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Abstract

We prove that the solution-map u0 7→ u associated with the KdV
equation cannot be continuously extended in Hs(R) for s < −1. The
main ingredients are the well-known Kato smoothing effect for the
mKdV equation as well as the Miura transform.

1 Statement of the result

The KdV equation is a canonical dispersive equation that reads

vt + vxxx − 6vvx = 0 (1.1)

where u(t, x) is a real valued function. In the end of the sixties, Miura dis-
covered that the KdV equation is related to the defocussing mKdV equation

ut + uxxx − 6u2ux = 0 (1.2)

by the now so-called Miura transformation. Indeed, the Miura transforma-
tion Φ : u 7→ ux + u2 maps a smooth solution of the defocussing mKdV to
a solution of the real-valued KdV equation

The Cauchy problem, in Sobolev spaces, associated with these equations
has been extensively studied since the end of the eighties (see for instance
[7], [1], [8] and references herein). The lowest Sobolev index reached for the
well-posedness theory is su(KdV ) = −3/4 for the KdV equation (cf. [10]
or [4]) and su(mKdV ) = 1/4 for the mKdV equations (cf. [7]). Note that
the difference of one derivative between these two results agrees with the
lost of one derivative in the Miura transformation. These indexes have been
proved to be optimal if one requires moreover the solution-map u0 7→ u to be
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uniformly continuous on bounded set from Hs(R) into C([0, T ];Hs(R)) (cf.
[9], [2]). However, one may expect that the solution-map associated with
these equations can be continuously extended below these indexes especially
since they are far above the critical Sobolev indexes for the dilation sym-
metry that are respectively sd(KdV ) = −3/2 and sd(mKdV ) = −1/2. It is
worth emphasizing that such results have been proved in the periodic case
by Kappeler and Topalov (cf. [6], [5]). More precisely, they proved that the
solution-maps associated to the KdV and mKdV equations can be uniquely
continuously extended in respectively H−1(T) and L2(T). Note that, in the
periodic setting, these solution-maps are known to be non uniformly contin-
uous on bounded sets of Hs(T) for respectively s < −1/2 and s < 1/2.

In this note we combine the Miura transforms and the so-called local
Kato smoothing effect to prove that the solution-map associated with the
KdV equation cannot be continuously extended in Hs(R) for s < −1.

Theorem 1.1. Let s < −1 be given. For any ε > 0 there exists hε ∈
H∞(R) with ‖hε‖L2 = ε such that, for any T > 0, the solution-map u0 7→
u associated with the KdV equation is discontinuous at hε from H∞(R)
equipped with the Hs(R) topology into D′(]0, T [×R).

Remark 1.1. Let BH−1(0, R) be the ball of H−1(R) centered at the origin
with radius R. Actually we also prove that there exits no R > 0 and no
T > 0 such that the flow-map u0 7→ u associated with the KdV equation is
continuous from BH−1(0, R) ∩ H∞(R), equipped with the weak topology of
H−1(R), into D′(]0, T [×R).

2 Proof.

The idea of the proof is the following: On one hand the Miura transfor-
mation is discontinuous in Hs(R) as soon as s < 0 so that we can find a
sequence of initial data , bounded in L2(R), that converges to 0 inHs(R) but
which Miura transform converges to some non identically vanishing element
θ of H∞(R). On the other hand, using the Kato smoothing effect, we can
prove that the sequence of associated solutions {uN} to the mKdV equation
converges, up to a subsequence, to some solution u of the mKdV equation
that belongs to Cw(R;H

−1(R)) and such that u(0) = 0. This forces the
sequence of associated Miura transform {Φ(uNk

)} to converge towards Φ(u)
in some sense. This yields the result since we can prove that {Φ(u)} is not
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the classical solution of the KdV equation emanating from θ.

Step 1- Choice of the sequence of initial data - Let {hN} ⊂ H∞(R) be the
sequence defined by

ĥN (ξ) = χ[N,N+1](|ξ|) .

Clearly {hN} is bounded in L2(R). It tends to 0 in Hs(R) for any s < 0
and weakly in L2(R). Let us now fix 0 < ε < 1 and consider the sequence
of initial data {εhN}. Straightforward calculations lead to

Φ(εhN ) = ε2θ + εh′N + ε2αN

where

θ̂(ξ) = (1− |ξ|)χ[0,1](|ξ|)
(

i.e. θ(x) =
2

x2
(1− cos(x)), ∀x ∈ R

)

and
α̂N (ξ) =

(

1−
∣

∣

∣
|ξ| − 2N − 1

∣

∣

∣

)

χ[0,1](||ξ| − 2N − 1|) .

Clearly θ ∈ H∞(R) with ‖θ‖L2 ∼ 1, αN → 0 in H−1(R) and h′N → 0 in
Hs(R) for s < −1. In particular, for any s < −1,

Φ(εhN ) → ε2θ in Hs(R) as N → +∞ . (2.1)

Step 2 - Uniform bounds on the sequence of emanating solutions - Since
hN ∈ H∞(R), it follows from classical well-posedness results for mKdV (see
for instance [3]) that the solution uN of (1.2) emanating from εhN exists for
all times and belongs to C(R;H∞(R)). Moreover, it is well known that the
L2-norm of the solution is a constant of the motion and that the so-called
Kato smoothing effect holds. For sake of completeness we give hereafter a
version of this smoothing effect that is suitable for our purpose (see for in-
stance [3] for a general setting) and use it to prove some uniform continuity
result.

Lemma 2.1. Let u0 ∈ H∞(R). Then for any T > 0 and R > 0 there exists
C(T,R) > 0 such that the emanating solution of (1.2) safisfies

∫ T

−T

∫ −R

R
|∂xu(t, x)|

2dx dt ≤ C(R,T )‖u0‖
2
L2 . (2.2)

Moreover, for any function ϕ ∈ C∞
c (R) with compact support in ]−R,R[ and

any interval [t, t+ δ] ⊂]− T, T [ with 0 < δ < 1, there exists C(ϕ, T,R) > 0
such that
∣

∣

∣

∫

R

ϕu(t+ δ) dx−

∫

R

ϕu(t) dx
∣

∣

∣
≤ C(ϕ,R, T ) δ1/2

(

‖u0‖
2
L2 + ‖u0‖

3
L2

)

. (2.3)
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Proof. Let φ ∈ C∞
c (R) with φ ≡ 1 on [−1, 1], 0 ≤ φ ≤ 1 on [−2, 2]

and Supp φ ⊂] − 2, 2[. For R > 1 we set h′(x) := φ(x/R) and h(x) :=
∫ x
−∞

h′(t) dt. Integrating (1.2) against hu one obtains

d

dt

∫

R

hu2 + 3

∫

R

h′(ux)
2 −

∫

R

h
′′′

u2 + 3

∫

R

h′u4 = 0

Since the L2-norm is conserved by the flow of (1.2), we get

d

dt

∫

R

hu2 +

∫

R

h′(ux)
2 ≤ C ‖u0‖

2
L2 .

Integrating this inequality in (−T, T ) and using the properties of h′, we thus
infer that

∣

∣

∣

∫ T

−T

∫ R

−R
(ux)

2
∣

∣

∣
≤

∣

∣

∣

∫ T

−T

∫

R

h′(ux)
2
∣

∣

∣
≤ C (T +R)‖u0‖

2
L2 .

This completes the proof of (2.2). To prove (2.3) we integrate (1.2) against
ϕ ∈ C∞

c (R), compactly supported in ]−R,R[, to get

d

dt

∫

R

ϕu−

∫

R

ϕxxxu+ 2

∫

R

ϕ′u3 = 0 .

Integrating this identity on [t, t+ δ] ⊂ (−T, T ) and using Hölder inequality
in space, we obtain

∣

∣

∣

∫

R

ϕu(t+δ) dx−

∫

R

ϕu(t) dx
∣

∣

∣
≤ C(ϕ, T )

∫ t+δ

t

[(

∫ R

−R
u2 dx

)1/2
+
(

∫ R

−R
|u|6 dx

)1/2]

(2.4)
On the other hand, interpolating between (2.2) and the conservation of the
L2-norm, we infer by Sobolev inequality that

∫ T

−T

∫ R

−R
|u|6 dx dt ≤ C(T,R)‖u0‖

6
L2 . (2.5)

(2.3) then follows from (2.4) and (2.5) by applying Hölder inequality in
time.

Step 3 - Convergence results and properties of the limit - From the above
lemma we deduce the following convergence result :
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Proposition 2.1. There exists a subsequence {uNk
} of {uN} such that

uNk
→ u a.e. in R

2, (2.6)

uNk
⇀ u weakly star in L∞(R;L2(R)), (2.7)

u2Nk
⇀ u2 weakly star in L∞(R;H−1(R)), (2.8)

where u ∈ Cw(R;L
2(R)) ∩ L2

loc(R;H
1
loc) satisfies the mKdV equation in the

distributional sense with u(0) = 0.

Proof. We first notice that, by the conservation of the L2-norm, {uN}
is bounded in L∞(R;L2(R)). Second, from (2.2) in Lemma 2.1, {∂xuN}
is bounded in L2

loc(R
2). Third, by the equation, {∂tuN} is bounded in

L2
loc(R;H

−2
loc ). It thus follows from Aubin-Lions compactness theorem that

there exist u ∈ L∞(R;L2(R)) ∩ L2
loc(R;H

1
loc) and an increasing sequence of

integers {Nk} such that (2.6)-(2.8) hold. Now, using (2.6), we can pass to
the limit on the equation to infer that u satisfies the mKdV equation in the
distributional sense. Moreover, it follows from (2.3) that, for any fixed T > 0
and any fixed ϕ ∈ C∞

c (R), the sequence of functions {t 7→
∫

R
ϕuNk

(t) dx}k≥0

is uniformly equi-continuous on [−T, T ] and thus converges in C(−T, T ) to-
wards some continuous function w thanks to Ascoli’s theorem. (2.6) then
ensures that w =

∫

R
ϕu(t) dx which proves that u ∈ Cw(R;L

2(R)). Finally,
since uN (0) = εhN ⇀ 0 in L2(R) we infer that u(0) = 0.

Proposition 2.2. The sequence of solutions {Φ(uNk
)} of the KdV equation

converges weakly star in L∞(R;H−1(R)) towards Φ(u) that satisfies : For
all ϕ ∈ C∞

c (R), t 7→
∫

R
ϕ(x)Φ(u(t, x)) dx is, up to modifications on a set of

measure zero, a continuous function on R with value zero at the origin.

Proof. First from (2.7)-(2.8) we infer that, for any T > 0,

Φ(uNk
) ⇀ Φ(u) weakly star in L∞(R;H−1(R)) (2.9)

and thus in D′(R2). Now, to prove the remaining of the statement, we use
an exterior regularization by a mollifier sequence {ρm} where

ρm(x) =
(

∫

R

ρ(y) dy
)−1

mρ(mx), x ∈ R, n ≥ 1,

and ρ 6≡ 0 is a non negative C∞ function compactly supported in ] − 1, 1[.
We set um = ρm ⋆ u. Since u ∈ L∞(R;L2(R)) ∩ L2

loc(R;H
1
loc) and satisfies

the mKdV equation in the distributional sense, one can easily check that
ut ∈ L2

loc(R;H
−2
loc ). It follows that

∂tum + ∂3
xum = 2ρ′m ∗ (u3)
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with ∂tum ∈ L2
loc(R

2). Multiplying this equation with ϕum and integrating
by parts on R we get

d

dt

(

∫

R

ϕu2m dx
)

+3

∫

R

ϕ′(∂xum)2 −

∫

R

ϕ
′′′

u2m + 3

∫

R

ϕ′u4m

= −4

∫

R

(ϕ′um + ϕ∂xu)[u
3
m − ρm ∗ u3]

Integrating in time between 0 and t > 0, recalling that u(0, ·) = 0, this leads
to

∫

R

ϕu2m(t) dx+3

∫ t

0

∫

R

ϕ′(∂xum)2 −

∫ t

0

∫

R

ϕ
′′′

u2m + 3

∫ t

0

∫

R

ϕ′u4m

= −4

∫ t

0

∫

R

(ϕ′um + ϕ∂xun)[u
3
m − ρm ∗ u3] . (2.10)

Now, since u ∈ L∞(R;L2(R)) ∩ L2
loc(R;H

1
loc) we infer that

∂xum → ux in L2
loc(R

2), um → u in L6
loc(R

2) and ρm ∗ u3 → u3 in L2
loc(R

2) .

Moreover, there exists a mesurable set E ⊂ R with mes (E) = 0 such
that u(t) ∈ L2(R) for all t ∈ R/E. For any t ∈ R/E this ensures that
um(t) → u(t) in L2(R) and thus passing to the limit in (2.10) as m goes to
infinity we obtain

∫

R

ϕu2(t) dx = −3

∫ t

0

∫

R

ϕ′(∂xu)
2 +

∫ t

0

∫

R

ϕ
′′′

u2 − 3

∫ t

0

∫

R

ϕ′u4 . (2.11)

This shows that, up to a modification on E, t 7→
∫

R
ϕu2(t) dx is a continuous

function with value zero at the origin.
Recalling that u ∈ Cw(R;L

2(R)) with u(0) = 0 and that Φ(u) = u′+u2,
this completes the proof of the proposition.

- Conclusion - Let us fixed s < −1 and ε > 0. From (2.1), Φ(εhN ) → ε2θ 6= 0
in Hs(R), with ‖θ‖L2 ∼ 1, and the solution v to (1.1) emanating from ε2θ
belongs to C(R;H∞(R)). Let φ ∈ C∞

c (R) with φ ≡ 1 on [−1, 1], 0 ≤ φ ≤ 1
on [−2, 2] and Supp φ ⊂] − 2, 2[. Setting ϕ := φθ ∈ C∞

c (R) we thus infer
that there exists r0 > 0 such that

∫

R

ϕ(x)v(t, x) dx ≥
ε2

2

∫ 1

−1
|θ(x)|2 dx > 0 for any t ∈]− r0, r0[ . (2.12)

On the other hand, according to Proposition 2.2, there exists u ∈ L∞(R;L2(R))∩
L2
loc(R;H

1
loc) and an increasing sequence of integers {Nk} such that uNk

⇀
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u weakly star in L∞(R;L2(R)) and such that the sequence of solutions
{vNk

} := {Φ(uNk
)} of KdV, emanating from {Φ(εhN )}, tends weakly star

towards Φ(u) in L∞(R;H−1(R)). Moreover, there exists 0 < r < r0 such
that

∣

∣

∣

∫

R

ϕ(x)Φ(u(t, x)) dx
∣

∣

∣
≤

ε2

4

∫ 1

−1
|θ(x)|2 dx for a.e. t ∈]0, r[ . (2.13)

Gathering (2.12) and (2.13) this ensures that for almost every t ∈]0, r[,

v(t) 6= Φ(u(t)) a.e. in R .

which completes the proof of the theorem. Finally note that Remark 1.1
follows from the fact that ‖Φ(εhN )‖H−1(R) ∼ ε, for all n ≥ 1, and Φ(εhN ) ⇀
ε2θ in H−1(R).
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