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A SIMPLE PROOF OF THE INVARIANT TORI THEOREM

JACQUES FÉJOZ

Abstract. We first reduce the proof of Kolmogorov’s theorem on the persistence of

quasiperiodic invariant tori in Hamiltonian systems, to Herman’s normal form, a well-

posed inversion problem. The latter problem is then adressed with a simple inverse

function theorem in the analytic category, whose own proof relies on the Newton

algorithm and on interpolation inequalities.
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1. Kolmogorov’s theorem

Let H be the space of germs along Tn0 := T
n × {0} of real analytic Hamiltonians in

T
n × R

n = {(θ, r)} (Tn = R
n/2πZn). The vector field associated with H ∈ H is

~H : θ̇ = ∂rH, ṙ = −∂θH.

For α ∈ R
n, let K be the affine subspace of Hamiltonians K ∈ H such that K|Tn

0
is

constant (i.e. Tn0 is invariant) and ~K|Tn
0
= α. Those Hamiltonians are characterized by

their first order expansion along Tn0 , of the form c + α · r for some c ∈ R, that is, their
expansion is constant with respect to θ and the coefficient of r is α.

Date: April 2010.
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2 JACQUES FÉJOZ

Let Zn∗ := Z
n \ {0} and

Dγ,τ = {α ∈ R
n, ∀k ∈ Z

n
∗ |k · α| ≥ γ|k|−τ}, |k| := |k|1 = |k1|+ · · ·+ |kn|;

see Rüssmann [2001] or Féjoz [2010] for (less restrictive) Brjuno arithmetic conditions.

Theorem 1 (Kolmogorov [1954], Chierchia [2008]). Let α ∈ Dγ,τ and Ko ∈ K such that
the averaged Hessian

∫

Tn

∂2Ko

∂r2
(θ, 0) dθ

is non degenerate. Every H ∈ H close to Ko possesses an α-quasiperiodic invariant
torus.

This theorem has far reaching consequences. In particular it has led to a partial answer
to the long standing question of the stability of the Solar system (Arnold [1964], Féjoz
[2004], Celletti and Chierchia [2007]). See Bost [1986], Sevryuk [2003], de la Llave [2001]
for references and background.

Kolmogorov’s theorem is a consequence of the following normal form. Let G be the
space of germs along Tn0 of real analytic exact symplectomorphisms G in T

n×R
n of the

following form:

G(θ, r) = (ϕ(θ), tϕ′(θ)−1(r + ρ(θ))),

where ϕ is a real analytic isomorphism of Tn fixing the origin, and ρ is an exact 1-form
on T

n.

Theorem 2 (Herman). Let α ∈ Dγ,τ and Ko ∈ K. For every H ∈ H close enough to
Ko, there exists a unique (K,G, β) ∈ K × G × R

n close to (Ko, id, 0) such that

H = K ◦G+ β · r

in some neighborhood of G−1(Tn0 ). Moreover, β is C1-smooth with respect to H.

In other words, the orbits of Hamiltonians K ∈ K under the action of symplectomor-
phisms of G locally form a subspace of finite codimension n. The offset β · r usually
breaks the dynamical conjugacy between K and H; hence Herman’s normal form is of
geometrical nature and can be called a twisted conjugacy. The strategy for deducing
the existence of an H-invariant torus (namely, G−1(Tn0 )) from that of a K-invariant
torus (namely, Tn0 ) is to show that β vanishes on some subset of large measure in some
parameter space (in some cases, the frequency α cannot be fixed and needs to be varied).

In the paper, O(rn) will denote the ideal of functions of (θ, r) of the n-th order with
respect to r.

Proof of theorem 1 assuming theorem 2. Let Ko
2(θ) := 1

2
∂2Ko

∂r2
(θ, 0). Let F be the qua-

dratic form valued, analytic function which solves the cohomological equation LαF =
Ko

2−
∫

Tn
0

Ko
2 dθ (see lemma 5), and ϕ be the germ along Tn0 of the (well defined) time-one

map of the flow of the Hamiltonian F (θ) · r2. The map ϕ is symplectic and restricts
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to the identity on Tn0 . At the expense of substituting Ko ◦ ϕ and H ◦ ϕ for Ko and H
respectively, one can thus assume that

Ko = c+ α · r +Q · r2 +O(r3), Q :=

∫

Tn
0

Ko
2(θ) dθ.

The germs so obtained from the initial Ko and H are close to one another.

Consider the family of trivial perturbations obtained by translating Ko in the direction
of actions:

Ko
R(θ, r) := Ko(θ,R+ r), R ∈ R

n, R small,

and its approximation obtained by truncating the first order jet of Ko
R along Tn0 from

its terms O(R2) which possibly depend on θ:

K̂o
R(θ, r) := (c+ α ·R) + (α+ 2Q ·R) · r +O(r2) = Ko

R +O(R2).

For the Hamiltonian K̂o
R, T

n
0 is invariant and quasiperiodic of frequency α + 2Q · R.

Hence the Herman normal form of K̂o
R with respect to the frequency α is

K̂o
R =

(

K̂o
R − β̂oR · r

)

◦ id+β̂oR · r, β̂oR := 2Q · R.

By assumption the matrix ∂β̂o

∂R

∣

∣

∣

R=0
= 2Q is invertible and the map R 7→ β̂o(R) is a local

diffeomorphism.

Now, theorem 2 asserts the existence of an analogous map R → β(R) for HR, which is

a small C1-perturbation of R 7→ β̂o(R), and thus a local diffeomorphism, with a domain
having a lower bound locally uniform with respect to H. Hence if H is close enough to
Ko there is a unique small R such that β = 0. For this R the equality HR = K ◦ G
holds, hence the torus obtained by translating G−1(Tn0 ) by R in the direction of actions
is invariant and α-quasiperiodic for H. �

Exercise 3 Simplify this proof when starting from an integrable Hamiltonian Ko(r).

It is the aim of the rest of the paper to prove theorem 2, by locally inverting some
operator

φ : (K,G, β) 7→ H = K ◦G+ β · r
when α is diophantine.

2. Complexification and the functional setting

For various sets U and V , A(U, V ) will denote the set of continuous maps U → V which

are real analytic on the interior Ů , and A(U) := A(U,C).

Recall notations for the abstract torus and its embedding in the phase space:

T
n = R

n/2πZn and Tn0 = T
n × {0} ⊂ T

n × R
n.

Define complex extensions

T
n
C = C

n/2πZn and TnC = T
n
C × C

n
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as well as bases of neighborhoods

T
n
s = {θ ∈ T

n
C, max

1≤j≤n
|Im θj| ≤ s} and Tns = {(θ, r) ∈ TnC, |(θ, r)| ≤ s},

with |(θ, r)| := max1≤j≤nmax (|Im θj |, |rj |).

2.1. Spaces of Hamiltonians. – Let Hs = A(Tns ), endowed with the Banach norm

|H|s := sup
(θ,r)∈Tn

s

|H(θ, r)|,

so that H be the inductive limit of the spaces Hs.

– For α ∈ R
n, let Ks be the affine subspace consisting of those K ∈ Hs such that

K(θ, r) = c+ α · r +O(r2) for some c ∈ R.

– If G is a real analytic isomorphism on some open set of Tn
C
and if G is transverse to

Tns , let G
∗A(Tns ) := A(G−1(Tns )) be endowed with the Banach norm

|H|G,s := |H ◦G−1|s.

2.2. Spaces of conjugacies.

2.2.1. Diffeomorphisms of the torus. Let Ds be the space of maps ϕ ∈ A(Tns ,T
n
C
) which

are analytic isomorphisms from T̊
n
s to their image and which fix the origin.

Let also

χs := {v ∈ A(Tns )
n, v(0) = 0}

be the space of vector fields on T
n
s which vanish at 0, endowed with the Banach norm

|v|s := max
θ∈Tn

s

max
1≤j≤n

|vj(θ)|.

According to corollary 14, the map

σB̊χ
s+σ := {v ∈ χs+σ, |v|s < σ} → Ds, v 7→ id+v

is defined and locally bijective. It endows Ds with a local structure of Banach manifold
in the neighborhood of the identity.

We will consider the contragredient action of Ds on Tns (with values in Tn
C
) :

ϕ(θ, r) := (ϕ(θ), tϕ′(θ)−1 · r),
in order to linearize the dynamics on the alleged invariant tori.

2.2.2. Straightening tori. Let Bs be the space of exact one-forms over Tns , with

|ρ|s = max
θ∈Tn

s

max
1≤j≤n

|ρj(θ)|, ρ = (ρ1, ..., ρn).

We will consider its action on Tns by translation of the actions:

ρ(θ, r) := (θ, r + ρ(θ)),

in order to straighten the perturbed invariant tori.
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2.2.3. Our space of conjugacies. Let Gs = Ds×Bs, identified with a space of Hamiltonian
symplectomorphisms by

(ϕ, ρ)(θ, r) := ϕ ◦ ρ (θ, r) = (ϕ(θ), tϕ′(θ)−1(r + ρ(θ))).

Endow its tangent space at the identity TidGs = gs := χs × Bs with the norm

|Ġ|s = |(v, ρ)|s := max(|v|s, |ρ|s),
and its tangent space at G = (ϕ, ρ) with the norm

|δG|s := |δG ◦G−1|s, δG ∈ TGG.
Here and elsewhere, the notation δG, as well as similar ones, should be taken as a whole;
there is no separate δ ∈ R in the present paper.

Also consider the following neighborhoods of the identity:

Gσs =

{

G ∈ Gs, max
(θ,r)∈Tn

s

|(Θ − θ,R− r)| ≤ σ, (Θ, R) = G(θ, r)

}

, σ > 0.

The operators (commuting with inclusions of source and target spaces)

φs : Es := Ks+σ × Gσs × R
n → Hs, (K,G, β) 7→ K ◦G+ β · r

are now defined.

3. Herman’s normal form

Theorem 4. Let α ∈ Dγ,τ . For all 0 < s < s + σ < 1, φs+σ has a local inverse: if
|H − Ko|s+σ is small, there is a unique (K,G, β) ∈ Es, | · |s-close to (Ko, id, 0) (in a
manner worsening when σ is small), such that H = K ◦G+ β · r. Moreover β ◦ φ−1 is
a C1-function locally in the neighborhood of Ko in Hs+σ.

This follows from the inverse function theorem of appendix A, whose two hypotheses
(one on φ′−1 and one on φ′′) will now be checked.

Let Lα be the Lie derivative operator in the direction of the constant vector field α :

Lα : A(Tns ) → A(Tns ), f 7→ f ′ · α =
∑

1≤j≤n

αj
∂f

∂θj
.

We will need the following lemma in two instances in the proof of lemma 6.

Lemma 5 (Cohomological equation). If g ∈ A(Tns+σ) has 0-average (
∫

T
g dθ = 0), there

exists a unique function f ∈ A(Tns ) of 0-average such that Lαf = g, and there exists a
C0 = C0(n, τ) such that, for any σ:

|f |s ≤ C0γ
−1σ−τ−n|g|s+σ .

Proof. Let g(θ) =
∑

k∈Zn
∗

gk e
ik·θ be the Fourier expansion of g. The unique formal

solution to the equation Lαf = g is given by f(θ) =
∑

k∈Zn
∗

gk
i k·α e

i k·θ.
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Since g is analytic, its Fourier coefficients decay exponentially: we find

|gk| =
∣

∣

∣

∣

∫

Tn

g(θ) e−ik·θ
dθ

2π

∣

∣

∣

∣

≤ |g|s+σe−|k|(s+σ)

by shifting the torus of integration to a torus Im θj = ±(s+ σ).

Using this estimate and replacing the small denominators k · α by the estimate defining
the diophantine property of α, we get

|f |s ≤ |g|s+σ
γ

∑

k

|k|τ e−|k|σ

≤ 2n|g|s+σ
γ

∑

ℓ≥1

(

ℓ+ n− 1
ℓ

)

ℓτ e−ℓ σ ≤ 4n|g|s+σ
γ (n− 1)!

∑

ℓ

(ℓ+ n− 1)τ+n−1 e−ℓ σ,

where the latter sum is bounded by
∫ ∞

1
(ℓ+ n− 1)τ+n−1e−(ℓ−1)σ dℓ = σ−τ−nenσ

∫ ∞

nσ
ℓτ+n−1e−ℓ dℓ

< σ−τ−nenσ
∫ ∞

0
ℓτ+n−1e−ℓ dℓ = σ−τ−nenσΓ(τ + n).

Hence f belongs to A(Tns ) and satisfies the wanted estimate. �

We will write x = (K,G, β, c), δx = (δK, δG, δβ, δc) and δx̂ = (δK̂, δĜ, δβ̂, δĉ).

Fix 0 < s < s+ σ < 1.

Lemma 6. There exists C ′ > 0 which is locally uniform with respect to x ∈ Es in the
neighborhood of G = id such that the linear map φ′(x) has an inverse φ′(x)−1 satisfying

∣

∣φ′(x)−1 · δH
∣

∣

s
≤ σ−τ−n−1C ′ |δH |G,s+σ .

Proof. A function δH ∈ G∗A(Ts+σ) being given, we want to solve the equation

δφ(x) · δx = δK ◦G+K ′ ◦G · δG+ δβ · r + δc = δH,

for the unknowns δK ∈ TKKs ⊂ A(Tns ), δG ∈ TGGs, δβ ∈ R
n and δc ∈ R, or, equiva-

lently, after composing with G−1 to the right,

δK +K ′ · Ġ+ δβ · r ◦G−1 + δc = Ḣ,

where we have set Ġ := δG ◦G−1 ∈ gs and Ḣ := δH ◦G−1 ∈ A(Tns ).

More specifically, G−1 and Ġ are of the form

G−1(θ, r) = (ϕ−1(θ), tϕ′ ◦ ϕ−1(θ) · (r − ρ ◦ ϕ−1(θ))), Ġ = (ϕ̇, ρ̇− r · ϕ̇′),

where ϕ̇ ∈ χs+σ and ρ̇ ∈ Bs+σ, and we can expand

K = α · r +K2(θ) · r2 +O(r3) and Ḣ = Ḣ0(θ) + Ḣ1(θ) · r +O(r2).

The equation becomes

(1)
[

ρ̇ · α+ δc− (ρ · ϕ′) ◦ ϕ−1 · δβ
]

+ r ·
[

−ϕ̇′ · α+ ϕ′ ◦ ϕ−1 · δβ + 2K2 · ρ̇
]

+

K̇ = Ḣ +O(r2),
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where the term O(r2) in the right hand side depends only on K and Ġ, and not on K̇.
The equation turns out to be triangular in the five unknowns. The existence of a unique
solution with the wanted estimate follows from repeated applications of lemma 5 and
Cauchy’s inequality:

– The average over Tn0 of the first order terms with respect to r in equation (1) yields

δβ =

(∫

Tn

ϕ′ ◦ ϕ−1 dθ

)−1

·
∫

Tn
0

Ḣ1 dθ,

which does exist if ϕ is close to the identity (proposition 14).

– Similarly, the average of the restriction to Tn0 of (1) yields:

δc =

∫

Tn
0

Ḣ0 dθ +

∫

Tn
0

ρ ◦ ϕ−1 dθ ·
∫

Tn
0

Ḣ1 dθ.

– Next, the restriction to Tn0 of (1) can be solved uniquely with respect to δρ according
to lemma 5 (applied with ρ = f ′).

– The part of degree one can then be solved for ϕ̇ similarly.

– Terms of order ≥ 2 in r determine K̇. �

Lemma 7. There exists a constant C ′′ > 0 which is locally uniform with respect to
x ∈ Es+σ in the neighborhood of G = id such that the bilinear map φ′′(x) satisfies

∣

∣φ′′(x) · δx⊗ δx̂
∣

∣

G,s
≤ σ−1C ′′ |δx|s+σ|δx̂|s+σ.

Proof. Differentiating φ twice yields

φ′′(x) · δx⊗ δx̂ = δK ′ ◦G · δG + δK̂ ′ ◦G · δG+K ′′ ◦G · δG ⊗ δĜ,

whence the estimate. �

A. An inverse function theorem

Let E = (Es)0<s<1 be a decreasing family of Banach spaces with increasing norms | · |s,
and ǫBE

s = {x ∈ Es, |x|s < ǫ}, ǫ > 0, be its balls centered at 0.

Let (Fs) be an analogous family. Endow F with additional norms |·|x,s, x ∈ Es, 0 < s <
1, satisfying

|y|0,s = |y|s and |y|x′,s ≤ |y|x,s+|x′−x|s
.

These norms allow for dealing with composition operators without artificially loosing
some fixed “width of analyticity” σ at each step of the Newton algorithm.

Let φ : σBE
s+σ → Fs, s < s + σ, φ(0) = 0, be maps commuting with inclusions, twice

differentiable, such that the differential φ′(x) : Es+σ → Fs has a right inverse φ′(x)−1 :
Fs+σ → Es, and

{

|φ′(x)−1η|s ≤ C ′σ−τ
′ |η|x,s+σ

|φ′′(x)ξ⊗2|x,s ≤ C ′′σ−τ
′′ |ξ|2s+σ (∀s, σ, x, ξ, η)
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with C ′, C ′′, τ ′, τ ′′ ≥ 1. Let C := C ′C ′′ and τ := τ ′ + τ ′′.

Theorem 8. φ is locally surjective and, more precisely, for any s, η and σ with η < s,

ǫBF
s+σ ⊂ φ

(

ηBE
s

)

, ǫ := 2−8τC−2σ2τη.

In other words, φ has a right-inverse ψ : ǫBF
s+σ → ηBE

s .

Proof. Some numbers s, η and σ and y ∈ BF
s+η being given, let

f : σBE
s+η+σ → Es, x 7→ x+ φ′(x)−1(y − φ(x))

and

Q : σBE
s+σ × σBE

s+σ → Fs, (x, x̂) 7→ φ(x̂)− φ(x)− φ′(x)(x̂− x).

Lemma 9. The function Q satisfies: |Q(x, x̂)|x,s ≤ 2−1C ′′σ−τ
′′ |x̂− x|2s+σ+|x̂−x|s

.

Proof of the lemma. Let x̂t := (1− t)x+ tx̂. Taylor’s formula yields

Q(x, x̂) =

∫ 1

0
(1− t)φ′′(x̂t) (x̂− x)2 dt,

hence

|Q(x, x̂)|x,s ≤
∫ 1

0
(1− t)

∣

∣φ′′(x̂t)(x̂− x)2
∣

∣

x,s
dt ≤

∫ 1

0
(1− t)

∣

∣φ′′(x̂t)(x̂− x)2
∣

∣

x̂t,s+|x̂t−x|s
dt,

whence the estimate. �

Now, let s, η and σ be fixed, with η < s and y ∈ ǫBF
s+σ for some ǫ. We will see that if ǫ

is small enough, the sequence x0 = 0, xn := fn(0) is defined for all n ≥ 0 and converges
towards some preimage x ∈ ηBE

s of y by φ.

Let (σn)n≥0 be a sequence of positive real numbers such that 3
∑

σn = σ, and (sn)n≥0

be the sequence decreasing from s0 := s + σ to s defined by induction by the formula
sn+1 = sn − 3σn.

Assuming the existence of x0, ..., xn+1, we see that φ(xk) = y +Q(xk−1, xk), hence

xk+1 − xk = φ′(xk)
−1(y − φ(xk)) = −φ′(xk)−1Q(xk−1, xk) (1 ≤ k ≤ n).

Further assuming that |xk+1−xk|sk ≤ σk, the estimate of the right inverse and lemma 9
entail that

|xn+1 − xn|sn+1
≤ cn|xn − xn−1|2sn ≤ · · · ≤ cnc

2
n−1 · · · c2

n−1

1 |x1|2
n−1

s1 , ck := 2−1Cσ−τk .

The estimate

|x1|s1 ≤ C ′(3σ0)
−τ ′ |y|s0 ≤ 2−1Cσ−τ0 ǫ = c0ǫ

and the fact, to be checked later, that ck ≥ 1 for all k ≥ 0, show :

|xn+1 − xn|sn+1
≤



ǫ
∏

k≥0

c2
−k

k





2n

.
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Since
∑

n≥0 ρ
2n ≤ 2ρ if 2ρ ≤ 1, in order to have all xn’s defined and to have

∑ |xn+1 −
xn|s ≤ η, it suffices that

ǫ ≤ η

2

∏

k≥0

c−2−k

k .

Maximizing the upper bound of ǫ under the constraint 3
∑

n≥0 σn = σ yields σk :=
σ
62

−k.

A posteriori it is straightforward that |xn+1 − xn|sn ≤ σn (as earlier assumed to apply
lemma 9) and cn ≥ 1 for all n ≥ 0. Besides, using that

∑

k2−k =
∑

2−k = 2 we get

η

2

∏

k≥0

c−2−k

k =
η

2

∏

k≥0

1

2τk2−k

(

2

C

(σ

6

)τ
)2−k

=
2η

C2

( σ

12

)2τ
>

σ2τη

28τC2
,

whence the theorem. �

Exercise 10 The domain of ψ contains ǫBF
S , ǫ = 2−12τ τ−1C−2S3τ , for any S.

Proof. The above function ǫ(η, σ) = 2−8τC−2σ2τη attains is maximum with respect to
η < s for η = s. Besides, under the constraint s+ σ = S the function ǫ(s, σ) attains its
maximum when σ = 2τs and s = S

1+2τ . Hence, S being fixed, the domain of ψ contains

ǫBF
S if

ǫ < 2−8τC−2 S

1 + 2τ

(

2τS

12(1 + 2τ)

)2τ

.

Given that S < 1 < τ by hypothesis, it suffices that ǫ be equal to the stated value. �

A.1. Regularity of the right-inverse. In the proof of theorem 8 we have built right
inverses ψ : ǫBF

s+η+σ → ηBE
s+η, of φ, commuting with inclusions. The estimate given in

the statement shows that ψ is continuous at 0; due to the invariance of the hypotheses
of the theorem by small translations, ψ is locally continuous.

We further make the following two asumptions:

– The maps φ′(x)−1 : Fs+σ → Es are left (as well as right) inverses (in theorem 4 we
have restricted to an adequate class of symplectomorphisms);

– The scale (| · |s) of norms of (Es) satisfies some interpolation inequality:

|x|2s+σ ≤ |x|s |x|s+σ̃ for all s, σ, σ̃ = σ

(

1 +
1

s

)

(according to the remark after corollary 16, this estimate is satisfied in the case of interest
to us, since σ + log(1 + σ/s) ≤ σ̃).

Lemma 11 (Lipschitz regularity). If σ < s and y, ŷ ∈ ǫBF
s+σ with ǫ = 2−14τC−3σ3τ ,

|ψ(ŷ)− ψ(y)|s ≤ CL|ŷ − y|s+σ, CL = 2C ′σ−τ
′

.

Proof. Fix η < ζ < σ < s; the impatient reader can readily look at the end of the proof
how to choose the auxiliary parameters η and ζ more precisely.
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Let ǫ = 2−8τC−2ζ2τη, and y, ŷ ∈ ǫBF
s+σ. According to theorem 8, x := ψ(y) and

x̂ := ψ(ŷ) are in ηBE
s+σ−ζ , provided the condition, to be checked later, that η < s+σ−ζ.

In particuliar, we will use a priori that

|x̂− x|s+σ−ζ ≤ |x̂|s+σ−ζ + |x|s+σ−ζ ≤ 2η.

We have

x̂− x = φ′(x)−1φ′(x)(x̂− x)

= φ′(x)−1 (ŷ − y −Q(x, x̂))

and, according to the assumed estimate on φ′(x)−1 and to lemma 9,

|x̂− x|s ≤ C ′σ−τ
′ |ŷ − y|s+σ + 2−1Cζ−τ |x̂− x|2s+2η+|x̂−x|s

.

In the norm index of the last term, we will coarsely bound |x̂− x|s by 2η. Additionally
using the interpolation inequality:

|x̂− x|2s+4η ≤ |x̂− x|s|x̂− x|s+σ̃, σ̃ = 4η

(

1 +
1

s

)

,

yields
(

1− 2−1Cζ−τ |x̂− x|s+σ̃
)

|x̂− x|s ≤ C ′σ−τ
′ |ŷ − y|s+σ.

Now, we want to choose η small enough so that

– first, σ̃ ≤ σ − ζ, which implies |x̂− x|s+σ̃ ≤ 2η. By definition of σ̃, it suffices to have

η ≤ σ−ζ
4(1+1/s) .

– second, 2−1Cζ−τ 2η ≤ 1/2, or η ≤ ζτ

2C , which implies that 2−1Cζ−τ |x̂ − x|s+σ̃ ≤ 1/2,

and hence |x̂− x|s ≤ 2C ′σ−τ
′ |ŷ − y|s+σ.

A choice is ζ = σ
2 and η = στ

16C < s, whence the value of ǫ in the statement. �

Proposition 12 (Smoothness). For every s, σ, there exists η, ǫ, C1 such that η ≥ σ and,
for every y, ŷ ∈ ǫBF

s+η,

|ψ(ŷ)− ψ(y)− φ′(ψ(y))−1(ŷ − y)|s ≤ C1|ŷ − y|2s+σ.
Moreover, the map ψ′ : ǫBF

s+η → L(Fs+η, Es) defined locally by ψ′(y) = φ′(ψ(y))−1 is
continuous.

Proof. Fix y, ŷ ∈ εBF
S+σ as in the previous proof. Let x = ψ(y), η = ŷ − y, ξ =

ψ(y + η) − ψ(y) (thus η = φ(x + ξ) − φ(x)), and ∆ := ψ(y + η) − ψ(y) − φ′(x)−1η.
Definitions yield

∆ = φ′(x)−1
(

φ′(x)ξ − η
)

= −φ′(x)−1Q(x, x+ ξ).

Using the estimates on φ′(x)−1 and Q and the latter lemma,

|∆|s ≤ C1|η|2s+σ
for some C1 > 0 depenging on σ. The number σ can be chose arbitrarily small, provided
η itself is small enough.
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The inversion of linear operators between Banach spaces being analytic, y 7→ φ(ψ(y))−1

is continuous in the stated sense. �

Corollary 13. If π ∈ L(Es, V ) is a family of linear maps, commuting with inclusions,
into a fixed Banach space V , then π ◦ ψ is C1 and (π ◦ ψ)′ = π · φ′ ◦ ψ.

This corollary will be used with π : (K,G, β) 7→ β in the proof of theorem 4.

B. Some estimates on analytic isomorphisms

In this appendix, we give a quantitative inverse function theorem for real analytic iso-
morphisms on T

n
s . This is used in section 2, to parametrize locally Ds by vector fields.

Recall that we have set Tns := {θ ∈ C
n/2πZn, max1≤j≤n |Im θj| ≤ s}. We will denote

by p : Rns := R
n × i[−s, s]n → T

n
s its universal covering.

Proposition 14. Let v ∈ A(Tns+2σ,C
n), |v|s+2σ < σ. The map id+v : Tns+2σ → R

n
s+3σ

induces a map ϕ : Tns+2σ → T
n
s+3σ whose restriction ϕ : Tns+σ → T

n
s+2σ has a unique

right inverse ψ : Tns → T
n
s+σ:

T
n
s+σ

� � ϕ
// T
n
s+2σ

T
n
s

Q1

ψ

ccG
G

G

G

G

G

G

G

G

?�

OO

.

Furthermore,

|ψ − id |s ≤ |v|s+σ
and, provided 2σ−1|v|s+2σ ≤ 1,

|ψ′ − id | ≤ 2σ−1|v|s+2σ .

Proof. Let Φ : Rns+2σ → R
n
s+3σ be a continuous lift of id+v and k ∈ Mn(Z), k(l) :=

Φ(x+ l)− Φ(x).

(1) Injectivity of Φ : Rns+σ → R
n
s+2σ. Suppose that x, x̂ ∈ R

n
s+σ and Φ(x) = Φ(x̂).

By the mean value theorem,

|x− x̂| = |v(px̂)− v(px)| ≤ |v′|s+σ|x− x̂|,
and, by Cauchy’s inequality,

|x− x̂| ≤ |v|s+2σ

σ
|x− x̂| < |x̂− x|,

hence x = x̂.
(2) Surjectivity of Φ: R

n
s ⊂ Φ(Rns+σ). For any given y ∈ R

n
s , the contraction

f : Rns+σ → R
n
s+σ, x 7→ y − v(x)

has a unique fixed point, which is a pre-image of y by Φ.
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(3) Injectivity of ϕ : Tns+σ → T
n
s+2σ. Suppose that px, px̂ ∈ R

n
s+σ and ϕ(px) =

ϕ(px̂), i.e. Φ(x) = Φ(x̂)+κ for some κ ∈ Z
n. That k be in GL(n,Z), follows from

the invertibility of Φ. Hence, Φ
(

x− k−1(κ)
)

= Φ(x̂), and, due to the injectivity
of Φ, px = px̂.

(4) Surjectivity of ϕ : Tns ⊂ ϕ(Tns+σ). This is a trivial consequence of that of Φ.

(5) Estimate on ψ := ϕ−1 : Tns → T
n
s+σ. Note that the wanted estimate on ψ is in

the sense of Ψ := Φ−1 : Rns → R
n
s+σ. If y ∈ R

n
s ,

Ψ(y)− y = −v(pΨ(y)),

hence |Ψ − id |s ≤ |v|s+σ.
(6) Estimate on ψ′. We have ψ′ = ϕ′−1 ◦ϕ, where ϕ′−1(x) stands for the inverse of

the map ξ 7→ ϕ′(x) · ξ. Hence
ψ′ − id = ϕ′−1 ◦ ϕ− id,

and, under the assumption that 2σ−1|v|s+2σ ≤ 1,

|ψ′ − id |s ≤ |ϕ′−1 − id |s+σ ≤ |v′|s+σ
1− |v′|s+σ

≤ σ−1|v|s+2σ

1− σ−1|v|s+2σ
≤ 2σ−1|v|s+2σ .

�

C. Interpolation of spaces of analytic functions

In this section we prove some Hadamard interpolation inequalities, which are used in A.1.

Recall that we denote by T
n
C
the infinite annulus Cn/2πZn, by T

n
s , s > 0, the bounded

sub-annulus {θ ∈ T
n
C
, |Im θj| ≤ s, j = 1...n} and by D

n
t , t > 0, the polydisc {r ∈

C
n, |rj| ≤ t, j = 1...n}. The supremum norm of a function f ∈ A(Tns × D

n
t ) will be

denoted by |f |s,t.
Let 0 < s0 ≤ s1 and 0 < t0 ≤ t1 be such that

log
t1
t0

= s1 − s0.

Let also 0 ≤ ρ ≤ 1 and

s = (1− ρ)s0 + ρs1 and t = t1−ρ0 tρ1.

Proposition 15. If f ∈ A(Tns1 × D
n
t1),

|f |s,t ≤ |f |1−ρs0,t0 |f |
ρ
s1,t1 .

Proof. Let f̃ be the function on Tns1×Dnt1 , constant on 2n-tori of equations (Im θ, r) = cst,
defined by

f̃(θ, r) = max
µ,ν∈Tn

∣

∣f
(

(±θ1 + µ1, ...,±θn + µn),
(

r1 e
iν1 , ..., rn e

iνn
))∣

∣

(with all possible combinations of signs). Since log |f | is subharmonic and T
2n is compact,

log f̃ too is upper semi-continuous. Besides, log f̃ satisfies the mean inequality, hence is
plurisubharmonic.
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By the maximum principle, the restriction of |f | to T
n
s ×D

n
t attains its maximum on the

distinguished boundary of Tns × D
n
t . Due to the symmetry of f̃ :

|f |s,t = f̃(isǫ, tǫ), ǫ = (1, ..., 1).

Now, the function

ϕ(z) := f̃(zǫ, e−(iz+s)tǫ)

is well defined on Ts1 , for it is constant with respect to Re z and, due to the relations

imposed on the norm indices, if |Im z| ≤ s1 then |e−(iz+s)t| ≤ es1−st = t1.

The estimate

logϕ(z) ≤ s1 − Im z

s1 − s0
ϕ(s0i) +

Im z − s0
s1 − s0

ϕ(s1i)

trivially holds if Im z = s0 or s1, for, as noted above for j = 1, esj−st = tj , j = 0, 1.
But note that the left and right hand sides respectively are suharmonic and harmonic.
Hence the estimate holds whenever s0 ≤ Im z ≤ s1, whence the claim for z = is. �

Recall that we have let Tns := T
n
s × D

n
s , s > 0, and, for a function f ∈ A(Tns ), let

|f |s = |f |s,s denote its supremum norm on Tns . As in the rest of the paper, we now
restrict the discussion to widths of analyticity ≤ 1.

Corollary 16. If σ1 = − log
(

1− σ0
s

)

and f ∈ A(Tns+σ1),

|f |2s ≤ |f |s−σ0 |f |s+σ1 .

In A.1, we will use the equivalent fact that, if σ̃ = s+ log
(

1 + σ
s

)

and f ∈ A(Tns+σ̃),

|f |2s+σ ≤ |f |s|f |s+σ̃.

Proof. In proposition 15, consider the following particular case :

• ρ = 1/2. Hence

s =
s0 + s1

2
and t =

√
t0t1.

• s = t. Hence in particular t0 = s es0−s and t1 = s es1−s.

Then
|f |2s = |f |2s,s ≤ |f |s0,t0 |f |s1,t1 .

We want to determine max(s0, t0) and max(s1, t1). Let σ1 := s − s0 = s1 − s. Then
t0 = s e−σ1 and t1 = s eσ1 . The expression s+ σ − seσ has the sign of σ (in the relevant
region 0 ≤ s + σ ≤ 1, 0 ≤ s ≤ 1); by evaluating it at σ = ±σ1, we see that s0 ≤ t0 and
s1 ≥ t1.

Therefore, since the norm | · |s,t is non-decreasing with respect to both s and t,

|f |2s ≤ |f |t0,t0 |f |s1,s1 = |f |t0 |f |s1
(thus giving up estimates uniform with respect to small values of s). By further setting
σ0 = s−t0 = s (1− e−σ1), we get the wanted estimate, and the asserted relation between
σ0 and σ1 is readily verified. �
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D. Comments

Section 1. The proof of Kolmogorov’s theorem presented here differs from others chiefly
for the following reasons:

– The seeming detour through Herman’s normal form reduces Kolmogorov’s theorem
to a functionally well posed inversion problem (compare with Zehnder [1975, 1976]).
The remaining, finite dimensional problem is then to show that the frequency offset
β ∈ R

n may vanish; in general, it is met using a non-degeneracy hypothesis of one kind
or another.

The formulation chosen here adapts to more degenerate cases, including lower dimen-
sional, normally hyperbolic or elliptic, tori (compare the two proofs of Herman described
in Bost [1986] and Féjoz [2004]).

– The analytic (or Gevrey) category is simpler, in KAM theory, than Hölder or Sobolev
categories because the Newton algorithm can be carried out without intercalating smooth-
ing operators (compare with Sergeraert [1972], Bost [1986]).

– Incidentally, Hadamard interpolation inequalities are simple to infer for analytic norms
because, again, they do not depend on regularizing operators, as it is done in appendix C
(see [Hörmander, 1976, Theorem A.5]).

– The use of auxiliary norms (| · |G,s in lemmas 5 and 7, | · |x,s in appendix A) prevents
from artificially loosing, due to compositions, a fixed width of analyticity at each step of
the Newton algorithm –the domains of analyticity being deformed rather than shrunk
(compare with the inverse function theorem of [Jacobowitz, 1972, Theorem 1]).

Section 1. Theorem 4. Herman’s normal form is the Hamiltonian analogue of the normal
form of vector fields on the torus in the neighborhood of Diophantine constant vector
fields (Arnold [1961], Moser [1966a]). The normal form for Hamiltonians implies the
normal form for vector fields on the torus [Féjoz, 2004, Théorème 40] and is rather
simpler to prove from the algebraic point of view.

Section 3. Lemma 5. . The estimate is obtained by bounding the terms of Fourier series
one by one; for sharper estimates which much improve the exponent of σ in the right
hand side, making it independant of the dimension), see Moser [1966b] and Rüssmann
[1975].

Appendix A. Theorem 8. – The two competing small parameters η and σ being fixed, our
choice of the sequence (σn) maximizes ǫ for the Newton algorithm. It does not modify
the sequence (xk) but only the information we retain from (xk).

– In the expression of ǫ, the square exponent of C is inherent in the quadratic convergence
of Newton’s algorithm. From this follows the dependance, in KAM theory, of the size ǫ
of the allowed perturbation with respect to the small diophantine constant γ: ǫ = O(γ2).

– The method of Jacobowitz [1972] (see Moser [1966b] also)in order to deduce an inverse
function theorem in the smooth category from its analogue in the analytic category does
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not work here. The idea would be to use Jackson’s theorem in approximation theory
to caracterize the Hölder spaces by their approximation properties in terms of analytic
functions and, then, to find a smooth preimage x by φ of a smooth function y as the limit
of analytic preimages xj of analytic approximations yj of y. However, in our inversion
function theorem we require the operator φ to be defined only on balls σBs+σ with
shrinking radii when s+σ tends to 0. This domain is too small in general to include the
analytic approximations yj of a smooth y. Such a restriction is inherent in the presence
of composition operators, which Jacobowitz [1972] did not have to deal with. Yet we
could generalize Jackobowitz’s proof at the expense of making additionnal hypotheses
on the form of our operator φ, which would take into account the specificity of directions
K and G, as well as of the real phase space and of its complex extension.

Appendix A.1. It is possible to prove that ψ is C1 without additional asumptions, just
by patterning [Sergeraert, 1972, p. 626]). Yet the proof simplifies and the estimates
improve under the combined two additional asumptions.

Appendix B. We include this section for the sake of completeness, although the quan-
titative estimates are needed only if one wants a quatitative version of Kolmogorov’s
theorem, with an explicit value of ǫ.

A similar proposition is proved in Pöschel [2001] using an argument from degree theory.

Appendix C. In this paragraph, the obtained interpolation inequalities generalize the
standard Hadamard convexity inequalities. Yet they cannot be interpreted as convexity
inequalities, due to the geometry of the complex phase space. See [Narasimhan, 1995,
Chap. 8] for more general but less precise inequalities.

Thank you to A. Albouy, P. Bernard, A. Chenciner, A. Knauf, R. Krikorian, I. Kupka,
D. Sauzin and J.-C. Yoccoz, for illuminating discussions.
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R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications
(Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math., pages 175–292. Amer.
Math. Soc., Providence, RI, 2001.
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