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Academic team formation as evolving hypergraphs

Carla Taramasco∗ ,† ,‡ Jean-Philippe Cointet∗ ,† ,§ Camille Roth∗ ,† ,¶ ,‖

[preprint — paper to appear in scientometrics]

Abstract

This paper quantitatively explores the social and
socio-semantic patterns of constitution of academic
collaboration teams. To this end, we broadly un-
derline two critical features of social networks of
knowledge-based collaboration: first, they essen-
tially consist of group-level interactions which call
for team-centered approaches. Formally, this in-
duces the use of hypergraphs and n-adic interactions,
rather than traditional dyadic frameworks of inter-
action such as graphs, binding only pairs of agents.
Second, we advocate the joint consideration of struc-
tural and semantic features, as collaborations are
allegedly constrained by both of them. Consider-
ing these provisions, we propose a framework which
principally enables us to empirically test a series of
hypotheses related to academic team formation pat-
terns. In particular, we exhibit and characterize the
influence of an implicit group structure driving re-
current team formation processes. On the whole,
innovative production does not appear to be corre-
lated with more original teams, while a polarization
appears between groups composed of experts only or
non-experts only, altogether corresponding to collec-
tives with a high rate of repeated interactions.

1 Introduction

The mechanisms of academic collaboration are the
focus of a long and established tradition of re-
search (Katz & Martin, 1997), from qualitative
studies on cooperation and co-optation behaviors
(Crane, 1969; Chubin, 1976; Latour & Woolgar,
1979) to more quantitative approaches (deB. Beaver
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& Rosen, 1978–1979; deB. Beaver, 1986; Melin &
Persson, 1996). The latter includes network-based
studies, which are generally aiming at understand-
ing the structural determinants and patterns of col-
laboration (Mullins, 1972; Newman, 2001; Barabási
et al., 2002; Moody, 2004; Wagner & Leydesdorff,
2005; Leahey & Reikowsky, 2008). In this case, the
quantitative formal framework of choice is the so-
cial network of dyadic interactions, addressing ques-
tions related to how ego-centered characteristics, in
the broad sense, influence the likelihood of being in-
volved in a collaboration.

The Team Level and Networks

Network studies, specifically in the context of sci-
entific collaboration, indeed often focus on the level
of the individual in spite of a large amount of work
on the question of group cohesiveness (Lott & Lott,
1965; Bollen & Hoyle, 1990; Friedkin, 2004). There
are wider implications of this focus on the ego-
centered level:

• By aiming at describing individual behavioral
patterns, this perspective may overlook the
influence of characteristics expressable at the
meso-level of the team itself. In particular, by
focusing on dyadic interactions and relational
patterns between ego and alter(s), the presence
of ego in a given collaboration is interpreted
as a function of the characteristics of ego and
those of alter(s), and of the characteristics of
the various dyads between ego and alter(s).

• Further, the creation of a group results from a
complex agreement and arrangement between
all its members, who jointly decide to collabo-
rate. As such, even when assuming that the be-
havior of ego may depend on non-dyadic, team-
level characteristics, interpreting team forma-
tion processes as a sum of individual rational-
ities may oftentimes seem difficult, or irrele-
vant. Put differently, there are regularities in
team formation processes which are difficult to
ascribe specifically back to individuals; it may
appear more natural and consistant to appraise
the underpinnings of group formation at the
group level.1

1Note that what we call a “team” here actually relates
to a group that is involved in the production of an academic
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To sum up, when dyadic frameworks are in-
volved, collaboration teams are appraised under
the lens of multiple one-to-one interactions. It
should be no surprise: social network literature is
itself overwhelmingly concerned with dyadic links.
However, a sizeable portion of sociology, starting
with Simmel (1898), has long been concerned by
wider frameworks of interactions, or so-called “so-
cial circles”, which some authors have formalized to
take directly into account non-dyadic relationships:
Breiger (1974, 1990), for instance, proposed to use
bipartite graphs to represent and analyze ties be-
tween actors and social groups. Focusing on the
group-level, Ruef (2002) quantitatively examined
the contribution of several factors including gender,
status, or ethnicity, in the preferential constitution
of business founding teams. In a review study, Free-
man (2003) explored various approaches previously
adopted in mathematical sociology to model two-
mode data in order to account for the presence of
subsets of people participating altogether in (subsets
of) identical events.

In this respect, it therefore first appears that aca-
demic collaboration choices and dynamics should
be characterized by investigating the meso-level of
team formation. More precisely, it should be fruitful
to focus on teams rather than pairs of agents inter-
acting together, thus advocating the use of hyper-
graphs or bipartite graphs rather than traditional
frameworks based on graphs. Hypergraphs indeed
feature hyperlinks which connect arbitrary numbers
of agents, while graphs feature links which con-
nect only pairs of agents. In other words, consid-
ering hypergraphs prevents making the superfluous
and plausibly debatable assumption that teams are
equivalent to complete subgraphs featuring one-to-
one interactions between all its members (i.e. as-
suming for instance that a triad is equivalent to
three dyads).

Hybrid Networks of Actors and Concepts

Secondly, collaboration massively depends on cog-
nitive properties, in particular some cognitive fit
between team members, as agents plausibly com-
pose teams in order to gather complementary com-
petences. For instance, some economic models of
knowledge creation consider matching rules based
on the similarity of agent profiles, as elements of
a vector space, to explain economic network struc-
ture (Cowan et al., 2002). In other words, equal
attention should be given to social and semantic fea-
tures, which are traditionally left apart in the liter-
ature, although the existence of homophily-driven
interactions has been underlined in numerous works
(McPherson et al., 2001).

Our main hypothesis is that one cannot correctly

paper, i.e. the team of coauthors that produces it; it does not
correspond to the more or less explicit notion of team that
may exist in some research labs.

understand the underlying social processes if both
social and semantic dimensions of, e.g., scientific
activity, are not considered as two interdependent
dynamics (Roth, 2006; Roth & Cointet, 2010). Go-
ing further, we construe scientific dynamics as made
of groupings of both agents and concepts: the epis-
temic dynamics, i.e. the collective scientific knowl-
edge construction, is made of events which simul-
taneously involve compounds of actors and con-
cepts. In line with the program introduced by Cal-
lon (1986), we will appraise scientific dynamics as
made of constant reconfiguration and re-negotiation
of collectives of both humans and non-humans.
In this respect and more broadly, in addition to

focusing on teams, we thus advocate the enrichment
of the notion of team by considering teams as joint
groupings of both agents and semantic items.

Knowledge-based teamwork

The interest in the social epistemology of academic
communities also has a broader reach. As a knowl-
edge production arena, science is indeed likely to
share features found in other collaborative knowl-
edge creation contexts.

(i) Collaboration in knowledge production sys-
tems.

This issue may shed light, to some extent, on
the interaction processes underlying, broadly,
collaborative knowledge production. These
contexts indeed define a particularly com-
mon class of social networks of collaboration,
where agents jointly and collectively interact
for purposes of knowledge production, in the
broad sense. This encompasses activist groups
and political epistemic communities (Ruggie,
1975; Haas, 1992), scientific communities (deB.
Beaver & Rosen, 1978–1979; Laband & Tolli-
son, 2000; Jones et al., 2008; Stokols et al.,
2008; Leahey & Reikowsky, 2008) and more
specifically research projects (Larédo, 1995,
1998), open-source development communities
(Kogut & Metiu, 2001) and discussion lists and
forums (Constant et al., 1996; Welser et al.,
2007), wiki platform-mediated communities
(Bryant et al., 2005; Levrel, 2006), artists gath-
ering for a theater performance (Uzzi & Spiro,
2005) or making a movie (Faulkner & An-
derson, 1987; Ramasco et al., 2004), board
members making collective decisions (Davis &
Greve, 1996).

(ii) Collaboration in teams.

This kind of relatively autonomous collabora-
tion mode has to be understood in a context
where traditionally vertical and hierarchical
organizations have recently been functioning
in increasingly horizontal and networked ways
(Powell, 1990; Miles & Snow, 1996; Smangs,
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2006). This contemporary so-called “network
governance” involves dynamic coalitions of ac-
tors both at organizational and individual lev-
els, increase of teamwork and frequent group
reconfigurations (Jones et al., 1997). This
shift is particularly sensible in contexts where
agents are relatively free to group to form ca-
sual alliances and where collaboration some-
times appears to be self-organized.

In this respect, science appears to be a proto-
typical case of such teamwork-based systems (deB.
Beaver, 1986; Adams et al., 2005; Wuchty et al.,
2007) — scientific knowledge production essentially
involves events where researchers jointly work to
manipulate and introduce concepts. It is addi-
tionally one of the most accomplished context of
knowledge-based collaboration, as well as one of the
most explicit, by its very stigmergic2 nature: papers
indeed constitute a concrete, often public instance
of these gatherings and therefore provide an oppor-
tunity to understand the impact of these collabora-
tions on the dynamics of science. On the empirical
side, we thus rely on large bibliographic databases.

As such, our approach does not pretend to
embrace the whole complexity of knowledge-
intensive organizations, in particular the intri-
cate co-evolutionary processes existing between for-
mal organizations and more local team-based and
individual-based decisions (Lazega et al., 2008).
However, the metholodogy we propose is able to
shed some original light on portions of the dynamics
of these knowledge production systems.

The paper is organized as follows: in Sec. 2,
we present the framework and support several hy-
potheses on socio-semantic team-based collabora-
tion, Sec. 3 introduces the protocol and methods,
while Sec. 4 presents the results, which we then dis-
cuss in light of the initially proposed hypotheses.

2 Framework

As follows from the introduction, we hence argue
that two features are key in extending the under-
standing of, one hand, collaboration networks, and
on the other hand and additionally, knowledge pro-
duction networks:

1. Group effects underlie and partially determine
dyadic interactions: affiliation to teams of col-
laboration, membership in identical epistemic
communities, for instance, structure and influ-
ence the very formation of these interactions.

2. In the case of social networks of knowledge,
these underlying groups are both social (work

2“Stigmergic”: that is, leaving traces susceptible to guide
the work of others. For an extensive discussion of this notion,
see Karsai & Penzes (1993).

communities) and semantic (epistemic commu-
nities). In particular, the choice of collabora-
tion partners is likely to highly depend on cog-
nitive similarity.

More to the point, in terms of strictly social
and strictly semantic associations, we first aim
at checking the following simple hypotheses, by
comparing what happens empirically with what
would have happened if teams had been formed
strictly by chance (i.e. by comparing empirical teams
with a null-model featuring random compositions of
teams).

(H1). Teams with a high rate of interaction rep-
etition should be more likely, as could
be expected because of social cohesion
(Bollen & Hoyle, 1990; McPherson &
Smith-Lovin, 2002; Friedkin, 2004) or
organizational constraints (Rodriguez &
Pepe, 2008).

(H2). Teams where a high proportion of con-
cepts are repeatedly associated should be
more likely — as assumed by co-word anal-
ysis (Callon et al., 1986; Noyons & van
Raan, 1998), where frequent associations
of terms are supposed to define conceptual
cores and field boundaries.

(H3). Papers with a higher semantic originality
(i.e. new association of concepts) should
be those where there is a higher num-
ber of new interactions.3 Put differently,
as suggested by social and semantic rep-
etitions assumed by H1 and H2, teams
with a high number of repeated interac-
tions should tend to produce papers that
have smaller semantic/topical originality;
which in some sense belong to a narrower
subfield of research (Leahey & Reikowsky,
2008).

Then, we appraise the socio-semantic composition
of teams. We more precisely focus on the distinction
between agents who are already familiar with some
concepts involved in the interaction, and those who
are not. This approach will more broadly inform us
about the cognitive specialization of teams.

(HI). Because of both scientific specialization
(Chubin, 1976) and homophily (McPher-
son et al., 2001; Stokols et al., 2008),
teams gathering around a given topic
should generally involve more individuals
knowledgeable about this given topic.

3As Callon (1994, p.414) sums up from the existing liter-
ature,

“The more numerous and different these hetero-
geneous collectives are, the more the reconfigura-
tions produced are themselves varied”
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(HII). Teams with a balanced composition of ex-
perts in a given field should produce more
innovation (Ancona & Caldwell, 1992),
which in terms of networks could be trans-
lated into:

• more semantic originality, i.e. novel
associations of concepts,

• more social originality, i.e. novel in-
teractions between agents.

3 Protocol and methods

In line with this focus on socio-semantic aspects,
we will thus endeavor at exhibiting how new teams
are formed by considering both social and concep-
tual past acquaintances of scientists involved in new
collaborations. We will concretely describe the se-
mantic dimension in terms of attributes qualifying
topics of interest of authors and the social dimen-
sion as structural and relational properties in the
dynamic collaboration network — which altogether
will enable us to confirm or refute the previous set
of hypotheses.

3.1 Datasets

Our empirical analysis focuses on collaboration
databases, which reveal a large part of the under-
lying collaboration activity, including social links
between individuals or conceptual acquaintances of
each individual (i.e. details regarding which topics
which agents are familiar with). These datasets
provide temporal information on teams, gathering
agents and the topics they work on, assuming that
topics are described by the very terms used in paper
abstract. For each dataset, we focus on a set of no
more than a hundred of relevant terms. These terms
are selected with the help of an expert of the corre-
sponding field and are such that they appropriately
cover the most significant topics of each field.

We use the following datasets, defined either from
a semantic perspective (using e.g. field names) or
from a social perspective (using e.g. scientific as-
semblies), and involving both large and small com-
munities:

1. Embryologists working within a given and well-
determined subfield — the zebrafish, on a pe-
riod of 20 years (1985–2004). Data was ex-
tracted from the publicly available database
Medline, which eventually yields a dataset of
6, 145 articles (13 084 authors, 71 word classes).

2. Scientists working on rabies from the same kind
of MedLine extraction as for zebrafish embryol-
ogists — the observed period spans from 1985
to 2007. This ends up with 4 648 events (9 684
authors, 70 word classes).

3. Scientific committee members for JEMRA
meetings4: this dataset includes the publica-
tions of an initial set of 168 scientists involved
in these meetings, gathered from 1985 to 2007.
This ends up with 5 893 papers (15 375 authors,
69 word classes).

4. Scientific committees members for JECFA
meetings5: similarly, publications of an initial
set of 178 scientists are gathered from 1985 to
2007. This ends up with 8 685 papers (21 195
authors, 85 word classes).

3.2 Hypergraph-based definitions

Now, these agents and concepts formally define an
evolving hypergraph where each article is a hybrid
hyperlink gathering both authors and the topics in-
volved in the collaboration, as partly exemplified by
Fig. ??.

In what follows, we describe comprehensively our
formal framework (Sec. 3.2.1), which, basically, al-
lows us to gather both agents and concepts in a dy-
namic setting and to define which agents are new, or
not (newcomers vs. veterans), which concepts are
new, or not (novelties vs. standards), and which
agents have used which concepts in the past, or not
(neophyte or experts).

Building upon these definitions, we will then pro-
pose a series of hypergraphic measures (Sec. 3.2.2) —
that is, measures at the level of teams, or non-dyadic
measures — which cover the proportion of experts in
a given collaboration (expertise ratio) and the orig-
inality of participants in a team (hypergraphic rep-
etition, i.e. describing to what extent a team does
gather agents, or concepts, which were jointly asso-
ciated, at the team-level, in previous periods). For
instance, a team with an expertise ratio of one will
be such that all agents are experts; a team with a
hypergraphic repetition of one, in terms of agents,
will be such that all its agents will have altogether
previously collaborated (it is zero in case none of the
agents have previously been associated).

Then, we present a methodology (Sec. 3.2.3) for
computing how much the empirical data diverges
from a random setting with a comparison between
the actual observed data and a uniform null-model of
hypergraph evolution. Put simply, we will appraise
how much teams with, e.g., a given hypergraphic
repetition ratio, are forming significantly more often
than could be expected by chance. This latter tool
will be the cornerstone of the empirical testing of
hypotheses 1-2-3 & I-II.

4Joint FAO/WHO Expert Meet-
ings on Microbiological Risk Assessment,
http://www.fao.org/ag/agn/agns/jemra index en.asp

5Joint FAO/WHO Expert Committee on Food Additives,
http://www.who.int/ipcs/food/jecfa
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3.2.1 Objects

Hypergraphs.

Formally, a hypergraph features nodes and hyper-
links, which describe n-adic interactions among any
subset of nodes. It is therefore a generalization of
the notion of graph whose links only describe dyadic
interactions, i.e. between pairs of nodes. As such,
any hyperlink corresponds to any grouping of agents
and any kind of social circle: it may describe social
events, organizations, families, teams, etc. A hyper-
graph is also isomorphic to a bipartite graph, where
agents on one side are connected to various affilia-
tions, groups or events on the other side; as such a
structure which reifies the duality of social groups
(Breiger, 1974; Freeman, 2003). See Fig. ??.

Beyond the simple observation of the structure
of such networks, several studies have endeavored
at reconstructing structural properties typically in-
duced by the hypergraphic setting — namely, that
agents interact within groups of some sort — rather
than using dyadic interactions only: in this direc-
tion Newman et al. (2001); Ramasco et al. (2004);
Guimera et al. (2005), inter alia, examine the struc-
ture of a social network whose dyadic links stem
from teams — team composition is first empiri-
cally appraised then stylized and used as a basis
for what essentially is a clique addition process. In
these models however the focus remains on dyadic
relationships or dyadic interaction behaviors, rather
than truly hypergraphic measures.

In contrast, the focal level of analysis of the
present study is the hypergraph and its hyperlinks.

Epistemic hypergraphs.

To bind the social and semantic aspects, we intro-
duce the notion of epistemic hypergraph Et using:

(i) a set of agents A,

(ii) a set of concepts C, and

(iii) the epistemic hypergraph itself E ⊆ P(A ∪ C),
describing the joint appearance of agents and
concepts, and henceforth the usage of the lat-
ter by the former, where each collaboration is
a hyperlink e ∈ P(A∪ C).

As such, an “epistemic hypergraph” is properly
defined by a triple (A, C,E). Dynamic epistemic hy-
pergraphs are indexed with time, Et, and are con-
sidered to be growing: t < t′ ⇒ Et ⊆ Et′ .

At each timestep, new teams are formed and thus
hyperlinks appear, we denote this set by ∆Et, such
that Et = Et−1 ∪∆Et. Note that ∆Et is not neces-
sarily equal to Et \ Et−1 since some teams forming
at t may already have appeared in Et−1.

See an illustration of this framework on Fig. ??.

We also define a projection operation for hy-
perlinks: given a hyperlink e ∈ Et and a subset

E ⊆ A∪C, the projection of e on the set E is noted
eE = e∩E. For instance, the fact that all hyperlinks
contain at least one agent translates as ∀e, eA 6= ∅.

We can thus define a (dynamic) collaboration hy-
pergraph {eA | e ∈ Et} = At ⊆ P(A) whose hyper-
links connect team members, and a semantic hyper-
graph {eC | e ∈ Et} = Ct ⊆ P(C) whose hyperlinks
are sets of concepts mentioned in a given collabora-
tion. In particular, At is isomorphic to a bipartite
graph of collaboration, traditional in the literature
(Newman et al., 2001; Guimera et al., 2005).

Neophytes and newcomers.

We say that an agent a is, at t, a “neophyte in a
given concept c ∈ C” if s/he has never used c at t:
formally, if ∄e ∈ Et−1, {a, c} ⊆ e. Otherwise, s/he is
called an “expert”.

We say that an agent a is a “newcomer” if s/he
has never published before t, which is equivalent to
say that ∄e ∈ Et−1, a ∈ e. Otherwise, s/he is called
a “veteran”.

Similarly, we say that a concept c is a “novelty”
at t if all agents are neophyte in this concept: ∄e ∈
Et−1, c ∈ e. Otherwise, it is a “standard”.

3.2.2 Measures

Homogeneity of teams and expertise ratio.

Given these basic concepts, we may first examine the
composition of teams using a simple hypergraphic
measure pertaining to the composition of teams in
terms of a simple proportion of experts: “how much
are teams made of people familiar or not with a
given concept which is used by the team?”.

We call this proportion expertise ratio, noted “ξ”;
for example, a paper on “ants” where half of the au-
thors already worked on ants has a ratio of expertise
in “ants” of .5. Formally, the expertise ratio ξc,t(e)
in concept c ∈ eC at time t of team e is given by:

ξc,t(e) =
|{a ∈ eA | a is an expert in c}|

|{a ∈ eA}|

This notion, derived from the composition of a
given team in terms of experts vs. neophytes in a
given concept, expresses the socio-conceptual homo-
geneity of a team. See Fig. ??.

Hypergraphic repetition.

We may also express the degree of originality of the
composition of a team and its subsequent groupings
by measuring, in the broad sense, the proportion of
already-existing associations of items, be it agents or
concepts. More to the point, we may talk of social
originality by describing the rate of new associations
of agents in a given team; or, dually, we will denote
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conceptual originality by describing the proportion
of new associations of concepts in a paper.6

More precisely, in the dyadic case, an interaction
is said to be repeated if the two nodes already jointly
appeared in a previous collaboration. We extend
this notion to the hypergraphic case:

• We first say that a set of nodes has “previously
co-occurred” if there is at least one previously-
existing (< t) hyperlink including this set. We
define the corresponding function ρt as follows:

ρt(e) =

{
1 if ∃e′ ∈ Et−1, e ⊆ e′

0 otherwise.

Thus, for instance, if a and a′ never collabo-
rated at t, we have ρt({a, a′}) = 0.

• The notion of hypergraphic repetition is prop-
erly defined for veteran agents and/or standard
concepts — by definition, repetition cannot oc-
cur with newcomers or novelties.

Therefore, in the following formulas, hyperlinks
emust be such that ∀e ∈ e, ∃e′ ∈ Et−1 such that
e ∈ e′. In other words, we ensure the use of such
hyperlinks by considering, ∀e ∈ Et, truncated
hyperlinks e restrained to the set of previously-
existing nodes, i.e.:

e = e ∩
⋃

e′∈Et−1

e
′

We then compute the hypergraphic rate of rep-
etition for a hyperlink e ∈ Et as the proportion
of subsets of this hyperlink that have previously
co-occurred :

rt(e) =
1

2|e| − |e| − 1

∑

e
′⊆e

|e′|≥2

ρt(e
′)

= rt(e)

Depending on the objectives, it might be ap-
propriate to weight the relative importance of
each subset of hyperlink e in the sums, for in-
stance according to their size: for a discussion
on weighting functions, see Appendix A.

Let us consider the following example: given a new
collaboration e forming at t, rt(e

C) thus measures
its hypergraphic concept repetition, i.e. how much
the concepts of eC have been jointly associated, al-
together, in previous periods. Eventually, we may
plot the distribution of such values rt for all teams,
as shown in Fig. 1. Put simply, it shows that about a
third of teams have a hypergraphic conceptual rep-
etition of 1, i.e. all their concepts eC have already
jointly been used in the past.

6In which case, new concept associations are new with
respect to the whole system, consistently with the social case:
i.e. this refers to concept associations which never existed in
any paper of the preceding periods.

Zebrafish
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Figure 1: Empirical distribution of the hypergraphic
repetition rate for concepts, rt(e

C).

3.2.3 Estimating propensities of team for-
mation

Null-model of hypergraph.

A null-model of new teams based on agents (resp.
concepts) is defined such that, at each period t, we
randomly create new teams respecting empirically-
observed numbers of agents (resp. concepts) and
their respective numbers of team participations.
What is fundamentally randomized is the exact
composition of teams in terms of who is collaborat-
ing with whom: in our null-model, team members
are basically reshuffled. Put differently, the null-
model expresses the composition of teams as would
be happening by chance.

In other words and more practically,

• we empirically measure:

1. the size of new teams appearing at t, i.e.
the distribution of |eA| (resp. |eC |) for e ∈
∆Et,

2. for every element e ∈ A (resp. e ∈ C),
the number of times it appears in newly-
formed teams, i.e.:

∣∣{e ∈ ∆Et such that e ∋ e}
∣∣

• we then generate an artificial, uniformly ran-

dom set of new teams ∆̃Et ⊂ P(A ∪ C) which
respects above-mentioned distributions, that is:

1. same distribution of sizes of new hyper-
links,

2. same distribution of participations of ele-
ments in these new hyperlinks.

In the remainder, we examine and compare the
properties of the empirical ∆Et and the randomly-

created ∆̃Et.
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Propensity.

In particular, we define the propensity of team for-
mation with respect to a given function f of a hy-
perlink (e.g. the hypergraphic rate of repetition)
as, for each possible value x of the function, the ra-
tio between the observed number of new hyperlinks
(events) e such that f(e) = x and the randomly-
created number of such events:

Πt(x) =

∣∣{e ∈ ∆Et such that f(e) = x}
∣∣

∣∣{e ∈ ∆̃Et such that f(e) = x}
∣∣ (1)

Obviously, if this quantity is above 1 for a certain
value of x, we say that this type of team empirically
occurs more than expected; otherwise, less.

4 Results

We may now empirically appraise hypotheses 1-2-3
& I-II.

4.1 Simulation of the null-model

We start by measuring the propensity of team for-
mation, first with respect to simple expertise ratios
and, second, with respect to hypergraphic repeti-
tion rates. To this end, we simulate 2, 500 instances
of above-defined null-model-based epistemic hyper-
graphs, which are therefore random hypergraphs.7

We then compare the composition of teams thus ob-
tained with that of the empirical data.

Expertise ratio: socio-semantic homogene-
ity/heterogeneity

Distinguishing agents who have already been asso-
ciated with a concept (“experts”) and agents who
are not yet associated (“neophytes”), we thus assess
whether real teams involve agents of mixed back-
grounds or not, relatively to a randomly-built set of
teams. Details of this comparison are displayed on
Fig. 2 for the zebrafish case, which illustrates the
composition of teams for various levels of expertise
ratios, in both the real and random cases. Corre-
sponding propensities, for both cases, are shown on
Fig. 3: their shapes are consistent across all datasets
and consist of a U-shaped curve above 1 for extreme
values of expertise ratios (towards 0 and towards 1)
and below 1 for central values (typically, from 0.1 to
ca. 0.4−−0.5).

Empirically, we thus observe that there is a signif-
icantly high propensity of formation of teams com-
posed of either experts only or newcomers only, with
a significantly lower propensity for mixed teams.
Teams involving a mixed proportion of experts and

7For reasons of computational complexity, we consider
event sizes not greater than 10 agents and 10 concepts —
with this constraint we still consider no less than 89% of the
total original number of teams.

newcomers are thus less frequent than they should
be.

Hypergraphic rate of repetition: social or se-
mantic homogeneity/heterogeneity

Measuring now propensities of group formation with
respect to hypergraphic rates of repetition, we can
empirically exhibit the existence and influence of an
implicit group structure which drives recurrent team
formation — this group structure exists along the
two above-mentioned dimensions:

• Social homogeneity/heterogeneity: With re-
spect to agents, the hypergraphic rate of repe-
tition measures the extent to which a team fea-
tures repeated interactions among former col-
laborators. Once again, our results have to
be compared to the null hypothesis for which
teams are formed randomly. Figure 4–top fea-
tures the corresponding propensities which are
several orders of magnitude higher than 1 for
teams with a non-negligible proportion of such
repetitions (r > .1)

• Conceptual homogeneity/heterogeneity: Simi-
larly, we measure the propensity of team for-
mation with respect to repeated concept asso-
ciations, addressing the following issue: “are
there cores of concepts which are likely to be
recurrently associated, given that they were
previously jointly used in previous papers?”
Results, shown on Fig. 4–bottom, demonstrate
again (and even in a stronger fashion than
in the social case) that there is a significant
bias towards gathering groups of concepts which
were previously associated.

4.2 Discussion of hypotheses

It is now possible to review and check the afore-
mentioned hypotheses. As follows from Fig. 4, it is
clear that (H1) and (H2) are quantitatively con-
firmed: teams with a high proportion of interaction
repetitions or with a high proportion of repeated
conceptual associations are much more likely than
should be expected by chance.
Additionally, and irrespective of the simulation

model, we check if there is a correlation between se-
mantic and social hypergraphic rates of repetition.
As shown on Fig. 5, there seems to be no corre-
lation between social and semantic originality in a
collaboration (in our datasets, which come from var-
ied backgrounds but are also focused on particular
epistemic communities). This invalidates (H3): in
other words, contrarily to intuition, new semantic
associations do not stem more from original teams
than from repeated teams. In other words, semantic
innovation is as likely from agents who, globally, pre-
viously collaborated, as from new collaborations.8

8This does not mean, however, that the backgrounds of

7



Zebrafish
expertise
ratio

observed theoretical

0 ]0,0.1[[0.1 [0.2 [0.3 [0.4 [0.5 [0.6 [0.7 [0.8[0.9,1[ 1

10
−4

10
−3

10
−2

10
−1

10
0

0 ]0,0.1[[0.1 [0.2 [0.3 [0.4 [0.5 [0.6 [0.7 [0.8[0.9,1[ 1

10
−4

10
−3

10
−2

10
−1

10
0
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concepts (left: observed, right: theoretical). The computation of propensities below will be based on the
ratio of such observed distributions over theoretical ones.
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Figure 3: Propensity for proportions of experts per article, from our real data vs expected from our
random theoretical model — averaged over all years, then over all concepts. (Error bars correspond to 95%
confidence intervals with respect to concept averages.)

previous collaborators who are causing semantic innovation
should necessarily be similar (semantic innovation might in-
deed come from repeated collaboration with individuals who
have varied semantic backgrounds).

As regards expertise, (HI) — “teams gathering
around a given topic should involve more individ-
uals knowledgeable about it” — is partially con-
fimed and partially contradicted by the empirical
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Figure 4: Propensity of team formation (random hypergraph vs. real data) with respect to hypergraphic
repetition ratios for agents (top) and concepts (bottom). (Values are averaged over all years, error bars
correspond to 95% confidence intervals with respect to these averages.)

evidence. Firstly, teams with a high proportion of
experts in a concept involved in the collaboration
are much more likely, as shown on the right side of
each graph on Fig. 3, whose values are significantly

above 1.
Yet, secondly, teams with a very small proportion of
experts regarding a concept, i.e. high proportion of
neophytes, are also significantly more likely, suggest-
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graphic repetition ratio (x-axis). (Error bars corre-
spond to 95% confidence intervals with respect to
averages on each repetition ratio bin (in abscissa),
such as e.g. [0, 0.1[.)

ing that part of the use of new concepts is also due to
teams almost completely new to such concepts (even
if, as is proved by (H1), these very teams are still
more likely to stem from repeated collaborations).
Put bluntly, new concept usage, and thus part of
innovation, appears to stem both from teams sig-
nificantly ignorant of such concepts and from teams
globally knowledgeable about such concepts.

From this observation that “all-experts” and “all-
neophytes” teams are more likely, we may expect
that such teams stem from underlying groups (either
still working on the same topic, or working on a new
topic, respectively) and thus have a higher social hy-
pergraphic repetition ratio. Similarly, those teams
stemming from underlying groups are likely to carry
normal, specialized science and have higher semantic
hypergraphic repetition ratio (or lower originality).
Figure 6 sheds light on these issues by comparing av-
erage hypergraphic repetition ratios with expertise
ratios. In particular, we observe that teams with
a balanced composition of experts have a higher
social originality (lower social hypergraphic repe-
tition ratio), yet semantic originality remains con-
stant across various values of expertise ratios. This
partially confirms (HII) as regards social originality
and partially invalidates it as regards semantic orig-
inality: indeed, social originality is increased when
there is a mixed proportion of experts, but not se-
mantic originality.

5 Concluding remarks

We presented a formal framework to appraise the
underpinnings of collaboration formation with a hy-
pergraphic approach which encompasses both the
meso-level of teams and the joint dynamics of so-

cial and semantic features. This allowed the quan-
titative estimation of the relative strength of social
and semantic patterns behind academic team forma-
tion, by empirically studying several communities
of scientists and estimating how the composition of
teams, both cognitively and socially, diverges from
a null hypothesis where collaborators and/or topics
would be randomly chosen.

We could thereby confirm several hypotheses as
well as invalidate some hypotheses which had been
established in a relatively qualitative fashion in the
literature, or in a possibly misleading dyadic form.
More precisely, our measurements suggest a mech-
anism of team formation based on (i) a high likeli-
ness to repeat previous collaborations patterns, not
only dyadic but also n-adic interactions (n ≥ 3) and
(ii) a sensible confinement of groups of individuals,
whose collaborations appear to depend largely on
the history of team memberships, and, similarly, a
sensible semantic confinement where associations of
concepts depend largely on the repetition of previ-
ous associations. On the whole however, the orig-
inality of a paper does not seem to stem from an
original composition of the underlying team, while
a polarization appears between groups made of ex-
perts only or made of non-experts only, which al-
together correspond to collectives exhibiting a high
rate of repeated interactions.

Perspectives on models of academic collaboration.
Taking into account an implicit group structure,
both at a social and at a socio-semantic level, as evi-
denced by the data, is likely to faithfully account for
the structure of academic collaboration networks.
Indeed, the underlying low-level dynamics is plau-
sibly closer to hypergraphic team formation mecha-
nisms than would be allowed by a design based on
dyadic interactions only. As said before, this should
not yield a lack of organizational thinking regarding
the underpinnings of scientific production: beyond
the step that constitutes our present contribution,
an exhaustive approach about this type of collabora-
tion mechanisms would indeed have to involve both
epistemic hypergraphs and organizational features.
In this respect, while we claim and show that hyper-
graphs make it possible to capture some interesting
processes of team-based, knowledge-intensive pro-
duction systems, we also emphasize that the richness
of organizational mechanisms should not be shad-
owed by this formalism.

In line with our results, it should also be possi-
ble to determine which features, at the level-team,
favor better collaborations — not only in terms of
semantic originality, but also in terms of quality and
creativity of output, in a broad sense.

Acknowledgements. This work was partially
supported by the Future and Emerging Technolo-
gies programme FP7-COSI-ICT of the European
Commission through project QLectives (grant no.:

10



Zebrafish

[0,0.16[ [0.16,0.33[ [0.33,0.5[ [0.5,0.66[ [0.66,0.83[ [0.83,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Rabies

[0, 0.16[  [0.16,0.33[ [0.33,0.5[ [0.5,0.66[ [0.66,0.83[ [0.83,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JECFA

[0,0.16[ [0.16,0.33[ [0.33,0.5[ [0.5,0.66[ [0.66,0.83[ [0.83,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JEMRA

[0,0.16[ [0.16,0.33[ [0.33,0.5[ [0.5,0.66[ [0.66,0.83[ [0.83,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Average hypergraphic repetition ratios (y-axis) with respect to expertise ratios (x-axis): social
(dashed line) and semantic (plain line) cases. (Error bars correspond to 95% confidence intervals with respect
to averages on each expertise ratio bin (in abscissa), such as e.g. [0, 0.1[.)

231200). We thank David Chavalarias and several
anonymous reviewers for their useful comments.

References

Adams, J. D., Black, G. C., Clemmons, J. R., Stephan,
P. E. (2005), Scientific teams and institutional collab-
orations: Evidence from U.S. universities, 1981–1999,
Research Policy, 34:259–285.

Ancona, D. G., Caldwell, D. F. (1992), Demography and
design: predictors of new product team performance,
Organization Science, 3:321–341.

Barabási, A.-L., Jeong, H., Ravasz, R., Neda, Z., Vicsek,
T., Schubert, T. (2002), Evolution of the social net-
work of scientific collaborations, Physica A, 311:590–
614.

Bollen, K. A., Hoyle, R. H. (1990), Perceived cohe-
sion: A conceptual and empirical examination, Social
Forces, 69:479–504.

Breiger, R. L. (1974), The duality of persons and groups,
Social Forces, 53:181–190.

Breiger, R. L. (1990), Social control and social net-
works: a model from Georg Simmel, in: C. Calhoun,

M. Meyer, W. R. Scott (Eds.) Structures of Power

and Constraint: Papers in Honor of Peter M. Blau,
Cambridge University Press, pp. 453–476.

Bryant, S. L., Forte, A., Bruckman, A. (2005), Becoming
wikipedian: Transformation of participation in a col-
laborative online encyclopedia, in: Proc. of Group’05,

Sanibel Island, FL, USA.

Callon, M. (1986), Some elements of a sociology of trans-
lation: domestication of the scallops and the fisher-
men of StBrieuc Bay, Power, Action and Belief: A

New Sociology of Knowledge, 32:196–233.

Callon, M. (1994), Is science a public good?, Science,

Technology & Human Values, 19:395–424.

Callon, M., Law, J., Rip, A. (1986), Mapping the dy-

namics of science and technology, MacMillan Press,
London.

Chubin, D. E. (1976), The conceptualization of scientific
specialties, The Sociological Quarterly, 17:448–476.

Constant, D., Sproull, L., Kiesler, S. (1996), The kind-
ness of strangers: The usefulness of electronic weak
ties for technical advice, Organization Science, 7:119–
135.

11



Cowan, R., Jonard, N., Zimmermann, J.-B. (2002), The
joint dynamics of networks and knowledge, Comput-
ing in Economics and Finance 354, Society for Com-
putational Economics.

Crane, D. (1969), Social structure in a group of scien-
tists: a test of the ’invisible college’ hypothesis, Amer-

ican Sociological Review, 34:335–352.

Davis, G. F., Greve, H. R. (1996), Corporate elite net-
works and governance changes in the 1980s, American

Journal of Sociology, 103:1–37.

deB. Beaver, D. (1986), Collaboration and teamwork in
physics, Czech Journal of Physics B, 36:14–18.

deB. Beaver, D., Rosen, R. (1978–1979), Studies in sci-
entific collaboration. Parts I, II, III., Scientometrics,
1:65–84, 133–149, 231–245.

Faulkner, R. R., Anderson, A. B. (1987), Short-term
projects and emergent careers: Evidence from holly-
wood, American Journal of Sociology, 92:879–909.

Freeman, L. C. (2003), Finding social groups: A meta-
analysis of the Southern women data, in: R. Breiger,
K. Carley, P. Pattison (Eds.) Dynamic Social Net-

work Modeling and Analysis, The National Academies
Press, Washington, D.C., pp. 39–97.

Friedkin, N. E. (2004), Social cohesion, Annual Review
of Sociology, 30:409–425.

Guimera, R., Uzzi, B., Spiro, J., Amaral, L. A. N.
(2005), Team assembly mechanisms determine collab-
oration network structure and team performance, Sci-
ence, 308:697–702.

Haas, P. (1992), Introduction: epistemic communities
and international policy coordination, International

Organization, 46:1–35.

Jones, B. F., Wuchty, S., Uzzi, B. (2008), Multi-
university research teams: Shifting impact, geogra-
phy, and stratification in science, Science, 322:1259–
1262.

Jones, C., Hesterly, W. S., Borgatti, S. P. (1997), A
general theory of network governance: Exchange con-
ditions and social mechanisms, Academy of Manage-

ment Review, 22:911–945.

Karsai, I., Penzes, Z. (1993), Comb building in social
wasps: Self-organization and stigmergic script, Jour-
nal of Theoretical Biology, 161:505–525.

Katz, J. S., Martin, B. R. (1997), What is research col-
laboration?, Research Policy, 26:1–18.

Kogut, B., Metiu, A. (2001), Open-source software de-
velopment and distributed innovation, Oxford Review

of Economic Policy, 17:248–264.

Laband, D. N., Tollison, R. D. (2000), Intellectual
collaboration, The Journal of Political Economy,
108:632–662.
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A Weighting functions

A weighted hypergraphic repetition rate could be
written as follows:

rt(e) =

∑

e
′⊆e

|e′|≥2

we(|e
′|) · ρt(e

′)

∑

i∈{2,...,|e|}

we(i)

(
|e|

i

)

where w. is a weight function (given e, we : N → R)
which makes it possible to give more or less weight
to particular subset sizes.
For instance:

• taking we(i) = 1, i.e. actually no weighting as
has been used in the paper,

rt(e) =
1

2|e| − |e| − 1

∑

e
′⊆e

|e′|≥2

ρt(e
′)

• if instead we(i) = i, i.e. weighting proportional
to the size of the considered subset,

rt(e) =
1

|e|(2|e|−1 − 1)

∑

e
′⊆e

|e′|≥2

|e′|ρt(e
′)

• if finally we(i) =
(
|e|
i

)−1

, i.e. weighting propor-
tional to the number of possible subsets of size
|e| in a set of size i,

rt(e) =
∑

e
′⊆e

|e′|≥2

ρt(e
′)( |e|

|e′|

)

13


	1 Introduction
	2 Framework
	3 Protocol and methods
	3.1 Datasets
	3.2 Hypergraph-based definitions
	3.2.1 Objects
	3.2.2 Measures
	3.2.3 Estimating propensities of team formation


	4 Results
	4.1 Simulation of the null-model
	4.2 Discussion of hypotheses

	5 Concluding remarks
	A Weighting functions

