
HAL Id: hal-00474043
https://hal.science/hal-00474043

Preprint submitted on 18 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability for programming languages.
Christophe Raffalli

To cite this version:

Christophe Raffalli. Realizability for programming languages.. 2010. �hal-00474043�

https://hal.science/hal-00474043
https://hal.archives-ouvertes.fr

Realizability for programming languages.

Christophe Raffalli∗

29 mars au 4 avril 2010 à Chambéry

Abstract

We present a toy functional programming language inspired by our
work on PML together with a criterion ensuring safety and the fact that
non termination can only occur via recursive programs. To prove this
theorem, we use realizability techniques and a semantical notion of types.

1 Introduction

1.1 Realizability

Realizability has been introduced by Kleene in 1945 [8] as a semantics of in-
tuitionistic logic. The key idea is to interpret every proposition as a set of
programs (or functions) whose elements, called realizers, compute witnesses for
the corresponding proposition. Typically, a realizer of the proposition

∀n: N (A(n)⇒ ∃m: N B(n,m))

is a program that computes, from a natural number n and a realizer of A(n),
an ordered pair formed by an integer m (the ‘witness’) and a realizer of the
formula B(n,m) (the ‘justification’).

Although Kleene expressed realizers as natural numbers (that is: as codes
of recursive functions), the very definition of realizability naturally calls for a
functional programming language to express realizers. This is probably why
Kreisel [9] replaced (codes of) recursive functions by closed λ-terms when he
introduced the notion of modified realizability. The λ-calculus was introduced
by Church [3] in the 30’s as a universal programming language based on the
sole notion of a function. Besides its applications to logic and realizability,
the λ-calculus was the major source of inspiration of functional programming
languages, from LISP to ML dialects (SML, Caml, Haskell).

The method of realizability has also been successfully used to prove the
strong normalization of many typed λ-calculi. Girard’s proof of strong normal-
ization of system F constitutes a particular case of realizability, where types are
interpreted as particular sets of programs called reducibility candidates. More
recent proofs of strong normalization are based on the method of orthogonality,
in which the allowed sets of realizers (i.e. the candidates) are defined from the

∗email: raffalli@univ-savoie.fr

1

interaction between programs and evaluation contexts. The idea of orthogonal-
ity was already present (at least implicitly) in Tait’s [23] and Girard’s [6], but
it was first explicitly used by Parigot in [17].

1.2 Typing in programming languages

However, realizability is a highly flexible technique that is not limited to strong
normalization proofs, and it can be also used to establish the safety of programs
written in realistic languages. By the safety of a program, we mean here the
property that the evaluation of this program will never produce an error (typ-
ically by applying a primitive to wrong arguments), independently from the
problem of its termination.

Traditionally, safety results of type systems based on the Damas-Hindley-
Milner algorithm (HM) [4] are not based on realizability, but on the property of
subject reduction expressing that typing is preserved during evaluation. How-
ever, the corresponding proofs are usually quite technical, and very sensitive to
minor modifications or extensions of the type system. For this reason, one may
argue that such proofs do not really help to understand type systems and that
they are not an efficient guide to develop new ones.

Typing with constraints More recently, the use of constraints solving for
typing [15, 18] was introduced. A very popular formalism for constraints solving
applied to typing is HM(X), which is very well explained by Pottier and Rémy
in [20]. The key idea of their work is to extract typing constraints from the
program in such a way that these constraints and the basic properties of types
lie in a decidable fragment of first-order predicate logic, namely: the existential
fragment of first-order predicate logic.

In this setting, the fact that a program is typed can be written as a formula
of the form

A ⇒ ∃t1, . . . , tn C

where A is a conjunction of universal axioms like the injectivity of the arrow
type

∀t, u, t′, u′ (t→ u = t′ → u′ ⇒ t = t′ ∧ u = u′)

and where C is the conjunction of all constraints extracted from the program.
(For instance, if ti, tj and tk are the type variables that are respectively attached
to sub-expressions M , N and (M N) within the program, then C will contain
the constraint ti = tj → tk.) This more abstract view is much more helpful to
design new type systems.

This simplistic description of HM(X) is not really faithful, due to the fact
that witnesses cannot be extracted in general in the existential fragment of the
predicate calculus (if classical logic is present for instance). In fact, the HM(X)
algorithm also relies on the introduction of extra rules to solve the constraints,
which rules are usually based on unification.

It is important to understand that in the HM(X) framework, constraints
are solved in the syntactic models of types (using unification algorithms). This

2

is still the case in other works based on subtyping (see for instance [1, 19]) that
are closer to what will be presented here.

Constraints and realizability With realizability in mind, it is no more
necessary to express the solutions of the constraints in the algebra of syntactic
types. Indeed, we only need to ensure that the constraints have a solution in
a suitable realizability model. Since this problem is in general undecidable, we
will introduce some sufficient (and non necessary) conditions together with an
algorithm to check whether these conditions are satisfied.

These conditions will be checked in two phases: we will first saturate the con-
straints; then, we will require the constraints to be inductive (or well-founded),
thus disallowing arbitrary recursive types. The latter condition is just designed
to ensure the existence of a solution in the realizability model. The work pre-
sented here resembles those of Aiken, Wimmers and Pottier (among others)
[1, 19] except for the definition of well-founded constraints and the simplifica-
tions of constraints which we omit (in fact they are already implemented in
PML). These simplifications are necessary in practice when polymorphism is
introduced, because we then copy the constraints at each generalization, and
they should be simplified before copying.

1.3 Other trends in realizability

Nowadays, there is a great interest in realizability for non-constructive logic.
Griffin [7] discovered that Felleisen’s [5] callcc operator was related to Pierce’s
law. Krivine [10] and Parigot [16] applied realizability to classical analysis (i.e.
classical second order arithmetic) using extensions of the λ-calculus (by adding
a C operator in Krivine’s work, or a µ-construction in Parigot’s λµ-calculus).
Later, this work was extended to ZF set theory [12], including the dependent
axiom of choice [13, 22].

In non-constructive logic, the program extracted from a proof of an exis-
tential statement does not compute a correct witness in general. There are two
view-points here:

• Realizability can be a semantical tool to analyze proof systems by study-
ing the property shared be all programs realizing a given theorem. This
was done for instance by Krivine for the completeness theorem [11].

This is also interesting because it gives a formal meaning to sentences like
“this theorem implies that theorem” of “this theorem is easier than that
theorem”, because this make sense on programs (“implies” could mean an
easy reduction and “easier” could refer to computational complexity). For
instance, the completeness theorem for minimal logic is trivial compared
to the one for classical propositional logic (see [21]).

• We can also try to see when proofs using non-constructive principles can
lead to programs that really computes the wanted witness. Most works in
this area are typically based on Gödel or Friedman syntactic translations
from classical to intuitionistic logic. But one may argue that realizability

3

leads to a better comprehension of the phenomena. A key tool here is
the use of Krivine’s storage [10] operator to deal with data types in non
constructive proofs. (For the connection between Krivine’s approach and
negative translations, see [14].) This is specially true with the dependant
axiom of choice. One interesting hope there, is the discovery of new
algorithms by extracting programs from proofs [21]...

Current works try to extend realizability to the general axiom of choice or
other strong axioms. There are also deep connections between Cohen’s forcing
and realizability that are currently being investigated.

1.4 What is done here

We present a toy programming language supporting higher-order functions,
extensible records and polymorphic variants, as well as a sufficient condition
(that can be tested in polynomial time) to ensure the existence of a realizability
model that will guaranty that the evaluation is safe (you do not reach impossible
case in the evaluation) and that looping programs have to unfold fixpoints
infinitely often.

This property of looping programs is useful because it implies strong nor-
malisation of programs without fixpoint and it also means that if you want to
use some termination checker to prove the termination of your programs (which
PML does), you just have to focus on fixpoints.

This toy programming language is actually the core of the current imple-
mentation of PML1 which enjoys more complex features (like polymorphism,
better typing of default case, ...) as well as a proof system that is based on the
typing algorithm. These features will be briefly presented in the conclusion.

What is new here is: the simplicity of the algorithm compared to what it can
do (this is arguable), the use of realizability, in a subtyping context, to prove
that programs are safe in the above sense and the condition for the constraints
to be inductive which naturally arises from realizability.

The benefit over HM(X) is (we think) simplicity: for instance, we can get for
free extensible records, while they require polymorphism in HM(X). However,
we lose type inference because we do not solve the constraints. Nevertheless, a
rich language for types can be easily recovered using partial identity functions.
This is described in the conclusion.

We also emphasize on the lattice of possible relations between type variables
contrary to the lattice of types which is more usual with subtyping. Indeed,
as we do not solve constraints, we have no types but only constraints between
type variables. However, we found that a lot of interesting generalizations could
be done by enlarging the lattice of relations between types. Usually there is
only ⊂, ⊃, = and the absence of relation written ⊥. In this simple case, direct
constraints between type names can be represented by a directed graph. All the
algorithms presented with matrices with coefficients in the lattice of relations
could be rephrased as some kind of computation of the transitive closure of
a graph. But, we shall see that the presentation using the lattice with four

1http://lama.univ-savoie.fr/tracpml

4

elements {⊥,⊂,⊃,=} is elegant, and in the conclusion, we will show a few
possible generalizations with larger lattices.

1.5 Notes about this document

This document contains a full implementation of the algorithm described here
in a literate programming style. The code is extracted from the LATEX source
and compiled. I also wrote some pretty printers for code and typing constraints.
All the examples are generated by running the extracted code on examples with
various options controlling what is printed.

Feel free to download this work to study and extend it. It is available using
darcs via:

darcs get http://lama.univ-savoie.fr/~raffalli/repos/EJCIM

2 The toyML language

The language is defined from three denumerable sets of identifiers:

• the set of variables Vλ = {x, y, . . .},

• the set of constructor names VΣ = {C,Z,S,Cons,Nil, . . .}; and

• the set of label names VΠ = {l, car, cdr, . . .}.

The set P of all programs is then defined using the following BNF:

P := x | fun x→ P | P P | fix x→ P
| C[P] | case P of C[id]→ P | · · · | C[id]→ P
| P.l | {l = P ; . . . ; l = P}

The first three constructs correspond to variables, functions, applications
and fix-point. The second line corresponds to variants and case analysis on
variants. Finally, the last line corresponds to projections and records.

There is one more restriction that is not shown in the BNF: in records
and case analyzes, the variant names in the same case analysis and the labels
in the same record must be pairwise distinct. In particular, the programs
case M of C[x]→ N1 | C[x]→ N2 and {l = N1; l = N2} are not allowed.

First, we precise some conventions and abbreviations:

• Priorities (to avoid parentheses) follow the usual ML rule: application
is left-associative and has a higher priority than functions, fixpoints and
cases. Cases are right associative when nested:

– M N P reads (M N) P .

– fun x→M N reads fun x→ (M N).

– case x of C[x]→ case y of D[y]→M | E[y]→ N reads
case x of C[x]→ (case y of D[y]→M | E[y]→ N)

• fun x1 . . . xn →M is a shortcut for fun x1 → . . . fun xn →M

5

• fix f x1 . . . xn →M denotes fix f → fun x1 → . . . fun xn →M

• C[r] is a shortcut for C[{r}] when r is a record without curly braces.
Moreover, C[] reads C[x] in a case pattern where the variable x does not
occur in the right-hand side of the pattern.

• M [x ← N] represents the (capture avoiding) substitution of N for the
variable x in M .

Example: if M is fun x y → x z and if N is fun y → x, then the
notation M [z ← N] refers to the program fun x′ y → x′ (fun y → x).

• M [(xi ← Ni)i∈I] denotes the simultaneous substitution of the variables xi
by the terms Ni in M , for all i ∈ I.

• case M of (Ci[x]→ Ni)i∈I denotes the program
case M of Ci1 [x]→ Ni1 | . . . | Cin [x]→ Nin (where I = {i1, . . . , in}).

• {(li = Ni)i∈I} denotes the program {li1 = Ni1 ; . . . ; lin = Nin}
(where I = {i1, . . . , in}).

To understand how programs compute, we now give the operational seman-
tics for our toy programming language. We will use the notation M ≻r N to
express that the program M evaluates to N using one reduction rule named r.
We will also use M ≻ N for the transitive closure of all possible reductions.

Here are the reduction rules:

beta reduction (fun x→M)N ≻β M [x← N].

This rule corresponds to the replacement of the formal argument x in the
body of the function by the real argument N the function is applied to.

fixpoint fix x→M ≻µ M [x← (fix x→M)].

The fixpoint rule allows for recursive definition (see the examples below).

projection {(li = Pi)i∈I}.lj ≻π Pj if j ∈ I

Here we project a record field. The implementation actually uses a more
complex rule: {l1 = P1; . . . ; ln = Pn}.li ≻π pi[l1 ← p1, . . . , li−1 ← pi−1]
when 1 ≤ i ≤ n. This extended rule allows fields of a given record to
mention previously defined fields (without using a fixpoint).

Exercise 1 Show how to express this feature using a fixpoint.

case selection case Cj [N] of (Ci[x]→ Pi)i∈I ≻σ Pj [x← N] if j ∈ I

Here the case corresponding to the given variant is selected and the argu-
ment of the variant is substituted as expected.

congruence M ≻r M
′ implies E[M] ≻r E[M ′]

Here we use a context E[], that is a program with one unique hole, to
express the fact that the above reduction can be performed anywhere

6

inside a program. Contexts can bind variables, which means that we
allow reduction under function abstractions or in the right-hand side of
case analysis.

A program may also contain a manifest error , corresponding to a piece of
code that cannot be reduced, and that would lead to a runtime error when
executed. To indicate such errors, we define the notation M ⇑ as follows:

• (fun x→M).l ⇑ case fun x→M of . . . ⇑

• C[M].l ⇑ C[M]N ⇑

• {. . .}N ⇑ case {. . .} of . . . ⇑

• case D[. . .] of (Ci[x]→ . . .)i∈I ⇑ when D 6= Ci for all i ∈ I.

• {(li = . . .)i∈I}.k ⇑ when k 6= li for all i ∈ I.

Moreover, we require that every program that contains an erroneous piece of
code is also considered as a manifest error:

• If M ⇑, then E[M] ⇑ (where E[] is an arbitrary context with one hole).

Definition 2 (safe) We say that a program M is safe when it cannot reduce
to an error, that is: M ≻M ′ implies M ′ 6⇑.

Here are some examples of programs and reductions:

omega The shortest looping λ-term (that reduces to itself):

(fun x→ x x) (fun x→ x x)

halving A partial function that computes the half of even numbers only (fig-
ure 1 gives an example of reduction using this program):

fix half n→
case n of

| Z[]→ Z[]
| S[n’]→ case n’ of | S[n”]→ S[half n”]

length The length of lists and an example of reduction in figure 2

fix length l→
case l of | Nil[]→ Z[] | Cons[c]→ S[length c.cdr]

The above examples were reduced using a specific strategy (call-by-value)
which is implemented in the code given in this course (see appendix A). How-
ever, we will prove properties that are independent from the evaluation strategy.
This is natural because the language is purely functional (no side-effect allowed)
and therefore enjoys the Church-Rosser property :

Theorem 3 (Church-Rosser property) If M ≻ M1 and M ≻ M2, then
there exists a program M0 such that M1 ≻M0 and M2 ≻M0.

7

(fix half n → . . .) S[S[Z[]]]
≻µ (fun n →

case n of

| Z[] → Z[]
| S[n’] → case n’ of | S[n”] → S[(fix half n → . . .) n”]) S[S[Z[]]]

≻β case S[S[Z[]]] of
| Z[] → Z[]
| S[n’] → case n’ of | S[n”] → S[(fix half n → . . .) n”]

≻σ case S[Z[]] of | S[n”] → S[(fix half n → . . .) n”]
≻σ S[(fix half n → . . .) Z[]]
≻µ S[(fun n →

case n of

| Z[] → Z[]
| S[n’] → case n’ of | S[n”] → S[(fix half n → . . .) n”]) Z[]]

≻β S[case Z[] of
| Z[] → Z[]
| S[n’] → case n’ of | S[n”] → S[(fix half n → . . .) n”]]

≻σ S[Z[]]

Figure 1: Reduction of halving

(fix length l → . . .) Cons[car = A[]; cdr = Cons[car = B[]; cdr = Nil[];];
]

≻µ (fun l → case l of | Nil[] → Z[] | Cons[c] → S[(fix length l → . . .) c.cdr])
Cons[car = A[]; cdr = Cons[car = B[]; cdr = Nil[];];]

≻β case Cons[car = A[]; cdr = Cons[car = B[]; cdr = Nil[];];] of
| Nil[] → Z[]
| Cons[c] → S[(fix length l → . . .) c.cdr]

≻σ S[(fix length l → . . .) { car = A[]; cdr = Cons[car = B[]; cdr = Nil[];];
}.cdr]

≻π S[(fix length l → . . .) Cons[car = B[]; cdr = Nil[];]]
≻µ S[(fun l →

case l of | Nil[] → Z[] | Cons[c] → S[(fix length l → . . .) c.cdr])
Cons[car = B[]; cdr = Nil[];]]

≻β S[case Cons[car = B[]; cdr = Nil[];] of
| Nil[] → Z[]
| Cons[c] → S[(fix length l → . . .) c.cdr]]

≻σ S[S[(fix length l → . . .) { car = B[]; cdr = Nil[]; }.cdr]]
≻π S[S[(fix length l → . . .) Nil[]]]
≻µ S[S[(fun l →

case l of | Nil[] → Z[] | Cons[c] → S[(fix length l → . . .) c.cdr])
Nil[]]]

≻β S[S[case Nil[] of | Nil[] → Z[] | Cons[c] → S[(fix length l → . . .) c.cdr]]]
≻σ S[S[Z[]]]

Figure 2: Reduction of length

8

Proof: Realizability can not be used to prove this theorem (at least not yet).
See [2] to see the proof techniques used for Church-Rosser.

Corollary 4 (Uniqueness of normal form) If a term M reduces to a nor-
mal term (that is: a term where no further reduction can be performed), then
this normal term M ′ is unique. If moreover the term M is safe, then its unique
normal form M ′ contains no manifest error (i.e. M ′ 6⇑).

The listing 1 is the type definition in Caml for the abstract syntax of pro-
grams. The type of programs is parameterized by ’a to be able to decorate
programs with type names. Each constructor of the language, except variables,
needs one parameter for its type, and each binding occurrence of a variable
(fun and case) also needs a parameter for the type of the bound variable.

1 type id = s t r i n g type c id = s t r i n g type l i d = s t r i n g
2
3 type ’ a program =
4 | Var of id
5 | App of ’ a program ∗ ’ a program ∗ ’ a
6 | Fun of id ∗ ’ a ∗ ’ a program ∗ ’ a
7 | Fix of id ∗ ’ a ∗ ’ a program ∗ ’ a
8 | Cst of c id ∗ ’ a program ∗ ’ a
9 | Cas of ’ a program ∗ (c id ∗ id ∗ ’ a program ∗ ’ a) l i s t ∗ ’ a

10 | Rec of (l i d ∗ ’ a program) l i s t ∗ ’ a
11 | Pi of ’ a program ∗ l i d ∗ ’ a

Listing 1: type for programs in program.ml

3 Realizability candidates

We shall now define and manipulate particular sets of programs: realizability
candidates. To define them, we will use the method of orthogonality, which
is a systematic way to define such candidates from the particular correctness
invariant we want to convey throughout the proofs.

This correctness invariant is embodied as a particular set of programs writ-
ten ⊥⊥ (read: double bottom), that we define here as follows, first defining the
notion of bad reduction:

Definition 5 A reduction of a term M is bad if it yields an erroneous term
or if it is infinite while using only finitely many times the fixpoint rules.

The set ⊥⊥ is defined as the set of all programs that do not have bad reduction.
This means that ⊥⊥ is the set of all safe programs whose infinite reductions use
infinitely many times the fixpoint reduction rule.

This definition means that we are not only interested in the safety of pro-
grams, but also in the way programs may loop. The condition about infinite
reduction sequences has been added here to ensure that every term M ∈ ⊥⊥
that does not contain the fix construct is strongly normalizable. In particular,
the looping term (fun x→ x x) (fun x→ x x) does not belong to ⊥⊥. (But
the looping fixpoint fix x → x does.)

Note that by definition, the set ⊥⊥ is closed under arbitrary reductions.

9

Exercise 6 (too difficult) Show that ⊥⊥ is not a recursive set of programs. It
is probably not even recursively enumerable!

Since the idea of orthogonality is based on the interaction between programs
(seen as players) and their possible opponents, we first need to define what is
an opponent of a program. Very often, opponents are taken as the evaluation
contexts corresponding to the given reduction strategy. To preserve the inde-
pendence from a particular reduction strategy, and due to our general form of
case construct, we need to take arbitrary contexts as opponents:

Definition 7 (context) A context E is an arbitrary program in ⊥⊥, whose
‘holes’ are represented by the occurrences of a variable χ that has been fixed
once and for all. (This variable may occur 0, 1 or more times in E). When M
is a term and E is a context, we write M ⋆ E for E[χ←M].

Note that with this definition, contexts cannot capture variables. (This will
be an important property in what follows.) Indeed, if E is fun x → χ and if
M is fun y → x, then M ⋆ E denotes the program fun x′ → fun y → x, and
not the program fun x→ fun y → x where the variable x has been captured.

The same definition (with the same notation) will be also used to compose
contexts. It is thus important to remark that

Lemma 8 The operation E ⋆ F is associative.

Proof: Let E,F,G be three contexts, then (E ⋆ F) ⋆ G = G[χ← F [χ← E]]
and E ⋆ (F ⋆G) = (G[χ← F])[χ← E]. Both are equal without any hypothesis
(which is rare for properties of substitution) because we substitute twice the
same variable. This can be formally checked by induction on G. �

Our notion of realizability candidates will only work if the set ⊥⊥ is ⊥⊥-
saturated according to the definition below. This definition may seem compli-
cated ... In fact, you can rediscover the definition by first trying to prove the
adequacy lemma 26, and you will see that all the properties written here are
just what is needed—and nothing more.

Definition 9 (⊥⊥-saturated sets) We say that a set A of programs is ⊥⊥-
saturated if the following conditions holds (for all contexts E):

1. If M [x← P] ⋆ E ∈ A and P ∈ ⊥⊥, then (fun x→M) P ⋆ E ∈ A.

2. If Pj [x←M] ⋆ E ∈ A, M ∈ ⊥⊥ and Pi ∈ ⊥⊥ for all i ∈ I, then
(case Cj [M] of (Ci[x]→ Pi)i∈I) ⋆ E ∈ A.

3. If Pj ⋆ E ∈ A and Pi ∈ ⊥⊥ for all i ∈ I, then {(li = Pi)i∈I}.lj ⋆ E ∈ A.

4. If for all n ∈ N and for a fresh variable x, we have Mn(x) ⋆ E ∈ A and
M ∈ ⊥⊥, then (fix x→M) ⋆ E ∈ A.

(Writing M0(x) = x and Mn+1(x) = M [x←Mn(x)].)

Lemma 10 The set ⊥⊥ is ⊥⊥-saturated.

10

Proof: We treat each case separately, following a common pattern: we do a
proof by coinduction: we prove that if there is a bad reduction from the term
given in the conclusion, then we can construct a bad reduction in the initial
term.

We first need to recall what is a proof by coinduction: It is a way to construct
a sequence (finite of infinite) with a given property and at each step of the
proof we need to check that we really extend the sequence (we say that each
step is productive). In fact, this is too restrictive, we should allow some steps
where the sequence stagnates, but we must prove that these steps cannot occur
consecutively infinitely often.

1. We prove the following lemma: let E be a term where the variable χi
occurs exactly once for all i ∈ I. Assume that E[(χi ← (fun x →
Mi)Pi)i∈I] 6∈ ⊥⊥, and for all i ∈ I, Pi ∈ ⊥⊥, then E[(χi ← Mi[x ←
Pi])i∈I] 6∈ ⊥⊥.

Proving this allows us to deduce the property we want by renaming each
occurrence of χ in the initial context with a different name (χi)i∈I and
taking Mi = M and Pi = P for all i ∈ I.

Proving this lemma means that we can assume that we have a bad re-
duction (unsafe or infinite using finitely many time the fix-point rule)
of E[(χi ← (fun x → Mi)Pi)i∈I] and construct by coinduction a bad
reduction of E[(χi ←Mi[x← Pi])i∈I].

There are only four possible cases for the first reduction (basically because
there is no critical pair for the reduction of our language):

• If it occurs in E: E ≻r E
′, then the variables χi may be erased or

duplicated. We can replace duplicated variables in E′ by distinct
variables and ignore erased variables. This means that there is a
context E′′, a family of variables {χ′

j}j ∈ J and a function ψ from
J to I such that E′ = E′′[(χ′

j ← χψ(j))j∈J] and all χj occur exactly
once in E′′. The function ψj is not surjective when some variables
χi are erased in E′ and it is not injective when they are duplicated.
Then, we have, E[(χi ← Mi[x ← Pi])i∈I] ≻r E

′′[(χ′
j ← Mψ(j)[x ←

Pψ(j)])j∈J] and we conclude by coinduction.

• If the first reduction occurs in Mj ; Mj ≻r M
′
j for some j, then we

write M ′
i = Mi if i 6= j and we have E[(χi ← Mi[x ← Pi])i∈I] ≻r

E[(χi ←M ′
i [x← Pi])i∈I] which allows to conclude by coinduction.

• If the first reduction occurs in Pj ; Pj ≻r P
′
j for some j, then we write

P ′
i = Pi if i 6= j and we have E[(χi ← Mi[x ← Pi])i∈I] ≻

∗
r E[(χi ←

Mi[x ← P ′
i])i∈I]. The symbol ≻∗

r represents 0, 1 or more reduction
step using the same rule r. If there is no reduction (which means that
x does not occur free in Mj), then we need to remark that this case
can not happens consecutively infinitely often, because that would
mean that there is a bad reduction in one the terms Pi ∈ ⊥⊥ which
is impossible. Therefore this steps does not entail productivity.

11

• If the first reduction is the reduction of the redex substituted to χj
for some j ∈ I: (fun x → Mj)Pj ≻β Mj [x ← Pj]. Then, we can
take E′ = E[χj ← Mj [x ← Pj]], and we do have E[(χi ← Mi[x ←
Pi])i∈I] = E′[χi ← Mi[x ← Pi])i∈I\{j}]. This step is not directly
productive, but it can not happens infinitely often because the size
of the index set I decreases while in the previous step, which in not
productive either, I remains unchanged.

2. This case is similar to the previous case, but more cumbersome to write.

3. This case is still similar and even a bit simpler than the first case.

4. For the fixpoint case, assuming a bad reduction of E[(χi ← fix x →
Mi)i∈I], we can take n to be the total number of reductions of the fixpoint
rule and produce a bad reduction of E[(χi ←Mn

i (x))i∈I] using the same
technique. The productivity will come from the fact the the number of
reductions of the fixpoint rule will decrease when we apply one. �

We can now define orthogonality and realizability candidates:

Definition 11 (Orthogonality) Let M be a set of programs and E a set of
contexts. We define their orthogonal as follows:

M⊥ = {E contexts in ⊥⊥ s.t. for all M ∈M,M ⋆ E ∈ ⊥⊥}
E⊥ = {M programs in ⊥⊥ s.t. for all E ∈ E ,M ⋆ E ∈ ⊥⊥}

Lemma 12 Orthogonality enjoys the following very general properties:

1. It is contravariant : if M ⊂ M′ then M′⊥ ⊂ M⊥ (the same holds for
context).

2. Double orthogonal is covariant.

3. M⊂ E⊥ if and only if E ⊂ M⊥.

4. E ⊂ E⊥⊥ and E⊥⊥⊥ = E⊥ (the same holds for programs).

5. If Ei is a family of set of contexts indexed by i ∈ I, then

(

⋃

i∈I

Ei

)⊥

=
⋂

i∈I

E⊥i and
⋃

i∈I

E⊥i ⊂

(

⋂

i∈I

Ei

)⊥

6. If E is a set of contexts, then E⊥ ⊂ ∅⊥ = ⊥⊥.

Proof:

1. Assume that E ⊂ E ′ for two sets of contexts. Let M ∈ E ′⊥, for all E ∈ E ,
we have E ∈ E ′ and therefore M ⋆E ∈ ⊥⊥. This means that M ∈ E⊥. The
same works for set of programs.

2. Immediate from 12.1.

12

3. We prove the left to right implication, the converse having an identical
proof. Let E be a set of contexts andM be a set of programs, assume that
M⊂ E⊥ and let E be a context in E . We want to show that E ∈M⊥ so
we take M ∈M ⊂ E⊥ and we have immediately M ⋆ E ∈ ⊥⊥.

4. By 12.3 E ⊂ E⊥⊥ comes from E⊥ ⊂ E⊥ and E⊥⊥⊥ ⊂ E⊥ comes from
E ⊂ E⊥⊥ ⊂ E⊥⊥⊥⊥.

5. Let E ∈
⋃

i∈I E
⊥
i , then E ∈ E⊥j for some j ∈ I. Then, let M be in

⋂

i∈I Ei,
we have M ∈ Ej which means that M ⋆ E ∈ ⊥⊥. This establishes

⋃

i∈I

E⊥i ⊂

(

⋂

i∈I

Ei

)⊥

For the orthogonal of union, we have M ∈
⋂

i∈I E
⊥
i if and only if ∀i ∈

I,∀E ∈ Ei, M ⋆ E ∈ ⊥⊥ which is equivalent to ∀E ∈
⋃

i∈I Ei, M ⋆ E ∈ ⊥⊥.

This exactly means M ∈
(
⋃

i∈I Ei
)⊥

.

6. Let E be a set of contexts with no occurrence of χ, Then M ⋆E = E ∈ ⊥⊥
for any program M. Therefore, E⊥ = P.

7. First, it is clear that {χ}⊥ = ⊥⊥: by definition, M ∈ {χ}⊥ if and only if
M⋆χ = M ∈ ⊥⊥. Let E be a set of contexts with at least one occurrence of
χ in one element E ∈ E . Then, M ⋆ E ∈ ⊥⊥ implies that E[χ← M] ∈ ⊥⊥
which implies that M ∈ ⊥⊥, because if M has a bad reduction, then
E[χ←M] has also one, because χ really occurs in E.

Definition 13 (realizability candidates) Because of the above property, we
will be only interested by set of programs that are the orthogonal of some set of
contexts. We call this kind of sets realizability candidates and we write C the
set of all realizability candidates.

Lemma 14 (property of realizability candidates) :

1. If M∈ C then M⊥⊥ =M.

2. Realizability candidates are closed by arbitrary intersections.

3. ⊥⊥ is the largest realizability candidate.

4. The smallest realizability candidate is ⊥⊥⊥ and contains all variables. We
will write it ⊥⊥0

5. Any realizability candidate A is ⊥⊥-saturated and verifies ⊥⊥0 ⊂ A ⊂ ⊥⊥.

Proof: The first property 14.1 is exactly 12.4 because candidates are them-
selves some orthogonal, 14.2 is 12.5, 14.3 is 12.6, 14.4 is immediate from 12.1.
⊥⊥0 contains all variables because x ⋆ E ∈ ⊥⊥ if and only if E ∈ ⊥⊥.

13

The last property, is immediate from 14.3 and 14.4 and because ⊥⊥ being
saturated, all its subsets are saturated. �

Finally, we end this section by defining constructions on candidates and sets
of contexts that we will need to interpret types:

Definition 15

• If M is a realizability candidate and E a set of contexts, then

M.E = {E[χ← χ M] s.t. M ∈M and E ∈ E}

• If M and N are realizability candidates then

M→N = (M.N⊥)⊥

• If Ei are contexts for all i ∈ I, then

Σ
n

i=1Ci[Ei] = {(case χ of (Ci[χ]→ Ei)i∈I) ⋆ E s.t. ∀i ∈ I, Ei ⋆ E ∈ Ei}

• If Ai are realizability candidates for all i ∈ I, then

Σn
i=1Ci[Ai] = (Σ

n

i=1Ci[A
⊥
i])⊥

• If Ei are contexts for all i ∈ I, then

Π
n

i=1li : Ei =
⋃

i∈I

{χ.li ⋆ Ei s.t. Ei ∈ Ei}

• If Ai are realizability candidates for all i ∈ I, then

Πn
i=1li:Ai = (Π

n

i=1li:A
⊥
i)⊥

4 Lattices and matrices

The main tool for the typing-checking algorithm are matrices with coefficients
given in two lattices. The first lattice expresses the relation between types: it
as four elements. But what is a type ... In fact, types will be just names (so
we should say type names) that we will interpret using realizability candidates
in the next section. Realizability candidates being sets, the possible relation
between type names are:

• No relation is known : denoted 0

• α ⊂ β is known to hold : denoted i.

• α ⊃ β is known to hold : denoted i∗.

• α = β is known to hold : denoted 1.

14

0

i⋆ (meaning ⊃)

1 (meaning =)

i (meaning ⊂)

Figure 3: The lattice B

0

i⋆ (meaning �)

1 (meaning ≍)

i (meaning �)

j⋆ (meaning ≺)j (meaning ≻)

Figure 4: The lattice B′

This means we have a set B = {0, i, i∗, 1} which can be given a lattice
structure with 0 ≤ i ≤ 1 and 0 ≤ i∗ ≤ 1 (see figure 3). This lattice is isomorphic
to (Z/2Z)2 and we can define on it supremum (denoted x∨y), infimum (denoted
x ∧ y or x.y), subtraction (denoted x − y and defined as the smallest element
such that (x− y) ∨ y = x ∨ y).

We will also need the adjoin operation denoted x∗ exchanging i and i∗ and
keeping 0 and 1 unchanged.

We use a second inf-lattice B′ = {0, i, i∗, j, j∗, 1} ⊃ B whose lattice structure
is given by figure 4. We see on this figure that not all supremum are defined
in B′. This lattice will be used to construct an ordering between type names
that we will use to define the interpretation of types by induction on this order.
Here are the intended meaning for the element of B′:

• i represents α � β : α must be defined before or at the same time as β.

• i∗ represents α � β : α must be defined after or at the same time as β.

• j represents α ≺ β : α must be defined before β.

• j∗ represents α ≻ β : α must be defined after β.

• 1 represents α ≍ β : α and β must be defined simultaneously.

• 0 represents the absence of constraints between the definitions of α and
β.

15

With the lattice B′, the product x.y do not coincide with the infimum. The
main property of the product is that it expresses transitivity. If x denotes a
relation known to hold between α and β and y denotes a relation known to hold
between β and γ, then, the relation denoted by x.y is known to hold between
α and γ.

Using this intuition, we define the product on B′ as follows j.1 = j 6= i =
j ∧ 1, j∗.1 = j∗ 6= i∗ = j∗ ∧ 1, j.i = j 6= i = j ∧ i and j∗.i∗ = j∗ 6= i∗ = j∗ ∧ i∗.
In all other cases, we have j.i = j ∧ i.

Remark: The structure of (B, .,∨) is very similar to the structure of tropi-
cal semiring which was introduced by Simon (a computer scientist from Brasil,
hence the name) and which is now used in algebraic geometry. The only dif-
ference is that in tropical semiring, (B, .) is a group and here we just have a
monoid.

The structure of B and B′ is characterized by the following definitions:

Definition 16 (relation lattice) (B,≤, 0, 1, ., x 7→ x∗) is a relational (resp.
partial relational) lattice if

• (B,≤) is a lattice (resp. an inf-lattice) with 0 as its bottom element.

• . is a binary increasing operation which is commutative, associative with
1 as neutral element and distributing over sup when they are defined.

• x 7→ x∗ is an idempotent and increasing unary operator. Moreover,
(x.y)∗ = x∗.y∗ and x.x = x.

• x−y, the least element such that x∨y = (x−y)∨y satisfies (x−y)∧y = 0.

Lemma 17 The lattices B and (resp. inf-lattice B′) are relational (resp. partial
relational) lattice.

Proof: Just a boring check on the table defining the lattices operations. �

Here is the code for the basic operation on both lattice B and B′ (we do not
give separate implementation for both lattices):

1 type r e l a t i o n = Nothing | Leq | Le | Geq | Ge | Equal
2
3 exception SupUndefined
4
5 let sup a b = match a , b with

6 | Nothing , x | x , Nothing → x
7 | Leq , Le | Le , Leq → Le
8 | Geq , Ge | Ge , Geq → Ge
9 | Le , Equal | Equal , Le | Ge , Equal | Equal , Ge

10 | Ge , Le | Le , Ge | Le , Geq | Geq , Le
11 | Ge , Leq | Leq , Ge → r a i s e SupUndefined
12 | Le , Le → Le | Ge , Ge → Ge
13 | Equal , x | x , Equal → Equal
14 | Leq , Geq | Geq , Leq → Equal
15 | Leq , Leq → Leq | Geq , Geq → Geq
16
17 let i n f a b = match a , b with

16

18 | Nothing , x | x , Nothing → Nothing
19 | Le , Equal | Equal , Le | Le , Leq | Leq , Le → Leq
20 | Ge , Equal | Equal , Ge | Ge , Geq | Geq , Ge → Geq
21 | Le , Le → Le | Ge , Ge → Ge
22 | Equal , x | x , Equal → x
23 | Geq , Le | Le , Geq | Ge , Leq | Leq , Ge → Nothing
24 | Leq , Geq | Geq , Leq | Ge , Le | Le , Ge → Nothing
25 | Leq , Leq → Leq | Geq , Geq → Geq
26
27 let l e q a b = i n f a b = a
28 let l e a b = a <> a && leq a b
29
30 let sub a b = match a , b with

31 | Equal , Leq → Geq | Equal , Geq → Leq
32 | Le , Leq → Le | Ge , Geq → Ge
33 | x , Nothing → x | → Nothing
34
35 let product a b = match a , b with

36 | Le , Equal | Equal , Le | Le , Leq | Leq , Le → Le
37 | Ge , Equal | Equal , Ge | Ge , Geq | Geq , Ge → Ge
38 | → i n f a b
39
40 let ad jo in a = match a with

41 | Le → Ge | Ge → Le
42 | Leq → Geq | Geq → Leq | x → x

Listing 2: definition of the lattices in lattice.ml

We will need to manipulate vectors and matrices with coefficients in the
above lattices. We will mainly use sparse matrices and represent vector as list
of pairs with the index and the coefficient, ordered by index. A representation
as a map table with O(lnn) insertion and deletion would be better ... Then,
matrices are just vectors of vectors:

1 open La t t i c e
2
3 type (’ index , ’ c o e f) vec to r = (’ index ∗ ’ c o e f) l i s t
4 (∗ ordered by index ∗)
5
6 type (’ index1 , ’ index2 , ’ c o e f) matrix =
7 (’ index1 , (’ index2 , ’ c o e f) vec to r) vec to r

Listing 3: vectors in matrix.ml

Now, we also need some operations on matrices and vectors like ordering
(which is point-wise ordering), supremum (which is point-wise supremum) and
multiplication defined as usual with product and supremum taking the place
of addition. Here are some formal definitions (for these definitions, we just
consider that vectors are column or line matrices and just give the definitions
for matrices):

Definition 18 Let A = (Ai,j)i∈I,j∈J , A
′ = (A′

i,j)i∈I,j∈J and B = (Bj,k)j∈J,k∈K
be three matrices with index in the finite sets I, J , K and coefficients in a
relational lattice (partial or total). Then

• A ≤ A′ is true if for all i ∈ I, j ∈ J we have Ai,j ≤ A
′
i,j.

17

• A ∨A′ is the matrix (Ai,j ∨A
′
i,j)i∈I,j∈J .

• A−A′ is the matrix (Ai,j −A
′
i,j)i∈I,j∈J .

• A.B = (Ci,k)i∈I,k∈K with Ci,k =
∧

j∈J Ai,j .Bj,k.

• A∗ = (a∗j,i)j∈J,i∈I .

• We will say that a square matrix A is an hermitian matrix if A = A∗.
Remark: an hermitian matrix can only have the coefficients 0 and 1 on
the diagonal.

To define all operations on vectors and matrices we first define a fold op-
eration on two vectors. It take four other arguments: three functions (called
respectively when an index is bound in the first, second of both vectors) and
the initial accumulator

Exercise 19 Understand the code below.

1 let f o l d 2 v e c t o r
2 : (’ a → ’ i → ’ b → ’ c → ’ a) →
3 (’ a → ’ i → ’ b → ’ a) → (’ a → ’ i → ’ c → ’ a) →
4 ’ a → (’ i , ’ b) vec to r → (’ i , ’ c) vec to r → ’ a
5 = fun bn ln rn a vector1 vector2 →
6 let rec fn acc v1 v2 = match v1 , v2 with

7 | v1 , [] →
8 L i s t . f o l d l e f t (fun acc (i , c) → ln acc i c) acc v1
9 | [] , v2 →

10 L i s t . f o l d l e f t (fun acc (i , c) → rn acc i c) acc v2
11 | (i , c) : : v1 , (i ’ , c ’) : : v2 when i = i ’ →
12 fn (bn acc i c c ’) v1 v2
13 | (i , c) : : v1 , (i ’ , c ’) : : when i < i ’ →
14 fn (ln acc i c) v1 v2
15 | (i , c) : : , (i ’ , c ’) : : v2 (∗when i > i ’ ∗) →
16 fn (rn acc i ’ c ’) v1 v2
17 in fn a vector1 vector2

Listing 4: fold on vectors in matrix.ml

Using this folding function, we implement all the needed operations on vec-
tors and matrices:

1 let sum vector v1 v2 = L i s t . rev (f o l d 2 v e c t o r
2 (fun acc i c c ’ → (i , sup c c ’) : : acc)
3 (fun acc i c → (i , c) : : acc) (fun acc i c → (i , c) : : acc)
4 [] v1 v2)
5
6 let sub vec to r v1 v2 = L i s t . rev (f o l d 2 v e c t o r
7 (fun acc i c c ’ →
8 let c ’ ’ = sub c c ’ in

9 i f c ’ ’ = Nothing then acc else (i , c ’ ’) : : acc)
10 (fun acc i c → (i , c) : : acc) (fun acc i c → acc)
11 [] v1 v2)
12
13 let sum matrix m1 m2 =
14 L i s t . rev (f o l d 2 v e c t o r

18

15 (fun acc i v1 v2 → (i , sum vector v1 v2) : : acc)
16 (fun acc i v → (i , v) : : acc) (fun acc i v → (i , v) : : acc)
17 [] m1 m2)
18
19 let sub matr ix m1 m2 =
20 L i s t . rev (f o l d 2 v e c t o r
21 (fun acc i v1 v2 →
22 let v = sub vec to r v1 v2 in

23 i f v = [] then acc else (i , v) : : acc)
24 (fun acc i v → (i , v) : : acc) (fun acc i v → acc)
25 [] m1 m2)
26
27 let dot product v1 v2 = f o l d 2 v e c t o r
28 (fun acc i c c ’ → sup acc (product c (ad jo in c ’)))
29 (fun acc i c → acc) (fun acc i c → acc)
30 Nothing v1 v2
31
32 let matr ix product m1 m2 =
33 L i s t . f i l t e r (fun (, r) → r <> [])
34 (L i s t .map (fun (i , v1) → i ,
35 L i s t . f i l t e r (fun (, r) → r <> Nothing)
36 (L i s t .map (fun (j , v2) → j , dot product v1 v2) m2)) m1)

Listing 5: matrix and vector operations in matrix.ml

We introduce some notations for hermitian matrices with coefficients in the
lattice B or B′. Let A = (aα,β)α,β∈I

• A |= α ⊂ β iff aα,β ≥ i (when A has coefficients in B)

• A |= α ⊃ β iff aα,β ≥ i
∗ (when A has coefficients in B)

• A |= α = β iff aα,β ≥ 1 (when A has coefficients in B)

• A |= α � β iff aα,β ≥ i (when A has coefficients in B′)

• A |= α � β iff aα,β ≥ i
∗ (when A has coefficients in B′)

• A |= α ≍ β iff aα,β ≥ 1 (when A has coefficients in B′)

• A |= α ≺ β iff aα,β ≥ j (when A has coefficients in B′)

• A |= α ≻ β iff aα,β ≥ j
∗ (when A has coefficients in B′)

Lemma 20 Using the definition of multiplication and the above notation, we
can give an equivalent to the definition of Hermitian matrix multiplication: if
A, B are Hermitian matrices with coefficienst in B. Then, A.B in the smallest
matrix such that

A |= α ⊂ β and B |= β ⊂ γ implies A.B |= α ⊂ γ

Proof: Immediate. �

Exercise 21 If A and B are hermitian matrices with coefficients in B′ write a
similar lemma with four cases, because you have to use � and ≺.

19

Definition 22 (multi-vector) A multi-vector is a vector where the same in-
dices can be bound several times (to different values). Another way to say this
is that a multi-vector with coefficients in a set X is a vector with coefficients
in P(X). This is why when C is a multi-vector, we will write c ∈ Ci and not
Ci = c

For the implementation, we define multi-vectors as vectors of lists:

1 type (’ index , ’ c o e f) mu l t i v e c t o r = (’ index , ’ c o e f l i s t) vec to r

Listing 6: matrix and vector operations in matrix.ml

5 Typing constraints

The first (trivial) step of the typing algorithm is to decorate programs with type
names.

We consider that T is a countable set of such names and each subprograms
is decorated with a different name in T except for variables: all occurrences of
the same variable are decorated with the same name.

For the implementation, we use as names the positions given by the parser,
keeping only the position of the binding occurrence for variables.

Here is the decorated version of the term omega :

((fun xα0 → (x x)ρ0)ϕ0 (fun xα1 → (x x)ρ1)ϕ1)ρ2

and the decorated version of the halving an even number, applied to unary
representation of three (this program will fails):

((fix halfα1 →
(fun nα0 →

(case n of

| Z[β0]→ Z[γ0]σ0

| S[n’β2]→ (case n’ of | S[n”β1]→ S[(half n”)ρ0]σ1)χ0)χ1)ϕ0)ϕ1

S[S[S[Z[γ1]σ2]σ3]σ4]σ5)ρ1

Definition 23 The typing constraints extracted from a program consist in a
triplet (C,R,D) where:

• C, the constructor constraints, is a vector and D, the destructor con-
straints, a multi-vector with index in T and coefficients in the disjoin
sum of the following sets, using specific notations for an intuitive reading:

– T 2 writing those pairs α→ β

– Finite maps from VΣ to T , writing the map associating αi to Ci for
i ∈ I as Σi∈I Ci[αi] or C1[α1] + C2[α2] + . . .

– Finite maps from VΠ to T , writing the map associating the αi to li
for i ∈ I as Πi∈I li : αi or l1 : α1 × l2 : α2 × . . .

20

• R, the relational constraints, is an hermitian matrix with only 1 on the
diagonal (recall that in general there could be 0 or 1 on the diagonal of
such a matrix).

Here C represents the constraints coming from data constructors in the code,
D from data destructors and R the other constraints (coming only from the
fixpoints and the right-hand side of case analysis). D is a multi-vector, because
the same variable can be destroyed (applied to an argument for instance) more
than once. This will be clear in definition 24

We introduce the following notations for constraints (similar to those intro-
duced for matrices in the previous section):

• (C,R,D) |= α ⊂ β iff R |= α ⊂ β

• (C,R,D) |= α ⊃ β iff R |= α ⊃ β

• (C,R,D) |= α = β iff R |= α = β

• (C,R,D) |= α→ β ⊂ γ iff Cγ = α→ β

• (C,R,D) |= γ ⊂ α→ β iff α→ β ∈ Dγ

• (C,R,D) |= Σi∈I ci[αi] ⊂ γ iff Cγ = Σi∈I Ci[αi]

• (C,R,D) |= γ ⊂ Σi∈I Ci[αi] iff Σi∈I Ci[αi] ∈ Dγ

• (C,R,D) |= Πi∈I ci : αi ⊂ γ iff Cγ = Πi∈I li : αi

• (C,R,D) |= γ ⊂ Πi∈I li : αi : iff Πi∈I li : αi ∈ Dγ

Here is the code to define data types for constraints (the triplet (C,R,D)).
It does not exactly obey the above definition because we use the fact that the
index set I above will always be a singleton for Σ in C and Π in D.

1 open Par s e rUt i l
2 open La t t i c e
3 open Matrix
4 open Program
5
6 type cons t ruc to r =
7 | CSum of c id ∗ po s i t i o n
8 | CPro of (l i d ∗ po s i t i o n) l i s t
9 | CFun of po s i t i o n ∗ po s i t i o n

10
11 type de s t ru c t o r =
12 | DSum of (c id ∗ po s i t i o n) l i s t
13 | DPro of l i d ∗ po s i t i o n
14 | DFun of po s i t i o n ∗ po s i t i o n
15
16 type c on s t r a i n t s =
17 { c on s t ru c t o r s : (po s i t i on , c on s t ruc to r) vec to r ;
18 r e l a t i o n s : (po s i t i on , po s i t i on , r e l a t i o n) matrix ;
19 d e s t r u c t o r s : (po s i t i on , d e s t ru c t o r) mu l t i v e c t o r ; }

Listing 7: typing indices in typing.ml

21

Definition 24 (extracted constraints) The initial typing constraints K0 =
(C,R0, D), extracted from an annotated program, are the smallest constraints
(ordered point-wise for the matrix R0 and by set inclusion for the vector C and
multi-vector D, regarded as set of pairs) verifying:

• If (MϕNα)ρ is a sub-term of the program then K0 |= ϕ ⊂ α→ ρ

• If (fun xα →Mρ)ϕ is a sub-term of the program then K0 |= α→ ρ ⊂ ϕ.

• If (fix xα → Mϕ)ρ is a sub-term of the program then K0 |= ϕ ⊂ α and
K0 |= ϕ ⊂ ρ

• If C[Mβ]σ is a sub-term of the program then K0 |= C[β] ⊂ ρ

• If (case Mσ of (Ci[x
βi]→ Nρi

i)i∈I)
ρ is a sub-term or the program, then

for all i ∈ I, K0 |= ρi ⊂ ρ and K0 |= σ ⊂ Σi∈I Ci[βi]

• If {(li = Mρi)i∈I}
γ is a sub-term of the program then K0 |= Πi∈I li : ρi ⊂ γ

• If (Mγ .l)ρ is a sub-term or the program then K0 |= γ ⊂ l : ρ

Here are the initial constraints for the term omega, using the annotation
given above:

C = {α0 → ρ0 ⊂ ϕ0, α1 → ρ1 ⊂ ϕ1}
R0 = {}
D = {α0 ⊂ α0 → ρ0, ϕ0 ⊂ ϕ1 → ρ2, α1 ⊂ α1 → ρ1}

and those for halving applied to the unary representation of the natural number
three:

C = {α0 → χ1 ⊂ ϕ0, Z[γ0] ⊂ σ0, ⊂ γ0, S[ρ0] ⊂ σ1,
S[σ4] ⊂ σ5, S[σ3] ⊂ σ4, S[σ2] ⊂ σ3,
Z[γ1] ⊂ σ2, ⊂ γ1}

R0 = {ϕ0 ⊂ ϕ1, ϕ0 ⊂ α1, σ0 ⊂ χ1, χ0 ⊂ χ1, σ1 ⊂ χ0}
D = {ϕ1 ⊂ σ5 → ρ1, α1 ⊂ β1 → ρ0, α0 ⊂ Z[β0] + S[β2],

β2 ⊂ S[β1]}

Definition 25 (interpretation) An interpretation satisfying the typing cons-
traints K0 = (C,R0, D) is a function α 7→ ||α||, associating realizability can-
didates to type names appearing in K0 satisfying the conditions given below.
Moreover, we will write |α| for ||α||⊥. Here are the conditions:

• If K0 |= ϕ ⊂ α then ||ϕ|| ⊂ ||ρ||

• If K0 |= ϕ ⊂ α→ ρ then ||ϕ|| ⊂ ||α|| → ||ρ||

• If K0 |= α→ ρ ⊂ ϕ then ||α|| → ||ρ|| ⊂ ||ϕ||

• If K0 |= Σi∈ICi[βi] ⊂ ρ then Σi∈ICi[||βi||] ⊂ ||ρ||

• If K0 |= ρ ⊂ Σi∈ICi[βi] then ||ρ|| ⊂ Σi∈ICi[||βi||]

22

• If K0 |= Π1≤i≤n li : ρi ⊂ γ then Π1≤i≤n li : ||ρi|| ⊂ ||γ||

• If K0 |= γ ⊂ Π1≤i≤n li : ρi then ||γ|| ⊂ Π1≤i≤n li : ||ρi||

Theorem 26 (adequation lemma) If there is an interpretation for an an-
notated program M satisfying the typing constraints K0 extracted from M , then
M ∈ ⊥⊥ which implies that M is safe and that all infinite reductions use the
fixpoint rule infinitely often.

Proof: Let M be an annotated program, (C,R0, D) be the constraints ex-
tracted from M and assume that we have an interpretation satisfying these
constraints. If N is a subterm of M we write Γ(N) = xα1

1 , . . . , xαn
n the set of

free variables that are bound above N with their type annotation (all the free
variables of N are mentioned in Γ(N)). We say that a substitution σ = [(xi ←
ui)i∈{1,...,n}] satisfies Γ(N) if for all 1 ≤ i ≤ n we have ui ∈ ||αi||.

Next, we show by induction on the structure of M , that for all subterm Nβ,
if σ is a substitution satifying Γ(N), then Nσ ∈ ||β||.

• If Nβ = xβ the result is immediate from the definition of substitution
satisfying Γ(xβ).

• If Nβ = Nγ
1 N

φ
2 , we know that ||γ|| ⊂ ||φ|| → ||β|| and by induction

hypothesis, we have N1σ ∈ ||γ|| and N2σ ∈ ||φ||. Let us choose E ∈ |β|,
we must prove N ⋆ E ∈ ⊥⊥. We have Nσ ⋆ E = N1σ ⋆ E[χ ← χN2σ],
E[χ ← χN2σ] ∈ ||φ||.|β| and N1σ ∈ ||φ|| → ||β|| = (||φ||.|β|)⊥ which
gives the wanted result.

• If Nβ = (fun yφ → Nγ
1)β, we have ||φ|| → ||γ|| ⊂ ||β|| and by induction

hypothesis, for σ′ satisfying Γ(N1), we have N1σ
′ ∈ ||γ||. Therefore, it

is enough to choose E ∈ ||φ||.|γ| and show that Nσ ⋆ E ∈ ⊥⊥ (this gives
Nσ ∈ (||φ||.|γ|)⊥ = ||φ|| → ||γ|| ⊂ ||β||). From E ∈ ||φ||.|γ| we deduce
that E = E′[χ ← χP] with P ∈ ||φ|| and E′ ∈ |γ|. We have Nσ ⋆ E =
E′[χ ← (fun y → N1)σ P]. Up to a renaming of y, we assume that y is
not free in the domain and images of σ and we have E′[χ ← (fun y →
N1)σ P] = E′[χ ← (fun y → N1σ)P] ≻β N1σ[y ← P] ⋆ E′. Then, by
the definition of saturated sets and because P ∈ ||φ|| ⊂ ⊥⊥, we just need
to prove that N1σ[y ← P] ∈ ||γ||, which is immediate because P ∈ ||φ||
implies that σ ◦ [y ← P] is a substitution satisfying Γ(N1) = yφ,Γ(N).

• If Nβ = (fix xφ → Nγ
1)β, we have ||γ|| ⊂ ||φ|| and ||γ|| ⊂ ||β||. As in the

previous case, we assume x not to be free in the domain nor the images of
σ. We prove by induction that for all n ∈ N we have (N1σ)n(x) ∈ ||γ||. If
n = 0, this is immediate because σ′ = σ ◦ [x← x] satisfies Γ(N1) because
x ∈ ⊥⊥0 ⊂ ||φ||. For the induction case, we assume (N1σ)n(x) ∈ ||γ||
and prove (N1σ)n+1(x) ∈ ||γ||. The hypothesis ||γ|| ⊂ ||φ|| implies that
σ ◦ [x← (N1σ)n(x)] is a substitution satisfying Γ(N1). Then, let E ∈ |γ|,
we have (N1σ)n+1(x)⋆E = N1σ[x← (N1σ)n(x)]⋆E ∈ ⊥⊥ by the induction
hypothesis on N1.

23

Finally, by definition of saturated set, we know that (N1σ)n(x) ⋆ E ∈ ⊥⊥
for all n ∈ N implies (fix x → N1σ) = Nσ ⋆ E ∈ ⊥⊥ which is what we
wanted (we do have N1σ ∈ ||γ|| ⊂ ⊥⊥).

• If Nβ = C[Nφ
1]β, we have C[||φ||] = (C[|φ|])⊥ ⊂ ||β||. Let E ∈ C[|φ|] be,

which means that E can be written (case χ of C[χ]→ E1) ⋆ E
′ where

E1 ⋆ E
′ ∈ ||φ||⊥. By induction hypothesis we deduce N1σ ⋆ (E1 ⋆ E

′) ∈ ⊥⊥
which implies by saturation that N ⋆ E ∈ ⊥⊥.

• If Nβ = case P γ of (Ci[x
φi

i] → Nβi

i)i∈I , we have for all i ∈ I, ||βi|| ⊂
||β|| and ||γ|| ⊂ Σi∈ICi[||φi||]. Let E be a context in |β|. The induction
hypothesis and ||βi|| ⊂ ||β|| implies that for any term Qi ∈ ||φi||, we have
Niσ[xi ← Qi] ⋆ E = Qi ⋆ (Niσ[xi ← χ] ⋆ E) ∈ ⊥⊥ for all i ∈ I. This means
that Niσ[xi ← χ] ⋆E ∈ ||φi||

⊥ = |φi|. Thus by definition of Σ, this means
that (case χ of (Ci[xi] → Niσ)i∈I) ⋆ E ∈ Σi∈ICi[|φi|] ⊂ ||γ||

⊥ which
gives, together with Pσ ∈ ||γ||, Nσ ⋆ E = Pσ ⋆ (case χ of (Ci[xi] →
Niσ)i∈I) ⋆ E ∈ ⊥⊥.

• If Nβ = {(li = Nγi

i)i∈I}
β, we have Πi∈I li : ||γi|| ⊂ ||β|| and by induction

hypothesis, Niσ ∈ ||γi||. Let E ∈ Πi∈I li : |γi|, E can be written χ.lj ⋆ Ej
for some j such that Ej ∈ |γj |. Therefore, Njσ ⋆ Ej ∈ ⊥⊥ which implies
by saturation that (Nσ).lj ⋆ Ej = Nσ ⋆ E ∈ ⊥⊥.

• If Nβ = (Nφ
1 .l)

β, we have ||φ|| ⊂ l : ||β|| and, by induction hypothesis,
Niσ ∈ ||φ||. Let E ∈ |β|, by definition of Π, we have E[χ ← χ.l] ∈ Π l :
|β| ⊂ |φ|. Therefore, Nσ ⋆ E = Niσ ⋆ E[χ← χ.l] ∈ ⊥⊥. �

Here is the code extracting the constraints from an annotated program. It
starts with a few functions adding constraints in the triplet (C,R0, D), not
forgetting to ensure that R0 has only 1 on its diagonal:

1 let add cons t ruc to r i n f o i c =
2 { i n f o with

3 con s t ru c t o r s = L i s t . rev (f o l d 2 v e c t o r
4 (fun acc i c c ’ → a s s e r t f a l s e)
5 (fun acc i c → (i , c) : : acc)
6 (fun acc i c → (i , c) : : acc)
7 [] i n f o . c on s t ru c t o r s [i , c]) ;
8 r e l a t i o n s = sum matrix i n f o . r e l a t i o n s [i , [i , Equal]] ; }
9

10 let add des t ruc to r i n f o i d =
11 { i n f o with

12 d e s t r u c t o r s = L i s t . rev (f o l d 2 v e c t o r
13 (fun acc i c c ’ → (i , c @ c ’) : : acc)
14 (fun acc i c → (i , c) : : acc)
15 (fun acc i c → (i , c) : : acc)
16 [] i n f o . d e s t r u c t o r s [i , [d]]) ;
17 r e l a t i o n s = sum matrix i n f o . r e l a t i o n s [i , [i , Equal]] ; }
18
19 let add coe f m i1 i 2 =
20 sum matrix m
21 (sum matrix
22 (sum matrix [i1 , [i1 , Equal]] [i2 , [i2 , Equal]])

24

23 (sum matrix [i1 , [i2 , Leq]] [i2 , [i1 , Geq]]))
24
25 let add r e l a t i on i n f o i 1 i 2 =
26 { i n f o with r e l a t i o n s = add coe f i n f o . r e l a t i o n s i 1 i 2 }

Listing 8: adding to constraints in typing.ml

Then, we have a small function extracting the annotation of the root of a
program:

1 let ge t index env p = match p with

2 | App(, , idx) | Fun(, , , idx) | Fix (, , , idx) | Cst (, , idx)
3 | Cas (, , idx) | Rec (, idx) | Pi (, , idx) → idx
4 | Var (name) →
5 try L i s t . a s soc name env
6 with Not found →
7 Pr i n t f . f p r i n t f s t d e r r ”Unbound i d e n t i f i e r %s \n” name ; e x i t 1

Listing 9: extracting the root annotation in typing.ml

Now, we have the extraction of constraints itself. It uses an environment
env to store the decoration of free variables:

1 let ex t r a c t ma t r i c e s (p : p o s i t i o n program) =
2 let rec fn i n f o s env p = match p with

3 | Var (name) → i n f o s
4 | Fun(name , arg , p , a l l) →
5 let env = (name , arg) : : env in

6 let i n f o s = add cons t ruc to r i n f o s a l l
7 (CFun(arg , g e t index env p)) in

8 fn i n f o s env p
9 | Fix (name , arg , p , a l l) →

10 let r e s = ge t index env p in

11 let i n f o s = add r e l a t i on i n f o s r e s arg in

12 let i n f o s = add r e l a t i on i n f o s r e s a l l in

13 let env = (name , arg) : : env in

14 fn i n f o s env p
15 | App(p1 , p2 , r e s) →
16 let i n f o s = add des t ruc to r i n f o s (ge t index env p1)
17 (DFun(ge t index env p2 , r e s)) in

18 fn (fn i n f o s env p1) env p2
19 | Cst (cid , p , a l l) →
20 let i n f o s = add cons t ruc to r i n f o s a l l
21 (CSum(cid , g e t index env p)) in

22 fn i n f o s env p
23 | Cas (p , cases , r e s) →
24 let matched = get index env p in

25 let i n f o s = fn i n f o s env p in

26 let i n f o s =
27 add des t ruc to r i n f o s matched
28 (DSum(L i s t .map (fun (c id , , , arg) → cid , arg) ca s e s))
29 in

30 L i s t . f o l d l e f t (fun i n f o s (c id , name , p ’ , arg) →
31 let env = (name , arg) : : env in

32 let i n f o s = add r e l a t i on i n f o s (g e t index env p ’) r e s in

33 fn i n f o s env p ’) i n f o s ca s e s
34 | Pi (p , l i d , r e s) →
35 let a l l = ge t index env p in

36 let i n f o s =

25

37 add des t ruc to r i n f o s a l l (DPro (l i d , r e s)) in

38 fn i n f o s env p
39 | Rec (record , a l l) →
40 let , i n f o s , l l =
41 L i s t . f o l d l e f t (fun (env , i n f o s , l l) (l i d , p) →
42 let arg = ge t index env p in

43 let l l = (l i d , arg) : : l l in

44 let i n f o s = fn i n f o s env p in

45 let env = (l i d , arg) : : env in

46 env , i n f o s , l l) (env , i n f o s , []) r ecord
47 in

48 add cons t ruc to r i n f o s a l l (CPro l l)
49 in fn { c on s t ru c t o r s = [] ; d e s t r u c t o r s = [] ; r e l a t i o n s = [] } [] p

Listing 10: constraints extraction in typing.ml

6 Checking the constraints

The first step when checking the constraints is saturation. To define it, we
need to define a new product C.R.D where C are constructor constraints, R is
a matrix with coefficient in B and D are destructor constraints. This product
is partial and the fact that it is undefined will be a type error . Here is the
definition:

Definition 27 (ternary product) R′ = C.R.D is the smallest hermitian ma-
trix for lattice ordering such that:

• If (C,R,D) |= α → β ⊂ γ, (C,R,D) |= γ ⊂ γ′ and (C,R,D) |= γ′ ⊂
α′ → β′ then R′ |= α′ ⊂ α and R′ |= β ⊂ β′

• If (C,R,D) |= Σi∈I Ci[αi] ⊂ γ, (C,R,D) |= γ ⊂ γ′ and (C,R,D) |= γ′ ⊂
Σj∈J Cj [α

′
j] then, if I ⊂ J , for all i ∈ I R′ |= αi ⊂ α

′
i. If I 6⊂ J , then the

product is undefined (here we assume that Ci = Cj implies i = j).

• If (C,R,D) |= Πj∈J lj : αj ⊂ γ, (C,R,D) |= γ ⊂ γ′ and (C,R,D) |= γ′ ⊂
Πi∈I li : α′

i then, if I ⊂ J , for all i ∈ I R′ |= αi ⊂ α′
i. If I 6⊂ J , then the

product is undefined (here we assume that li = lj implies i = j).

• If (C,R,D) |= L ⊂ γ , (C,R,D) |= γ ⊂ γ′ and (C,R,D) |= γ′ ⊂ R and
(L,R) matches one of the following pairs: (Σ , →), (Π , →), (→
,Σ), (→ ,Π), (Σ ,Π), or (Π ,Σ) then R′ = C.R.D is undefined

Remark: this definition really resembles two matrix products where the
summation indexes are γ and γ′ which do not appear as index in the result
matrix.

Here is the code defining this ternary product:

1 exception Type Error of po s i t i o n ∗ cons t ruc to r ∗ po s i t i o n ∗ de s t ru c t o r
2
3 let t e rnary product c on s t ru c t o r s r e l a t i o n s d e s t r u c t o r s =
4 f o l d 2 v e c t o r (fun acc i c v →
5 f o l d 2 v e c t o r

26

6 (fun acc j (ds : d e s t ru c t o r l i s t) r →
7 i f l e q Leq r then

8 L i s t . f o l d l e f t (fun acc (d : d e s t ru c t o r) →
9 try match c , d with

10 | CFun(arg , r e s) , DFun(arg ’ , res ’) →
11 add coe f (add coe f acc r e s res ’) arg ’ arg
12 | CSum(cid , arg) , DSum(l) →
13 add coe f acc arg (L i s t . a s soc c id l)
14 | CPro(l) , DPro(l i d , arg) →
15 add coe f acc (L i s t . a s soc l i d l) arg
16 | → r a i s e Not found
17 with Not found →
18 r a i s e (Type Error (i , c , j , d))) acc ds
19 else acc)
20 (fun acc j → acc) (fun acc j → acc) acc
21 d e s t r u c t o r s
22 v)
23 (fun acc i → acc) (fun acc i → acc) []
24 con s t ru c t o r s
25 r e l a t i o n s

Listing 11: ternary product in typing.ml after extraction

Definition 28 (saturated constraints) We say that the typing constraints
(C,R,D) are saturated if and only if R ≥ R.R ∨ C.R.D.

Exercise 29 Write a more intellegible (but longer) definition of saturated con-
straints using the notation (C,R,D) |= . . ., lemma 20 and the definition 27 of
ternary product.

We need to compute the smallest saturated constraints (C,R,D) such that
R ≥ R0. A first way is to define Rn+1 = Rn.Rn ∨ C.Rn.D. Recall that R0

has only 1 on the diagonal. This property is preseved for all the matrices Rn
because 1 is the top element of the lattice B and this implies Rn.Rn ≥ Rn. The
fact that the sequence is increasing implies that it converges toward the wanted
matrix because the lattice B is of finite height 2. This means that the limit is
reached before n = 2N2 where N is the number of lines of the matrix R, that
is the number of type names mentioned in the initial constraints. When the
above sequence reaches its limit R, we have R = R.R ∨ C.R.D.

However, the abobe definition would lead to a bad complexity. A better
sequence is:

• S0 = R′
0 = R0

• Tn = R′
n.Sn ∨ Sn.R

′
n ∨ C.Sn.D

• R′
n+1 = Tn ∨R

′
n

• Sn+1 = Tn −R
′
n

With this definition, we clearly have for all n, Sn ≤ Tn ≤ R′
n and by

induction we get R′
n ≤ Rn. The sequence R′

n is still increasing, and by definition
of the subtraction, we have R′

n =
∨

0≤i≤n Sn. Then, we deduce R′
n+1 ≥ Si.Sj

27

for 0 ≤ i, j ≤ n and R′
n+1 ≥ C.Si.D for 0 ≤ i ≤ n, which implies by summing

the inequalities R′
n+1 ≥ R′

n.R
′
n ∨ C.R

′
n.D and therefore we have R′

n = Rn by
induction.

Remark: when R′
n reaches its limit, we have Sn = 0 (because Tn ≤ R′

n,
otherwise the limit would not be reached) which is an easy stopping condition.

To compute the complexity, let us define |Sn| the number of non zero coef-
ficients of Sn and N the number of types names in the annotated program M
which produced the initial constraints (C,R0, D). The definition of subtraction
implies that Sn+1 ∧ Rn = 0 (the matrix with only 0). This means that the
total number of non zero coefficients in all the matrices Sn (Σ1≤i≤n|Sn|) is less
then 2.N2. The product R′

n.Sn, Sn.R
′
n and C.Sn.D needs a computing time

which is less than O(N |Sn|) (the N for the product C.Sn.D is there because D
is a multi-vector). We have also the same upper bound for the number of non-
zero coefficients O(N |Sn|) in the resulting matrices. This means that the two
supremums and the subtraction can be done in time O(N |Sn|) too. Therefore,
globally, we have a complexity of Σ1≤i≤2N2O(N |Sn|) ≃ O(N3).

Remark: the analysis here assumes a constant time access to vectors and
matrix coefficients. A more reasonnable complexity would be O(N3 ln2(N)).

Exercise 30 Find the best representation of each matrix to get a complexity
O(N3 ln2(N)) (or better, but in this case, let me know ... especially if you drop
the 3 exponent.).

This means that we proved the following theorem:

Theorem 31 Let (C,R0, D) be the constraints extracted from an annotated
program M , the smallest saturated constraints (C,R,D) such that R ≥ R0 can
be computed (if it exists) in polynomial time (O(N3 ln2(N))).

It is also trivial, from the fact that R ≥ R0, that is we can find an interpre-
tation satisfying the constraint (C,R,D), it also satisfies (C,R0, D).

Here is the code computing the saturated constraints:

1 let s a tu ra t e verbose i n f o =
2 let rec fn n Rn Sn =
3 let Tn = sum matrix (sum matrix
4 (matr ix product Rn Sn) (matr ix product Sn Rn))
5 (t e rnary product i n f o . c on s t ru c t o r s Sn i n f o . d e s t r u c t o r s)
6 in

7 let Sn p lu s one = sub matr ix Tn Rn in

8 i f Sn p lu s one = [] then Rn else

9 let Rn plus one = sum matrix Tn Rn in

10 fn (n+1) Rn plus one Sn p lu s one
11 in

12 let R = fn 0 i n f o . r e l a t i o n s i n f o . r e l a t i o n s in

13 { i n f o with r e l a t i o n s = R }

Listing 12: constraint saturation in typing.ml

Unfortunately, even if (C,R,D) can be computed from (C,R0, D), it does
not imply that the constraints are satisfiable. We need another criteria: the
well-foundedness of the constraints. This is here that we will use the lattice B′:

28

Definition 32 We say that the saturated constraints (C,R,D) are well-founded
if there exists an hermitian matrix W with coefficients in B′ and 1 on the
diagonals such that:

• If (C,R,D) |= α ⊂ β then W |= α � β.

• If (C,R,D) |= α→ β ⊂ γ then W |= α ≺ γ and W |= β � γ.

• If (C,R,D) |= Σi∈I Ci[αi] ⊂ γ then ∀i ∈ I, we have W |= αi ≺ γ.

• If (C,R,D) |= Πi∈I li : αi ⊂ γ then ∀i ∈ I, we have W |= αi ≺ γ.

• W ≥W.W

Theorem 33 We can compute the matrix W (when it exists) and test if the
constraints (C,R,D) are well-founded in polynomial time complexity.

Proof: We can easily (in time O(N2 ln2N)) produce an initial matrix W0 ≥
R (we use B ⊂ B′ to write this) satisfying all conditions but the last one and
then, we can define a sequence computing the smallest matrix W such that
W ≥W0 and W ≥W.W using an algorithm similar to the previous one. �

Example: for the term omega, even the initial matrix W0 is undefined
because it should satisfy W0 |= α1 ≺ φ1 (because C for omega contains
α1 → ρ1 ⊂ φ1) and W0 |= φ1 � α1 (because S5 |= φ1 ⊂ α1).

Here is the code checking for well-foundedness, with a first function adding
the initial constraints α ≺ β coming from the constraints like K |= α→ α′ ⊂ β:

1 let a d d c o e f s t r i c t m i1 i 2 =
2 sum matrix m (sum matrix
3 (sum matrix [i1 , [i1 , Equal]] [i2 , [i2 , Equal]])
4 (sum matrix [i1 , [i2 , Le]] [i2 , [i1 , Ge]]))
5
6 let o rd e r s a tu r a t e verbose i n f o s =
7 let rec fn n Wn Sn =
8 i f verbose then begin

9 pr in t matr ix as judgment p r i n t r e l a t i o n i n Bp a s t e x
10 (”S ”ˆ s t r i n g o f i n t n) Sn ;
11 p r i n t a s 0 ”\\ cr ” ;
12 p r i n t n ew l i n e ()
13 end ;
14 let Tn = sum matrix (matr ix product Wn Sn)
15 (matr ix product Sn Wn) in

16 let Sn p lu s one = sub matr ix Tn Wn in

17 i f Sn p lu s one = [] then Wn else

18 let Wn plus one = sum matrix Tn Wn in

19 fn (n+1) Wn plus one Sn p lu s one
20 in

21 let W0 = Li s t . f o l d l e f t (fun m (i , c) →
22 match c with

23 | CSum(cid , j) → add coe f m j i
24 | CPro(l) →
25 L i s t . f o l d l e f t (fun m (l i d , j) → add coe f m j i) m l
26 | CFun(j , k) → add coe f (a d d c o e f s t r i c t m j i) k i)
27 i n f o s . r e l a t i o n s i n f o s . c on s t ru c t o r s

29

28 in

29 fn 0 W0 W0

Listing 13: well-foundedness check in typing.ml

Now, we can state our last theorem:

Theorem 34 If the saturated constraints K = (C,R,D) are well founded then,
they are satisfiable which means that there is an interpretation using definition
25 satisfying the constraints.

Proof: Let W be the hermitian matrix witnessing the well-foundedness of
the saturated constraints (C,R,D). We can directly define the interpretation
as follows:

||α|| =
∨

{||β|| s.t. K |= β ⊂ α}

∨
∨

{||β|| → ||γ|| s.t. K |= β → γ ⊂ α}

∨
∨

{Σi∈ICi[||βi||] s.t. K |= Σi∈ICi[βi] ⊂ α}

∨
∨

{Πi∈I li : ||βi||] s.t. K |= Πi∈I li : βi ⊂ α}

The use of the well foundedness constraints is to show that this definition makes
sense. For this, we need to remark that by definition of W , if β is used in the
definition of α, then we have W |= β � α and moreover, if β is used in the
definition of α at the right of an implication, then W |= β ≺ α.

This means that if W |= β � α but W 6|= β ≍ α then, we can define ||β||
strictly before ||α||. Next, we remark that W |= β ≍ α is an equivalence relation
and for {β1, . . . , βn} an equivalence class of this relation, we know that ||βi|| is
only used in a covariant position in the definitions of ||βj || for 1 ≤ i, j ≤ n. This
means that ||β1||, . . . , ||βn|| can be defined simultaneously as a smallest fixpoint
using the above definition.

Next, we prove that this interpretation satisfies the constraints (C,R,D).
For C and R this is immediate because they are directly included in the defi-
nition. To treat the destructors contraints D, we first remark that the above
definition is equivalent to:

||α|| =
∨

{||β|| → ||γ|| s.t. ∃α′,K |= β → γ ⊂ α′ and K |= α′ ⊂ α}

∨
∨

{Σi∈ICi[||βi||] s.t. ∃α′,K |= Σi∈ICi[βi] ⊂ α
′ and K |= α′ ⊂ α}

∨
∨

{Πi∈I li : ||βi||] s.t. ∃α′,K |= Πi∈I li : βi ⊂ α
′ and K |= α′ ⊂ α}

This is true, just by replacing the ||β||’s in
∨

{||β|| s.t. K |= β ⊂ α} by their
definition.

Then, we may verify that constraints in D are satisfied:

• If K |= α ⊂ β → γ, we have ||α|| =
∨

{||β|| → ||γ|| s.t. ∃α′,K |= β′ →
γ′ ⊂ α′ and K |= α′ ⊂ α}. The other sets in the supremum are empty
otherwise the ternary product C.R.D would be undefined and this contra-
dicts the hypothesis that (C,R,D) are saturated. Because of saturation,
for all α′, β′, γ′ such that K |= β′ → γ′ ⊂ α′ and K |= α′ ⊂ α, we

30

also have K |= β ⊂ β′ and K |= γ′ ⊂ γ. This implies ||β|| ⊂ ||β′|| and
||γ′|| ⊂ ||γ|| which implies ||β′|| → ||γ′|| ⊂ ||β|| → ||γ|| and therefore
||α|| ⊂ ||β|| → ||γ||

• If K |= α ⊂ Σi∈ICi[βi] or K |= α ⊂ Πi∈I li : βi, the proof is similar. �

7 Further work

We describe here, extensions of the algorithm that are already implemented in
PML but for which there is no theoretical result published (this should change
in the near future).

7.1 Types

Consider the following program:

fix id nat n→ case n of | Z[]→ Z[] | S[n’]→ S[id nat n’]

It is clear what it does: it is a function copying a unary natural number! In
other terms, this is the partial identity function whose domain is exactly the
unary natural numbers. But what does the type-checking algorithm when we
use that function ? It creates constraints that ensures that the argument of the
function id nat is a unary natural number and constraints enforcing that the
result can only be used as a natural number.

This means that we can use partial identity functions as types. We just
need to decide a syntax for types, for instance:

Type := Type → Type
| [C1[Type]| . . . |Cn[Type]]
| {l1 : Type; . . . ; ln : Type}
| fix t→ T

Which will be translated as partial identity functions as follows (if T is a type,
then T is a partial identity function):

T1 → T2 = fun f → fun x→ T2(f(T1x))

[C1[T1]| . . . |Cn[Tn]] = fun s→ case s of (Ci[x]→ Ci[Tix])1≤i≤n
{l1 : T1 ; . . . ; ln : Tn} = fun r → {(li = Ti r.li)1≤i≤n}

fix t→ T = fix t→ T

What remains to do is to show that the above translation from types to
programs do correspond in some sense to identity functions. This is easy by
induction for all cases but function types. For function types, we need the notion
of η-equivalence. We also would like to have parametric types, which can be
done by having a new kind of arrow in type constraints which is interpreted
exactly as the set of identity functions and this will ensure that parametric
types are used with the correct number of parameters. This approach even
allows for higher-order parametric types which are not available in usual ML
implementations.

31

7.2 Simplification of the constraints and Polymorphism

The current implementation of PML extends the algorithm presented here with
an algorithm simplifying the typing constraints by removing type names which
can not be accessed anymore (as in [19]). A type name is said to be accessible
in a program if, by using this program, we can create new constraints on this
name. This is very important to have a reasonable complexity in practice.

Moreover, it allows for a nice implementation of polymorphism that defines
the least set of type names that must be generalized. Not taking the least set
would result in a non terminating algorithm. This least set is a smallest set
satisfying some closure property and containing all type names α that are acces-
sible from the left and the right which means that the newly created constraints
are respectively of the form ⊂ α and α ⊂ .

7.3 Larger lattices

Many applications require using an enlarged lattice for type constraints that
will still be a relational lattice. Here are a few (the ones used in PML):

• The type constraints contain a lot of information useful for a compiler.
Unfortunately, if we use types, we do not want to compile the correspond-
ing identity function and we can loose some information. A solution is to
replace our lattice B with B×B using one component for type constraints
ignoring types and the other for types constraints with types. This basi-
cally allows for maximum sharing compared with an approach when one
would type-check the program twice: with types and without types.

• The language presented here do not have a default case in case analysis
nor extensible records. Both features require the typing constraints to
know that some variant constructors or labels can be ignored. This can
be done by replacing the lattice B with functions in VΣ∪VΠ →fin B (here
→fin means function which are constant except on a finite set). This
allows to say that a constraint ignores or concerns only specific variants
or labels. This is exactly what we need for default cases and extensible
records.

• Operator overloading is a very nice feature of programming languages.
When an operator is overloaded, we need to know what implementa-
tion to choose, one way is to replace the lattice B by the set of bi-
nary decision diagram having elements of B at their leafs and testing
boolean variables at their nodes. These variables express specific choices
for overloaded operators. For instance if the constant 0α (written with
its type annotation) can be interpreted by two programs zero intβ and
zero floatβ

′

, the type constraints will be something like β ⊂α=zero int
α and β′ ⊂α=zero float α where α = zero int and α = zero float

are boolean variables which indicates which version of 0 is chosen. These
variables clearly need to satisfy the axioms ¬(α = zero int ∧ α =
zero float) and α = zero int ∨ α = zero float.

32

This was surprisingly easy to implement in PML ... However, this is
clearly NP-complete. But other parts of traditional ML compilation have
bad worst-case complexity (polymorphism is exponential, test for exhaus-
tive pattern-matching is NP-complete, ...).

A Call by value semantics

We can also give some code for a call-by-value semantics. First, let us define
values as a BNF :

V := id | funx→ P
| C[V]
| {l = V ; . . .}

Here is the type definition for values, with a few differences:

• It is parameterized, because ’a program is parameterized.

• In the fun case, we give an environment holding the value for all variables.
This avoid us to perform substitution. We are making a closure.

1 type ’ a value =
2 | VFun of id ∗ ’ a program ∗ ’ a env
3 | VFix of ’ a program ∗ ’ a env
4 | VCst of c id ∗ ’ a value

5 | VRec of (l i d ∗ ’ a value) l i s t
6 and ’ a env = (id ∗ ’ a value) l i s t

Listing 14: Values in program.ml

To program call by value we will use an abstract machine with a stack,
and an environment. The stack will hold not only arguments for functions,
but all pending destructors. This is reflected by the following type definition
with stack constructors corresponding to application (SApp to hold an argument
and RApp to remember the function while computing the argument), projection
(SPi) and case analysis (SCas). The constructor RCst and RRec remembers the
constructor and the rest of a record while computing one of the field.

1 type ’ a s tack =
2 SEmpty
3 | SApp of ’ a value ∗ ’ a s tack
4 | SPi of l i d ∗ ’ a s tack
5 | SCas of (c id ∗ (id ∗ ’ a program ∗ ’ a env)) l i s t ∗ ’ a s tack
6 | RApp of ’ a env ∗ ’ a program ∗ ’ a s tack
7 | RCst of c id ∗ ’ a s tack
8 | RRec of (id ∗ ’ a value) l i s t ∗ l i d ∗ ’ a env ∗
9 (id ∗ ’ a program) l i s t ∗ ’ a s tack

Listing 15: Stacks in program.ml

Here is now the code for a call-by-value interpretor. You may notice that it
basically consists in two mutually recursive functions: eval and unfold. The
first is evaluating programs more or less as expected. The second function is
applying the stack elements to a value.

33

We could have simplified the code but removing RApp, RCst and RRec if we
used OCaml’s stack. But we preferred to give a tail-rec evaluator nearer to the
behavior of some compiled code.

Exercise 35 (not easy and out of the scope of this course) prove that this code
implements call by value evaluation.

Exercise 36 There is a small trick is the code below to implement some sort of
recursive definition which is not in the definition of the operational semantics
of the language ... Understand what this does enough to remove it!

1 open Par s e rUt i l
2 open Format
3
4
5 let cbv verbose p =
6 let rec eva l d id reduce env p stack =
7 match p with

8 | Var (id) →
9 unfo ld None (L i s t . a s soc id env) s tack

10 | App(p1 , p2 , pos) →
11 eva l None env p2 (RApp(env , p1 , s tack))
12 | Fun(id , , p ,) →
13 unfo ld None (VFun(id , p , env)) s tack
14 | Fix (id , , p ,) →
15 let rec env ’ = (id , VFix (p , env ’)) : : env in

16 unfo ld None (VFix (p , env ’)) s tack
17 | Cst (cid , p , pos) →
18 eva l None env p (RCst (cid , s tack))
19 | Cas (p , cases ,) →
20 let s tack =
21 SCas (L i s t .map (fun (c id , id , p ,) →
22 (cid , (id , p , env))) cases , s tack) in

23 eva l None env p stack
24 | Rec (record , pos) →
25 begin

26 match record with

27 | [] → unfo ld None (VRec []) s tack
28 | (l i d , p) : : recp →
29 eva l None env p (RRec ([] , l i d , env , recp , s tack))
30 end

31 | Pi (p , l i d ,) →
32 eva l None env p (SPi (l i d , s tack))
33 and unfo ld d id reduce v stack =
34 try match v , s tack with

35 | v , SEmpty → v
36 | v , RApp(env , p , s tack) → eva l None env p (SApp(v , s tack))
37 | v , RCst (cid , s tack) → unfo ld None (VCst (cid , v)) s tack
38 | v , RRec(recv , l i d , env , recp , s tack) →
39 begin

40 let recv = (l i d , v) : : recv in

41 match recp with

42 | [] → unfo ld None (VRec(L i s t . rev recv)) s tack
43 | (l i d , p) : : recp →
44 eva l None env p (RRec(recv , l i d , env , recp , s tack))

34

45 end

46 | VFun(id , p , env) , SApp(c , s tack) →
47 eva l (Some ”\\ beta ”) ((id , c) : : env) p stack
48 | VRec(record) , SPi (l i d , s tack) →
49 unfo ld (Some ”\\ pi ”) (L i s t . a s soc l i d record) s tack
50 | VCst (cid , v) , SCas (cases , s tack) →
51 let id , p , env = L i s t . a s soc c id ca s e s in

52 eva l (Some ”\\ sigma”) ((id , v) : : env) p stack
53 | VFix (p , env) , s tack → eva l (Some ”\\mu”) env p stack
54 | → a s s e r t f a l s e
55 with Not found → a s s e r t f a l s e
56 in

57 eva l None [] p SEmpty

Listing 16: Call by calue in program.ml

References

[1] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In FPCA ’93: Proceedings of the conference on Functional
programming languages and computer architecture, pages 31–41, New York,
NY, USA, 1993. ACM.

[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

[3] Alonzo Church. A formulation of the simple theory of types. J. Symb.
Log., 5(2):56–68, 1940.

[4] Lúıs Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In POPL, pages 207–212, 1982.

[5] M. Felleisen and D. Friedman. Control operators, the SECD machine and
the λ-calculus. Formal description of Programming Concepts III, pages
131–141, 1986.

[6] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[7] Timothy G. Griffin. A formulae as-as-types notion of control. In 17th
annual ACM symposiuom on Principle of Programming Language, pages
47–58. Oxford University Press, 1990.

[8] S. C. Kleene. On the interpretation of intuitionistic number theory. The
Journal of Symbolic Logic, 10(4):109–124, 1945.

[9] G. Kreisel. Interpretation of analysis by means of constructive functionals
of finite types”. Constructivity in Mathematics, pages 101–128, 1959.

[10] Jean-Louis Krivine. Classical logic, storage operators and second-order
lambda-calculus. Ann. Pure Appl. Logic, 68(1):53–78, 1994.

35

[11] Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de
complétude de la logique classique. Bulletin of Symbolic Logic, 2(4):405–
421, 1996.

[12] Jean-Louis Krivine. The curry-howard correspondence in set theory. In
LICS, pages 307–308, 2000.

[13] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor. Com-
put. Sci., 308(1-3):259–276, 2003.

[14] A. Miquel. Relating classical realizability and negative translation for ex-
istential witness extraction. In P.-L. Curien, editor, TLCA, volume 5608
of Lecture Notes in Computer Science, pages 188–202. Springer, 2009.

[15] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. TAPOS, 5(1):35–55, 1999.

[16] Michel Parigot. λµ-calculus an algorithmic interpretation of classical nat-
ural deduction. Proceedings of Logic and Automatic Reasoning, 1991. Lec-
ture Notes in Computer Science Vol. 624.

[17] Michel Parigot. Proofs of strong normalisation for second order classical
natural deduction. J. Symb. Log., 62(4):1461–1479, 1997.

[18] François Pottier. A versatile constraint-based type inference system.
Nordic J. of Computing, 7(4):312–347, 2000.

[19] FranÃ§ois Pottier. Simplifying subtyping constraints: a theory. Informa-
tion & Computation, 170(2):153–183, November 2001.

[20] FranÃ§ois Pottier and Didier Rémy. The essence of ML type inference. In
Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

[21] Christophe Raffalli. Getting results from programs extracted from classical
proofs. Theor. Comput. Sci., 323(1-3):49–70, 2004.

[22] Christophe Raffalli and Frédéric Ruyer. Realizability of the axiom of choice
in hol. (an analysis of krivine’s work). Fundam. Inform., 84(2):241–258,
2008.

[23] W.W. Tait. A realizability interpretation of the theory of species. In
R. Parikh, editor, Logic Colloquium, volume 453 of Lectures Notes in Math-
ematics, pages 240–251, Boston, 1975. Springer-Verlag.

36

Index

⊥⊥-saturated, 10

abstract syntax of programs, 9
adequation lemma, 23
adjoin operation, 15

bad reduction, 9
beta reduction, 6

call-by-value, 7, 33
case selection, 6
Church-Rosser property, 7
closure, 34
coinduction, 11
constructions, 14
constructor constraints, 21
constructor names, 5
context, 6, 10
contravariant, 12
covariant, 12

destructor constraints, 21
double bottom, 9

extracted constraints, 22

fixpoint, 6
fold, 18

hermitian matrix, 18

interpretation, 23

label names, 5
lattices, 15

manifest error, 7
multi-vector, 20

operational semantics, 6
opponent, 10
orthogonal, 12

productive, 11
projection, 6
property of realizability candidates, 13

realizability candidates, 9, 13

relation lattice, 16
relational constraints, 21

safe, 7
satisfiable, 30
saturated constraints, 27

ternary product, 26
type error, 26
type names, 15
types, 15
typing constraints, 21

variables, 5

37

	Introduction
	Realizability
	Typing in programming languages
	Other trends in realizability
	What is done here
	Notes about this document

	The toyML language
	Realizability candidates
	Lattices and matrices
	Typing constraints
	Checking the constraints
	Further work
	Types
	Simplification of the constraints and Polymorphism
	Larger lattices

	Call by value semantics

