[24] A. Reinefeld and V. Schnecke. Work-load balancing in highly parallel
depth-first search. Scalable High Performance Computing Conference,
pages 773–780, 1994.

[25] Bernhard Thomaszewski and Wolfgang Blochinger. Physically based
simulation of cloth on distributed memory architectures. Parallel
Computing, 33(6):377–390, 2007.

[26] Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw.
Robust high-resolution cloth using parallelism, history-based collisions,
and accurate friction. IEEE Trans. Vis. Comput. Graph, 15(2):339–350,
2009.

[27] Mark Lewis and Berna L. Massingill. Multithreaded collision detection
in java. In Hamid R. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications & Conference on Real-Time Computing Systems and Ap-
plications (PDPTA’06), volume 1, pages 583–592, Las Vegas, Nevada,
USA, June 2006. CSREA Press.

[28] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Blochinger. Par-
allel techniques for physically based simulation on multi-core processor
architectures. Computers & Graphics, 32(1):25–40, 2008.

[29] Christer Ericson. Real-time Collision Detection. Morgan Kaufmann,
2005.

[30] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies.
PhD thesis, Cornell University, 1992.

[31] Quentin Avril, Valérie Gouranton, and Bruno Arnaldi. New trends in
collision detection performance. In Simon Richir & Akihiko Shirai,
editor, Laval Virtual VRIC’09 Proceedings, pages 53–62, BP 0119
53001 Laval Cedex FRANCE, April 2009.


