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We characterize the compactness of composition operators; in term of generalized Nevanlinna counting functions, on a large class of Hilbert spaces of analytic functions, which can be viewed between the Bergman and the Dirichlet spaces

Introduction

Let D be the unit disk on the complex plane. Given a positive integrable function ω ∈ C 2 [0, 1), we extend it by ω(z) = ω(|z|), z ∈ D, and call such ω a weight function. We denote by H ω the space consisting of analytic functions f on D such that

f ′ 2 ω := D |f ′ (z)| 2 ω(z)dA(z) < ∞.
where dA(z) = dxdy/π stands for the normalized area measure in D.

The space H ω is endowed with the norm

f 2 Hω := |f (0)| 2 + f ′ 2 ω .
A simple computation shows that a function f (z) = ∞ n=0 a n z n belongs to H ω if and only if

f 2 Hω = n≥0 |a n | 2 w n < ∞,
where ω 0 = 1 and

ω n = 2n 2 1 0 r 2n-1 ω(r)dr, n ≥ 1.
Examples: Let α > -1, ω α (r) = (1 -r 2 ) α and denote H ωα by H α . The Hardy space H 2 can be identified with H 1 . The Dirichlet space D α is precisely H α for 0 ≤ α < 1 and H 0 corresponds to classical Dirichlet space D.

Finally, the Bergman spaces A 2 α (D) := Hol(D)∩L 2 (D, (1-|z| 2 ) α dA(z)) can be identified with H α+2 . Definition 1.1. We assume that ω is a weight function, with the following properties (W 1 ): ω is non-increasing, (W 2 ): ω(r)(1 -r) -(1+δ) is non-decreasing for some δ > 0, (W 3 ): lim Examples: point out that (I)-admissibility corresponds to the case H 2 H ω ⊂ A 2 α (D) for some α > -1, whereas (II)-admissibility corresponds to the case D H ω ⊆ H 2 .

The Nevanlinna counting functions shall play a key role in our work (see [START_REF] Lefèvre | Compact composition operators on Bergman-Orlicz spaces[END_REF] or [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF] for recent results on the classical Nevanlinna counting function and the quadratic Nevanlinna counting function).

Definition 1.2. Let ϕ ∈ Hol(D) such that ϕ(D) ⊂ D.
The generalized counting Nevanlinna function associated to ω is defined for every z ∈ D \ {ϕ(0)} by

N ϕ,ω (z) = ϕ(a)=z a∈D ω(a).
Point out that N ϕ,ω (z) = 0 when z / ∈ ϕ(D). By convention, we define N ϕ,ω (z) = 0 when z = ϕ(0). When ω(r) = ω 0 (r) ∼ log 1/r, N ϕ,ω 0 = N ϕ is the usual Nevanlinna counting function associated to ϕ.

In this note, we study the composition operators on H ω . The composition operator by ϕ is defined as follows

C ϕ (f ) = f • ϕ, f ∈ H ω .
The main result of the paper (Theorem 1.4 below) will concern compactness of C ϕ . Nevertheless, before proving this result, we have to ensure the boundedness of C ϕ . If ϕ is a holomorphic map on the unit disk D into itself, it is an easy consequence of Littlewood's subordination principle (see [START_REF] Shapiro | Composition operators and classical function theory[END_REF] for instance) that the composition operator with ϕ, induces a bounded operator C ϕ on H ω for (I)-admissible weight ω.

For the case of (II)-admissible weight we have 

sup |z|<1 N ϕ,ω (z) ω(z) < ∞ (1) 
Note that the preceding theorem is also valid under (W

(I) 4 
), but (1) is always fulfilled: either by a simple computation (see Remark 2.6), or using the fact that we already proved the boundedness in this case.

The following theorem generalizes the previously known results of [8, Theorem 2.3, Corollary 6.11] or [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], on Hardy and Bergman spaces see also Corollary 1.5.

Theorem 1.4. Let ω be an admissible weight and ϕ ∈ H ω . Then C ϕ is compact on H ω if and only if

lim |z|→1 - N ϕ,ω (z) ω(z) = 0 (2)
Obviously, condition (2) implies the boundedness of C ϕ on H ω for the admissible weight. Theorem 1.4 is the limiting case for the H α for α > 0 and the Dirichlet space is a degenerate case (Theorem 1.3 does not apply for the Dirichlet space). Indeed, Theorem 1.4 asserts that C ϕ is compact on

D α := H α for 0 < α < 1 if and only if (2) is satisfied, i.e. N ϕ,α (z) := ϕ(w)=z (1 -|w| 2 ) α = o((1 -|z| 2 ) α ).
Note that N ϕ,0 (z) is just the multiplicity n ϕ (z) of ϕ at z.

Let us recall that Zorboska showed in [START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF] (see also [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF]) that, for ϕ ∈ D α where 0 ≤ α < 1, C ϕ is bounded on D α if and only if N ϕ,α dA(z) is a Carleson measure for A α (D) and C ϕ is compact on D α if and only if N ϕ,α dA(z) is a vanishing Carleson measure for A α (D). More explicitly, for 0 ≤ α < 1 and for all ζ ∈ T, we have

           C ϕ is bounded on D α ⇐⇒ sup δ>0 1 δ 2+α {|z-ζ|<δ} N ϕ,α (z)dA(z) < ∞, C ϕ is compact on D α ⇐⇒ lim δ→0 1 δ 2+α {|z-ζ|<δ} N ϕ,α (z)dA(z) = 0.
We are going to recover these results for α > 0 as simple consequence of our results (see Theorem 3.5).

There is another approach on the subject: given a continuous function σ : [0, 1) → (0, ∞) such that σ ∈ L 1 (0, 1), we can consider the weighted Bergman space A 2 σ (D) := Hol(D) ∩ L 2 (D, σdA) consisting of analytic functions in D and square area integrable with respect to the weight σ. The space A 2 σ (D) is equipped with the norm

f σ = D |f (z)| 2 σ(z)dA(z) 1/2 .
If ϕ is a holomorphic map on the unit disk D into itself, by Littlewood's subordination principle, the composition operator C ϕ is bounded on A 2 σ (D). A simple computation shows that function

f (z) = ∞ n=0 a n z n belongs to A 2 σ (D) if and only if f 2 σ = n≥0 |a n | 2 σ n < ∞,
where

σ n = 2 1 0 r 2n+1 σ(r)dr, n ≥ 0.
We associated to σ the weight given by

ω σ (r) = 1 r (t -r)σ(t)dt.
Point out that lim

r→1- ω ′ σ (r) = 0 since σ ∈ L 1 . We have σ n+1 (1 + n) 2 ≍ 1 0 r 2n+1 ω σ (r)dr n ≥ 0.
Therefore for every f ∈ A 2 σ (D), we have

f 2 σ ≍ |f (0)| 2 + f ′ 2 ωσ . So A 2 σ (D) = H ωσ .
Moreover, it is worth pointing out that the weight ω σ always verifies (W 1 ), (W 3 ) and (W (I) 4 ). So that, to know whether ω σ is (I)-admissible (and so apply the main theorem) is equivalent to know whether ω σ verifies (W 2 ) or not. We have the following corollary

Corollary 1.5. Let ϕ ∈ Hol(D) such that ϕ(D) ⊂ D. Let σ be a weight such that ω σ is (I)-admissible. Then C ϕ is compact on A 2 σ (D) if and only if lim |z|→1- N ϕ,ωσ (z) ω σ (z) = 0. Examples. Note that if α > -1 and σ α (r) = (1 -r) α , then ω σα = ω α+2 . The composition operators C ϕ is compact on A α (D) = A 2 σα (D) if and only if lim |z|→1 - 1 -|ϕ(z)| 1 -|z| = ∞ (3) 
(see [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF][START_REF] Shapiro | The essential norm of a composition operator[END_REF]). The condition (3) means that ϕ does not have a finite angular derivative at any point of ∂D. The compactness of C ϕ on H 2 implies (3), but the angular derivative condition ( 2) is no longer sufficient for the compactness of C φ on H 2 for the general case but still sufficient for finitely valent symbol (see [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF]). Recall that ϕ is finitely valent when sup z∈D n ϕ (z) < ∞. We have the following corollary which involves a condition which can be viewed as a generalization of the condition (3)

Corollary 1.6. Let σ be an admissible weight and ϕ ∈ Hol(D) such that ϕ(D) ⊂ D.

• If C ϕ is compact on H ω , then lim |z|→1 - ω(z) ω(ϕ(z)) = 0.
• This is actually an equivalence, when ϕ is a finitely valent holomorphic function from the disk to itself.

Another example where Corollary 1.5 applies, and which (as far as we know) was not treated before in the litterature, is the following limiting case:

σ(r) = (1 -r 2 ) log e 1 -r 2 log log e 2 1 -r 2 • • • log p e p 1 -r 2 2 -1
, here log 1 x = log x, log k+1 x = log log k x, e 1 = e and e k+1 = e e k .

For this weight, it is easy to see that ω σ (r) ≍ (1-r 2 ) log p e p 1 -r 2 -1 and σ n ≍ 1/ log p n so that we are closer to the Hardy space than any classical weighted Bergman space A α (D), where α > -1.

Here and in all the following, f ≍ g means that there exist some constants α, β > 0 such that αf ≤ g ≤ βf .

2. Proofs of theorems 1.3 and 1.4

Let q λ denote the automorphism of the unit disc given by

q λ (z) = λ -z 1 -λz , z ∈ D.
Consider the function φ = q ϕ(0) • ϕ. Then φ : D → D is analytic, φ(0) = 0 and C q ϕ(0) is bounded (it suffices to make the regular change of variable). Note that C φ = C ϕ C q ϕ(0) and since ϕ = q ϕ(0) • φ, we also have

C ϕ = C φ C q ϕ(0) . Therefore, C ϕ is bounded if and only if C φ is bounded. As well, C ϕ is compact if and only if C φ is compact.
On the other hand, we have to check that the same invariance occurs on Nevanlinna counting functions, but this is an easy consequence of the following remark:

N q ϕ(0) •ϕ,ω (z) = q ϕ(0) •ϕ(a)=z ω(a) = ϕ(a)=q ϕ(0) (z) ω(a) = N ϕ,ω (q ϕ(0) (z))
At last, we can replace ω q ϕ(0) (z) by ω(z) in the conclusion thanks to the following remark Lemma 2.1. If ω satisfies (W 1 ) and (W 2 ) then there exists Hence from now until the end of the proof, we assume that ϕ(0) = 0. In order to prove the theorems, we shall need some lemmas Lemma 2.2. Let ω be a weight satisfying conditions (W 3 ) and (W (I) 4 ). Let ϕ ∈ Hol(D) such that ϕ(D) ⊂ D and ϕ(0) = 0.

C > 0 such that 1 C ω(z) ≤ ω(q ϕ(0) (z)) ≤ Cω(z), z ∈ D Proof. Set q ϕ(0) (z) = ζ
ω(z) ω(ζ) = ω(z) ω(ζ) (1 -|z|) 1+δ (1 -|ζ|) 1+δ (1 -|ζ|) 1+δ (1 -|z|) 1+δ ≤ 1 + |ϕ(0)| 1 -|ϕ(0)| 1+δ , because 1 + |z| ≤ 1 + |ζ| and 1 -|ζ| 2 = (1 -|z| 2 )(1 -|ϕ(0)| 2 ) |1 -ϕ(0)z| 2 • At last, if |ζ| ≤ |z|, since q ϕ(0) (ζ) = z,
Then the generalized Nevanlinna counting function N ϕ,ω satisfies the sub-mean value property : for every r > 0 and every z ∈ D such that

D(z, r) ⊂ D \ D(0, 1/2) N ϕ,ω (z) ≤ 2 r 2 D(z,r) N ϕ,ω (ζ)dA(ζ)
Proof. We set

d 2 ω dt 2 = σ, so ω(t) = 1 t (r -t)σ(r)dr
Let ϕ r (z) = ϕ(rz), we have

N ϕ,ω (z) = ϕ(α)=z 1 |α| (r -|α|)σ(r)dr = 1 0 ϕ(α)=z |α|≤r (r -|α|)σ(r)dr. Since 1/2 ≤ |z| = |ϕ(α)| ≤ |α| ≤ r ≤ 1, 2(r -|α|) ≥ log(r/|α|) ≥ r -|α|. So 2N ϕ,ω (z) ≥ 1 0 N ϕr (z)σ(r)dr ≥ N ϕ,ω (z). ( 4 
)
So by ( 4), the sub-mean value property is inherited by the generalized Nevanlinna counting function from the same property for the classical Nevanlinna function (see [START_REF] Shapiro | The essential norm of a composition operator[END_REF] 4.6). 

N ϕ,ω (z) ≤ 2 r 2 D(z,r) N ϕ,ω (ζ)dA(ζ) Proof. By Aleman formula [1, Lemma 2.3] for ζ, z ∈ D, let q ζ (z) = q ζ (-z) we have N ϕ,ω (z) = - 1 2 D ∆ω(ζ)N f • q ζ (z)dA(ζ). (5) 
Note that ∆ω(ζ) ≤ 0, since ω is decreasing and concave. We conclude as in the previous lemma.

For the following lemma, we need the following well-known estimation, (see [START_REF] Hedenmalm | Theory of Bergman Spaces[END_REF]Theorem 1.7]).

D (1 -|z| 2 ) c dA(z) |1 -zλ| 2+c+d ≍ 1 (1 -|λ| 2 ) d , if d > 0 , c > -1, (6) 
Lemma 2.4. Let ω be a weight satisfying (W 1 ) and (W 2 ).

D ω(z)dA(z) |1 -λz| 4+2δ ≍ ω(λ) (1 -|λ| 2 ) 2+2δ
Proof. Since ω radial and ω is non-increasing,

|z|>λ ω(z)dA(z) |1 -λz| 4+2δ ≤ ω(λ) D dA(z) |1 -λz| 4+2δ ≍ ω(λ) (1 -|λ| 2 ) 2+2δ
The last equality follows from [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF] On the other hand, ω(r)/(1 -r) 1+δ is non-decreasing, therefore

|z|<λ ω(z) (1 -|z| 2 ) 1+δ (1 -|z| 2 ) 1+δ |1 -λz| 4+2δ dA(z) ≤ ω(λ) (1 -|λ|) 1+δ D (1 -|z| 2 ) 1+δ dA(z) |1 -λz| 4+2δ ≍ ω(λ) (1 -|λ| 2 ) 1+δ 1 (1 -|λ| 2 ) 1+δ
The last equality follows from again by [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF] The proof of the minoration is straightforward.

Lemma 2.5. Let ω be a weight satisfying (W 1 ) and (W 2 ). Let λ ∈ D and let

f λ (z) = 1 ω(λ) (1 -|λ| 2 ) 1+δ (1 -λz) 1+δ Then f λ Hω ≍ 1 Proof. On one hand, f λ (0) = (1 -|λ| 2 ) 1+δ ω(λ) is bounded by 2 1+δ
ω(0) thanks to (W 2 ) (actually, this even converges to 0 when |λ| → 1). On the other hand,

f ′ n 2 ω ≍ (1 -|λ| 2 ) 2(1+δ) ω(λ) D ω(z) |1 -λz 4+2δ dA(z)
The result follows then from Lemma 2.4.

Proof of Theorem 1.3.

Proof. Suppose that (1) is satisfied. The boundedness of C ϕ follows from the change of variable formula [START_REF] Shapiro | Composition operators and classical function theory[END_REF]:

C ϕ (f ) 2 Hω = |f (ϕ(0))| 2 + D |f ′ (ϕ(z))| 2 |ϕ ′ (z)| 2 ω(z)dA(z) = |f (0)| 2 + ϕ(D) |f ′ (z)| 2 N ϕ,ω (z)dA(z) ≤ |f (0)| 2 + c D |f ′ (z)| 2 ω(z)dA(z) ≍ f 2 Hω .
Now assume that C ϕ is bounded on H ω . Let f λ be the test function of Lemma 2.5. We have

C ϕ • f λ 2 Hω ≍ (1 -|λ| 2 ) 2+2δ ω(λ) ϕ(D) N ϕ,ω (z) |1 -λz| 4+2δ dA(z) ≥ (1 -|λ| 2 ) 2+2δ ω(λ) D(λ, 1-|λ| 2 ) N ϕ,ω (z) |1 -λz| 4+2δ dA(z) ≥ c 1 1 ω(λ) 1 (1 -|λ| 2 ) 2 D(λ, 1-|λ| 2 ) N ϕ,ω (z)dA(z) ≥ c 2 N ϕ,ω (λ) ω(λ)
where the c i 's are independent from λ and the last inequality follows from Lemma 2.3 (when |λ| is close enough to 1). We conclude that

sup λ∈D N ϕ,ω (λ) ω(λ) ≤ c ′ sup λ∈D C ϕ • f λ 2 Hω ≤ c ′ C ϕ 2 sup λ∈D f λ 2 Hω
which is bounded by hypothesis (C ϕ bounded) and thanks to Lemma 2.5 .

Remarks 2.6.

Still assuming that ϕ(0) = 0, if ω is (I)-admissible, (1) is automatically satisfied. Indeed, the classical Littlewood's inequality, applied to the function r -1 ϕ r , gives that N ϕr (z) ≤ log(r/|z|) and so by ( 4)

N ϕ,ω (z) ≤ 1 0 N ϕr (z)σ(r)dr = 1 |z| N ϕr (z)σ(r)dr ≤ 1 |z| log(r/|z|)σ(r)dr ≤ 2ω(z)
Up to universal constants, the same inequality is valid without assuming ϕ(0) = 0 (see Lemma 2.1).

Proof of Theorem 1.4. ⇐= Assume that (2) is satisfied. Let (f n ) n be a sequence in the unit ball of H ω converging to 0 weakly. It suffices to show that C ϕ (f n ) Hω → 0 as n → ∞. The weak convergence of f n to 0 implies that f n (z) → 0 and f ′ n (z) → 0 uniformly on compact subsets of D. Let ε > 0, there exists ρ ǫ ∈ (1/2, 1) such that

N ϕ,ω (z) ≤ εω(z), for ρ ǫ < |z| < 1.
By the change of variable formula

C ϕ (f n ) 2 Hω ≍ |f n (0)| 2 + ϕ ′ .(f ′ n • ϕ) 2 ω = |f n (0)| 2 + D |f ′ n (ϕ(z))| 2 |ϕ ′ (z)| 2 ω(z)dA(z) = |f n (0)| 2 + ϕ(D) |f ′ n (z)| 2 N ϕ,ω (z)dA(z) ≤ |f n (0)| 2 + ρεD |f ′ n (z)| 2 N ϕ,ω (z)dA(z) + ε ϕ(D)\ρεD |f ′ n (z)| 2 ω(z)dA(z) ≤ |f n (0)| 2 + ρεD |f ′ n (z)| 2 N ϕ,ω (z)dA(z) + ε
The conclusion easy follows since (f ′ n ) uniformly converges to 0 on the closed disk ρ ǫ D.

=⇒ Let us assume that for a β > 0 and a sequence λ n ∈ D such that

|λ n | → 1 -we have N ϕ,ω (λ n ) ≥ β.ω(λ n ). Let f n (z) = 1 ω(λ n ) (1 -|λ n | 2 ) 1+δ (1 -λ n z) 1+δ , z ∈ D
By Lemma 2.5, (f n ) n is a bounded sequence on H ω , converging weakly to 0. Indeed, it is uniformly converging to 0 on compact subsets since, by (W 2 ),

1 ω(λ n ) (1 -|λ n | 2 ) 1+δ ≤ 2 1+δ ω(0) (1 -|λ n |) (1+δ)/2
On the other hand, by the change of variable formula and Lemmas 2.2 and 2.3 we get

(f n • ϕ) ′ 2 ω ≍ (1 -|λ n | 2 ) 2+2δ ω(λ n ) D N ϕ,ω (z) 1 -λ n z 4+2δ dA(z) ≥ c 1 (1 -|λ n | 2 ) 2 ω(λ n ) D(λn, 1-|λn| 2 ) N ϕ,ω (z)dA(z) ≥ c 1 N ϕ,ω (λ n ) ω(λ n ) ≥ c 2 β
where c 1 and c 2 are positive constant independent of n. Thus C ϕ cannot be compact, and this finishes the proof.

Applications and complements

First let us indicate some other special cases where Theorem 1.4 applies. Let us write σ = ω ′′ . Proposition 3.1. 1) Condition (W 2 ) is fulfilled for every classical weight σ(r) = (1 -r 2 ) α where α > -1.

2) When σ is non decreasing, then condition (W 2 ) is fulfilled by ω σ with δ = 1.

Proof. 1. Take δ = α + 1.

Let compute the derivative of

H(r) = ω(r) (1 -r) 2 • H ′ (r) = 2 (1 -r) 3 1 r (x -c)σ(x)dx where c = (r + 1)/2. So H ′ (r) = 2 (1 -r) 3 1 c (t -c)(σ(t) -σ(2c -t))dt ≥ 0 since σ is non decreasing.
It would be interesting to compare the condition obtained for one specific weight ω with the one for another weight. In particular, it is known that the compactness on the Hardy space H 2 implies the compactness on classical weighted Bergman spaces. We are going to extend this result. On the other hand, it would be interesting to know when the non angular derivative condition (3) is still equivalent to the compactness on weighted Bergman spaces. We also have a partial result in this direction.

Before proving these results, we need some simple observations. We associate to σ the weight ω σ and we introduce the function

G(r) = ω σ (r) (1 -r) , r ∈ [0, 1[
which is C 1 on [0, 1[ and extends continuously at 1 by

G(1) = -lim r→1 ω ′ σ (r) = 0.
Moreover, when ω σ verifies (W 3 ) and lim r→1 ω ′ σ (r) = 0, we can write

G(r) = 1 r ρ -r (1 -r) σ(ρ)dρ, so G ′ (r) = 1 r ρ -1 (1 -r) 2 σ(ρ)dρ.
Hence G is a non-increasing function. Moreover:

G ′′ (r) = σ(r) (1 -r) - 1 r 2(1 -ρ) (1 -r) 3 σ(ρ)dρ = 2 (1 -r) 3 1 r (1 -ρ)(σ(r) -σ(ρ))dρ
Therefore G is a convex function when σ is a non increasing function.

We introduce the following condition. Here, it will be more convenient to write ωσ (x) = ω σ (1 -x) and G(x) = G(1 -x).

We say that the weight ω σ verifies condition (κ) if

lim η→0 + lim sup x→0 + ωσ (ηx) η ωσ (x) = 0.
This is clearly equivalent to

lim η→0 + lim sup x→0 + G(ηx) G(x) = 0
Observe that when σ is a non increasing function, then Condition (κ) is fulfilled for ω σ : G(0) = 0, so by convexity: G(ηx) ≤ η G(x). Proof. As already explained, it suffices to treat the case ϕ(0) = 0.

i) The Schwarz lemma implies that for every a ∈ D with ϕ(a) = z, ii) Using the function H(r) = ω σ (r)(1 -r) -(1+δ) instead of G, the same trick works to show that when C ϕ is compact on A 2 σ (D), then C ϕ is compact on A 2 σ 1+δ (D). But it is known to be equivalent to the compactness on the standard Bergman space A 2 0 (D).

we have |z| ≤ |a|, hence G(|z|) ≥ G(|a|) where G(r) = ω σ (r)(1 -r) -1 . Then N ϕ,ω (z) = ϕ(a)=z a∈D ω σ (a) = ϕ(a)=z a∈D G(|a|)(1 -|a|) ≤ G(|z|) ϕ ( 
Applying the same ideas, we are able to produce a simple sufficient test-condition to ensure that a composition operator on a weighted Bergman space is compact. We shall see below that the converse of the first assertion is false in general, for any (I)-admissible weight.

Theorem 3.3. Let ϕ ∈ Hol(D) such that ϕ(D) ⊂ D. Let σ be a weight such that ω σ is (I)-admissible. i) If lim |z|→1 - G(z) G(ϕ(z)) = 0 then C ϕ is compact on A 2 σ (D). ii) When ω σ satisfies the condition (κ), condition (3) implies that C ϕ is compact on A 2 σ (D).
Hence by Theorems 3.2 and 3.3, we have

ω(z) ω(ϕ(z)) = o 1 -|z| 1 -|ϕ(z)| =⇒ C ϕ is compact on A 2 σ (D) =⇒ ω(z) ω(ϕ(z)) = o(1)
when |z| tends to 1.

Of course, in the very special case of classical weighted Bergman spaces, we recover the well-known equivalence with condition (3).

Proof. As already explained, it suffices to treat the case ϕ(0) = 0.

i) Let us fix some 1 > ǫ > 0. There exists some ρ ∈ (0, 1/2) such that for every |a| > 1 -ρ, we have G(a) G(ϕ(a))

≤ ε.

The Schwarz lemma implies that for every a ∈ D with ϕ(a) = z, we have |z| ≤ |a|, so that |a| > 1 -ρ as soon as |z| > 1 -ρ. We have then and we obtain that N ϕ,ωσ (z) ≤ 2εω σ (z) (ii) Obvious with the previous result.

We already said that the first implication in Theorem 3.2, is not an equivalence. Indeed: Proof. It suffices to apply both the preceding theorem and Theorem 3.1. [START_REF] Lefèvre | Some revisited results about composition operators on Hardy spaces[END_REF] with

∆(t) = G-1 C G(t) ,
where the numerical constant C is only fixed by ∆(1) = 1/2; point out that ∆ is non-decreasing and that lim t→0 ∆(t) = 0. This provides us with a Blaschke product ϕ such that ϕ(0) = 0 and As announced in the introduction, we can recover the characterization due to Zobroska of compactness for classical weighted Dirichlet spaces. Actually we have such characterizations for every (II)admissible weight. We use the notations already introduced in the first section. 
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1

  -|ϕ(z)| ≥ ∆(1 -|z|) Since ϕ is inner, C ϕ cannot be compact on H 2 .On the other hand,G(|ϕ(z)|) = G(1 -|ϕ(z)|) ≥ G(∆(1 -|z|)) = C G(|z|).

Theorem 3 . 5 .sup ζ∈T 1 δ

 351 Let ω be a (II)-admissible weight and let ϕ ∈ H ω . Then (i) C ϕ is bounded on H ω if and only ifsup δ>0 sup ζ∈T 1 δ 2 ω(1 -δ) {|z-ζ|<δ} N ϕ,ω (z)dA(z) < ∞. (ii) C ϕ is compact on H ω if and only if lim δ→0 2 ω(1 -δ) {|z-ζ|<δ} N ϕ,ω (z)dA(z) = 0.Proof. We only proof (ii) since the proof of (i) is similar. If we assume that C ϕ is compact. The characterization (2) easily implies that lim δ→0 1 δ 2 ω(1 -δ) {|z-ζ|<δ} N ϕ,ω (z)dA(z) = 0 uniformly in ζ ∈ T.

  Theorem 1.3. Let ω be a (II)-admissible weight and ϕ ∈ H ω . Then C ϕ is bounded on H ω if and only if
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On the converse, let θ ∈ D (with say

Letting |θ| tend to 1, we get the characterization (2).