
Maximum (cardinality) matchings in bipartite graphs

So far we have seen simple matching algorithms. In particular a simple

algorithm to find a maximum matching in a tree.

Trees are a particular class of bipartite graphs. So the natural question is:

what is the complexity of the maximum matching problem in bipartite

graphs?

Historically some of the most important theorems for bipartite graphs

were proved directly and only later were these bipartite results obtained as

corollaries of more general non-bipartite theorems.

Moreover bipartite graphs deserve special treatment because the majority

of real world applications of matching theory deal with bipartite graph

models.
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Useful functions

Let � be any graph. Then

� � � � denote the matching number of � (i.e. the cardinality of the largest

matchings in � )

� � � � the vertex covering number (i.e. the cardinality of the smallest sets

of vertices incident to all edges in � )

� � � � the independence number (i.e. the cardinality of the largest sets �

of vertices such that � � � � is empty) and

	 � � � the edge covering number (i.e. the smallest number of edges that

are incident to any vertex in � ).

Next we will describe and prove a number of results relating these

quantities (valid for any graph).
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Exercise. 
 �� 
� � �� 
�� �� � , for any graph� .

Lemma 1. � �� 
� � �� 
 � �� � , for any graph� with no isolated vertex.

Proof. Let � be a minimum edge cover. � � � � � 
� , the graph induced by the set

� � � 
 , consist of a number of “stars” (because any other “larger” graph would not

be minimal).

Therefore the number of connected components in� � � � � 
� is �� � �� 


(because each component on � vertices has �� � edges).

Picking one edge from each of them we get a matching � of size �� � �� 
 .
Hence � �� 
� �� � �� 
 .
Conversely let � be a maximum matching in� .

For every vertex � NOT incident to an edge of � there must be an edge

connecting � with some edge in � .

We can thus define a set of lines covering every vertex of� of size

� �� 
� � ��  � �� 
 
 . Hence � �� 
! � � � �� 
 .
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In proving the first of these two lemma you will notice the nice relationship
between minimal vertex covers and independent sets of points, if " is one such
cover then # $ " is an independent set. There is no such relationship between
edge covers and matchings.

So what? Are questions about � � � � or � � � � going to be “easier” than
questions about 	 � � � and � � � � ? Quite the contrary!

Exercises. Prove the following results.

1. A minimal edge cover is minimum if and only if it contains a maximum
matching.

2. A maximal matching is maximum if and only if it is contained in a min-
imum line cover.
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König’s theorem

Let’s now turn to bipartite graphs with three very beautiful theorems.

Theorem 1. � � � ��� � � � � if � is bipartite.

Proof It is enough to prove � � � �� � � � � (the other inequality is fairly

simple and left as an exercise).

Define ��� to be the graph with the minimum number of edges which is a

subgraph of � and has � � � � �� � � � � (hence � � � � $� �� � � ��� � for any

� � 	 � � � � ).
Claim. 	 � � � � is a matching in � .

Notice that König’s theorem follows from the claim as

� � � ��� � � � � �� 
 	 � ��� � 
� � � � � .
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Proof of the main claim

We will prove the claim by contradiction.

1. Assume there were two edges � and 
 incident to a vertex � in� � , then

consider� �� � and� �� 
 .

2. There is a cover � � in� �� � with � � � �� � �� � 
� � and neither end-points

of � belong to � � .

3. Similarly there is a cover � � in� �� 
 with � � � �� � �� � 
� � and neither

end-point of 
 are in � � .

4. Hence � � � �� � � � � .
5. Consider the subgraph� � � of� � induced by � (the common endpoint of �

and 
 ) and � �� � � � � � � � � � 
� � � � � � � 
 .
6. Let � � � � �� � � � . Then, trivially, �� �� � � 
 ��  � � �� � 
� �� � 
� � .
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7. Furthermore, since� is bipartite, there is a set � (the smaller of the two

colour classes of� � � ) which covers� � � and has size at most

�� ���� � � � � � � � �� � 
� �� � .
8. But � � � � �� � � 
 covers� � ... and

� � � � � �� � � 
 �! � �� � 
� �� �� �� � �� � 
� � . Contradiction.
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Hall’s theorem

König’s theorem will be needed to prove the correctness of our matching

algorithm. But the result also has a number of important consequences.

Hall’s theorem is an important corollary of König’s theorem.

We prefer to give an explicit inductive proof of this, as this is of interest in its own

right. We first need one bit of notation.

If! is a set of vertices in a graph� , let denote by " �! 
 the set of vertices that

are adjacent to at least one vertex in! .

Theorem 2. Let� � � � # $ �  $% 
 be a bipartite graph. Then� has a matching of

� # into �  if and only if � " �! 
 �� �! � for all! & � # .
Proof. First notice that if� does have a matching of � # into �  then

� " �! 
 �� �! � for all! & � # , because for every! & � # we can find a distinct

element in �  , i.e. " �! 
 is at least as large as! .
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Proof of the “difficult” implication

Let’s suppose � " �! 
 �� �! � for all! & � # . We prove that there is a matching of

� # into �  by induction on � � # � . If � # has size zero or one the result is trivial.

(Case 1.) � " �! 
 �� �! � for all! such that � � ! �

� # .
Let � # and �  be adjacent with � �� � � for �� � $  . Let

� � � � � � #� �  and! be any subset of � #� � # .
We have that � " �! 
 � � �! � by our assumption and

therefore, counting w.r.t. � � , � " �� �! 
 � � � " �! 
 ��

� � �! � . Thus we can apply the induction hypothesis,

find a matching of � #� � # into �  � �  , and add � � # $ �  �
to it, end of story.
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(Case 2.) There is at least one proper subset of � # ,! �

such that � " �! � 
 �� �! � � . Let � # be the subgraph of

� induced by! � and " �! � 
 and�  the graph induced

by � �! � � " �! � 
 .
Suppose! & ! � , then " �! 
 must be a subset of

" �! � 
 therefore, as for every subset of � # , � " � � �! 
 ��

�! � .
Secondly if! & � # �! � , then we look at " �! � ! � 
 .
This is equal to " � 	 �! 
� " �! � 
 (and the two sets are

disjoint). Therefore � " � 	 �! 
 �� � " � 	 �! 
� " �! � 
 ��

� " �! � 
 �� �! � ! � �� � " �! � 
 �� �! � ! � �� �! � ��

�! � .
Therefore we can apply induction to� # and�  and get

two matchings � # and �  whose union is the solution

to the given problem.
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Exercises

1. Can you design a recursive algorithm based on the proof of Hall’s

theorem given above?

2. What is the complexity of the algorithm under point 1.?

A final corollary

A perfect matching (or 1-factor) is a matching which covers all points of

� . The following is an obvious corollary of Hall’s theorem.

Theorem 3. (Frobenius’ Marriage theorem) A bipartite graph � has a

perfect matching if and only if 
 # 
 
� 
 # � 
 and Hall’s condition holds for

any � 
 # 
 .
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